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§1. Introduction

In this paper I want to clarify and present in a systematic way a number
of results in a field which, in the context of partial differential equations
(PDE's), has been developing rapidly since the seventies, and which appears
to be very fruitful and full of promise. This field, a global stability theory
for PDE's, qualifies as a new direction in the study of initial boundary-value
problems for PDE's. We shall deal with the problem of finding minimal sets
which in time attract some part of the phase space X. We shall mainly
concentrate on determining the minimal set attracting any bounded subset Β
of X. Let us clarify this statement.

Initial boundary-value problems for PDE's for which these problems are to
be considered must be uniquely soluble for all t Ε R+ = [0, °°) in some
complete metric space X, which I shall call the phase space. In this paper I
shall restrict myself to the case when there is no explicit dependence on
time, and when, therefore, the solution operators Vt, t Ε R+, form a
semigroup Vt: X -*• X, t Ε R+. The choice of phase-space for any given
problem (that is, for a given PDE together with a boundary condition) is not
unique. It is natural to try to choose the largest possible X. The limit to
the size of X is set by requiring a uniqueness theory to hold, so that the
dynamics are deterministic. It frequently happens that if a uniqueness
theorem can be proved, one can also prove continuity of the semigroup
Vt:X-*X, t Ε R+, that is, continuity of Vt(v) in (r, υ) Ε R+ χ Χ. However,
many papers and even monographs on the subject omit this proof, partly
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since it is not essential for their purposes. In these works, instead of proving
continuity of Vt(v) in (t, v) the authors at most prove "weak" continuity of
Vt(v) in / € R+ for a fixed υ G X, and continuity of Vt(v) in υ for almost all
t in R+. For some of the questions we consider here, continuity in t is not
needed. These questions can in fact be resolved positively in the case of
discrete semigroups V" (n = 0, 1, ...). On the other hand, the continuity of
the operators Vt for all t > 0 (or of the operator V in the discrete case) is
necessary. From the point of view of physics and geometry, it is unnatural
to withdraw the requirement that the semitrajectory y*(v) = (F<(i>), f £ R*}
be continuous in t. The same is true about the continuity of Vt(v) in
(/, υ) € R+ χ X. In all thoroughly investigated cases of initial boundary-
value problems for PDE's, continuity of Vt(v) in (t, v) € R+ χ Χ holds. Let
us denote various bounded subsets of X by B, and the family of all such sets
b y * .

The statement that the set Bo attracts the set Β has the following
interpretation: for any ε > 0 there exists a number ix(e, B) such that
V,(B)cz Ot(B0) for all f > ί,(ε, Β), where Ot(B0),is the union of all balls of
radius e with centres at points of Bo.

We call the set Bo absorbing if for all Be SS there exists a t^B) such that
Vt(B) C Bo for all t > h(B).

We define the minimal (or true) global B-attractor of the problem (more
precisely, of the corresponding semigroup Vt: X -*• X, t G R+) to be the
smallest closed non-empty set that attracts all bounded sets Β C X, and we
denote it by 331.

We define the minimal global attractor of the problem (of the semigroup
Vt: X -*• X, i G R+) to be the smallest non-empty closed set that attracts all

points of X, and we denote it by Sft.

It is clear that 3ftc:9ft, and it is important to note that 9ft can be much
smaller than 'SSI. It turns out that in many interesting problems of natural
sciences 2ft is a "minuscule" subset of X.

My paper [1], which was published in February 1972, concerns the
problem of finding the set 9ft for PDE's and describing the dynamics Vt

on 2ft,: In this paper the set 9ft was found for a certain class (class 1) of
semigroups, which encompasses a number of problems of the flow of viscous
incompressible fluids, as well as quasilinear parabolic equations and systems
of parabolic type for which there exists a bounded absorbing set. This class
of semigroups is discussed in §2.

Reflection on the problem of describing turbulent (that is, complex) fluid
flow in the framework of Navier-Stokes (N.-S.) equations gave me a hint of
the construction by which such a set 9ft can be found. My thoughts on this
matter are to be found in the beginning of §2. To describe this construction
of the set 9ft here, I shall first review a number of concepts and facts from
the theory of ordinary differential equations (ODE's) and from the theory
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of semigroups Vt: X -*• X, t £ R+, acting on a locally compact space X. To
every semitrajectory y+(v) == {Vt(o), t 6 R+} there corresponds the set

(1.1) to(v)& fl irt(»)]i= Π lyU»)]x for all Γ > 0 ,
<>0 t^T

where [·]χ stands for closure in X, and yt{v) s= {Vx(v), χ £ U» «>)}. The set
in (1.1) is called the ω-limit set of y+(v), (or, what amounts to the same
thing, of v). For any Β a 38 the ω-limit set is defined as follows:

(1.2) ω(Β) = Π [γί(β)]χ= Π [yt(B)]z f o r a l i r > 0 ,

where y+

t(B) =s U

If y+(B) cz 55, then ω(β) is a non-empty compact set that attracts B. It is
an invariant set, that is,

Vt (ω (Β)) = ω (5) for all t ζ R+.

If there exists a set Bn<=.$5 such that Vt(B0) C 5 0 for all ί e R+, and if
J50 absorbs all Β cz iff, then the set ω(50) is the set 9ft for the system of
equations (or, alternatively, for the semigroup Vt, t £ R+, in X). In other
words, ω(50) is the minimal global 5-attractor for the system. Moreover,

(1.3) SR -. ω {Bo) = Π Wt (B0)]x = (] [Vt {B0)]x for all Τ > 0.
t>0 (>T

I shall not quote in the Introduction less restrictive conditions under which
a system of equations admits an attractor 3R. The statements listed above
are not hard to prove, and the same is true about many other important
general principles. It was much harder to discover and formulate them.
With the help of these notions a number of interesting results in the theory
of ODE's have been obtained.

The idea of extending these concepts to cover the case of PDE's had been
considered, I think, more than once, especially by dynamical systems
experts. However, its realization is from the very beginning hindered by
serious obstacles. The reason for this lies in the fact that the phase spaces X
for PDE's (equipped with a boundary condition) are not locally compact.
Therefore all the statements above, starting with the claim that ω(υ) and
ω(Β) are non-empty, could in fact be false. Apparently, this consideration
hampered the use of ω-limit sets in PDE's, and created the impression that
this direction of enquiry was promising. However, on closer inspection, this
impression was found to be wrong, and the work of the last fifteen years has
completely dispelled all doubts. The first instance in which this approach
bore unexpected fruit was that of initial boundary-value problems for the
N.-S. equations [ 1 ] . For these in the case η = 2, that is, in the case of two-
dimensional problems with any of the main boundary conditions, it was
found that the set 3ft exists, and that it is compact and finite-dimensional in
some sense. As an example of the conclusions reached in the beginning of
[ 1 ], I quote the following theorem.
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Theorem 1.1. Let the semigroup Vt: X -*• X, i £ R + , in a complete metric
space X be such that the operators Vt are completely continuous^ for all
t>0. Then, if y*(B) cz 98, ω(2?) is a non-empty invariant compact set that
attracts B. If there exists a set B9c3S such that Vt(B0) C B0for all t Ε R+
and if Bo absorbs all the sets Β a 9S, then ω(Β0) is 3JI, that is, the minimal
global B-attractor of the system (of the semigroup). It is invariant and
compact. If X is connected, so is 'SSI.

Under the conditions of this theorem ω(Β0) is found from (1.3).
All the assumptions of Theorem 1.1 are satisfied in the case of two-

dimensional N.-S. equations. In [ 1 ] the space /(Ω), which is the largest of

all admissible Hubert spaces, serves as the phase space X under the boundary

condition ι; leo = 0}. The definition of this space, and the definition of the

spaces Ds, s > 0, are recalled in §2; the space D'* is compactly embedded

in Dn if s1<s2; D* = /(Ω). Any of the spaces Ds, s > 0, could be chosen
to play the role of X as long as 9Ω and / are sufficiently smooth. I shall
not formulate here the relevant smoothness conditions on 9Ω and /. In this
case the set 2ft is a bounded and closed subset of D'\ sx > s, where Sj is
determined by 9Ω and / only.

For the three-dimensional N.-S. equations with the same boundary
0

condition, the space Ι(Ω) is too big: it appears that in this space there is no

uniqueness, that is, the operators Vt: /(Ω) -*• /(Ω), t G R+, are not single-
values (on this, see [2], Ch. VI, §7). On the other hand, in the spaces Ds,
s > 1/2, a uniqueness theorem does hold, but the existence of solution
operators Vt: Z>* -*· Ds for arbitrary (not small) Reynolds numbers has been
established only for "short" times. The length of the interval [0, t(v0)] of
existence of the solution Vt(v0), v0 G D", depends on IKH^,; moreover,
i("o) < °° a n d t(v0) -*• 0 as Htfolljj, -*• oo. No interesting bounded subsets Β of

D*, s > 1/2, for which the sets y+(B) are defined and bounded in Ds have
been found. However, sometimes one should follow the practice of
historians, which the "General history, as revised by the Satyriconians"
describes thus: "All that pertains to ancient times and of which we know
nothing is called the prehistoric period. Scientists, although they have no
information about this period (for if they did, they would have had to call
it a historic period), divide it nonetheless into three epochs: 1)..., 2)..., 3)..."
In this vein, we quote the following result.

Corollary 1.1. If for the three-dimensional N.-S. equations there exists a set
Β in D*, s > 1/2, for which y+(B) is bounded in Ds, then one can choose as
the phase space X the set ly*(B)]Dt equipped with the metric induced by the
norm of D*.

is, Vt is continuous and maps bounded sets into precompact ones.
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The resulting semigroup Vt: X -*• X, t G R+, satisfies all the conditions of
Theorem 1.1, and its minimal global 5-attractor EJl is the set
ω(Β) = Π ΙΥί(β)ΐ0«· This semigroup has all the other properties established

in [ 1 ] for the case η = 2.
These properties also hold for one of the modifications of the three-

dimensional N.-S. equations that I proposed. In [3] , where these equations

are examined, the space /(Ω) is taken as X; any of the spaces Ds, s > 0,
could be used as well. As I mentioned in [ 1 ] , the same properties are
shared by the semigroups generated by the N.-S. equations with other
classical boundary conditions, including the non-homogeneous boundary
condition ν \θΰ = α and the periodicity conditions on xk. The same is true
for the heat convection equations and for the equations of magnetohydro-
dynamics of viscous incompressible fluids. The main attribute of the
semigroup Vt : X -*• X, t ε R+, which enables us to find the true (minimal)
attractors corresponding to it in the form of ω-limit sets, is the complete
continuity property of the operators Vt for t > 0. Let us call such
semigroups class 1 semigroups.

To the same class there belong semigroups generated by quasi-linear
equations and systems of parabolic type (of course, only by those for which
unique global solubility has been established; on this subject see [4], [5],
and so on). This fact is also emphasized in [1]. For a certain subclass of
such equations (the so-called gradient equations) there exists a "good"
Lyapunov function. Its presence makes certain aspects of the proof of

existence of a bounded global attractor 9Jt easier, and also substantially
simplifies the structure of 9Ji.

In the early summer of 1986 I received from the American mathematician
J. Hale a preprint [6], which deals with the construction of the attractor 3JI
for semilinear wave equations with weak dissipation. From [6] I learned
that Hale and a number of his colleagues from the Lefschetz Centre had for
a long time been developing a theory of ω-limit sets for various dynamical
systems. At the end of the sixties and beginning of the seventies they were
k 1 to investigate semigroups on spaces X that are not locally compact. This
was deemed necess ry in their research into ODE's with retarded argument.
This topic proved to be a good source of questions which allowed them to
formulate a number of propositions generalizing hitherto known ones. They
singled out a class of semigroups (class 1) which was exactly the one I was
led to from my investigations of the N.-S. equations. The results they
obtained in the early seventies had been systematically presented in Hale's
book [7], which appeared in 1977 and was translated into Russian in 1984.
Its author was unaware of my work [ 1 ] , just as I did not know of the work
of Hale and his colleagues. This is understandable: the problems that led us
to consider class 1 semigroups belong to different fields of mathematics.
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The larger part of Hale's book [7] is devoted to differential equations with
retarded argument. It seems that the Soviet PDE experts were not familiar
with the work of American mathematicians and with Hale's book [7], and
that those who were, and who knew about my paper [ 1 ] , did not see the
underlying connection between the two.

At the next stage the same group of American mathematicians started
applying their results to semilinear parabolic equations, and at the end of
the seventies and beginning of the eighties, to semilinear wave equations with
added dissipative terms.

The results pertaining to semilinear parabolic equations are systematized in
Henry's book [8], which was published by Springer in 1981 and translated
into Russian in 1985. Henry could have referred to [1], since the work of
Mallet-Paret [9], which does refer to [1], appeared in 1976. However, this
did not happen: in Chapter 2, §7, he lists problems of hydrodynamics of a
viscous incompressible fluid as problems to which the results of the theory
he develops should be extended. As the authors of the famous "Satyricon"
would have put it: "We have got ourselves into a fine mess": in [1] a basic
problem of that kind is investigated and on the first page it says that other
hydrodynamic problems and parabolic equations can be treated in a similar
manner.

I expected the dynamical systems experts pondering the problems of
turbulence to be interested in [ 1 ] and to continue the study of the dynamics
Vt on 3ft. For this is "almost the same" as the dynamics described by
ODE's on compact manifolds. Namely, Vt, t Ε R+, can be extended on 3ft
to a continuous group Vt, t Ε R. 2R itself is compact and connected, and
every full trajectory y(v) = {Vt(v), t £ R-}i, ν £ 3ft, is determined by its
orthogonal projection on some fixed finite-dimensional subspace R^ of the
space X. The number Ν is determined only by the constant data of the
problem—by the coefficient v, the domain Ω in which the flow is studied,
external factors (the volume force / = f(x), χ € Ω), and the boundary
conditions, which are assumed to be time-independent. In the dynamics,
the number Ν itself is of considerable interest, being the first quantitative
characteristic of the complexity of the regimes (flows) possible under given
conditions. The main question on the agenda is that of the "degree" of
hyperbolicity of the flow on 2ft, or more precisely, on some "significant"
part of it 2ft0. Invariant measures on 331 lean be constructed by the well-
known methods of Krylov and Bogolyubov. The question as to which of
these measures is to be preferred also deserves serious consideration.

Having these directions for research in mind, I conveyed them and the
results of [1] to Arnol'd, Sinai, Oseledets, and also Ruelle. Ruelle started
publishing his results on the large time behaviour of the N.-S. equations in
1979 ([11], [12], and so on). By that time Foias, and Temam had
carried out the work reported in [13]. For reasons that I do not fully
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comprehend, Ruelle did not read [1] (at least in an English translation),
and familiarized himself with what had been done about the N.-S.
equations through [13]. However, in [13] the set 101 is not discussed, and
neither are any other invariant sets except for the sets ω(υ). Also, neither
this paper nor later publications of Foia§ and Temam refer to [ 1 ], though
they refer to a number of my papers, including [22], which supplements [ 1 ].
It could be that from his conversation with me Ruelle remembered only the
assertion that rigorous (unconditional) results had been obtained for the two-
dimensional case, which, of course, I told him. He might have thought that
the principles I found are applicable to two-dimensional problems only,
while most hydrodynamics experts consider turbulence to be a characteristic
of three-dimensional flows, and think that only three-dimensional models
should be investigated. I disagree with this judgement. One should not
confuse the dimension of the phase space X with the dimension of the
domain Ω filled with the fluid. For any PDE the phase space is infinite-
dimensional for any dimension of the domain Ω. If, on the other hand, one
studies models described by systems of ODE's, then one should consider at
least three-dimensional systems.

The work of Foia§ and Temam [13] contains results concerning three-
dimensional N.-S. equations, but they are of a conditional nature. Namely,
it is assumed that these equations (with no-slip boundary conditions) are

globally uniquely soluble in the space X = 3>x = W't{Q) Π Η&) or in a
bounded subdomain Β of this space that satisfies Vt(B) C Β for all t € R+.
Ruelle works under the same assumption, examining the dynamics Vt, t G R+,
on the whole space X (which is either &1 or fi c S 1 , and trying to
determine the "degree" of its hyperbolicity. As one can see from
Corollary 1.1, it makes sense to restrict oneself to the minimal global
β-attractor for X ( = 2 ! 1 or B).

Arnol'd did not adopt the ideological framework and the results of [ 1 ]
either. In his 1982 lecture [49], which was sent to the Swedish Academy
of Sciences on the occasion of his being awarded the Grafoord prize, he tells
in detail about his approaches to the study of problems of turbulence in
hydrodynamics, and refers to Leray and me as follows: "Leray, and later
Ladyzhenskaya, tried tc convince me that two-dimensional turbulence is
impossible, that turbulence is either non-existence or non-uniqueness of
solutions of the N.-S. equations, and that a correct description of turbulence
requires a modification of these equations" (see p.4). As far as I am
concerned, only the last part of this statement, that is, the need for a
modification of the N.-S. equations, is correct. All the rest does not
correspond to the real state of affairs, either now, or in the past. In 1965,
which is the date Arnol'd gives for our discussion of turbulence problems,
I did not yet have the framework presented in [ 1 ], but then, and even in
1958, when unique global solubility of initial boundary-value problems for
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the two-dimensional N.-S. equations was proved and the results presented at
a joint session of two departments of the Academy of Sciences of USSR
(the departments of mathematics and physics), I objected to the interpretation
of these results as a rigorous argument for non-existence of two-dimensional
turbulent flows. Such a point of view was advanced immediately, during the
discussion of my lecture, and was persistently repeated subsequently by a
number of experts in hydrodynamics. These results show only that two-
dimensional N.-S. equations (with boundary conditions) provide a deterministic
description of the dynamics (evolution) for any Reynolds number Re. As
the parameter Re is increased, the quantitative characteristics of the flow (as
expressed by the quantities \v(t, x)\, \vx(t, x)\, and so on) grow, which by
itself reflects the growing complexity of the flow. My attitude to the three-
dimensional N.-S. equations is quite another matter. I now think that they
do not provide a deterministic description of the dynamics, and therefore, if
one wants to construct a theory of turbulence not in the spirit of the theory
of probability, one must start by modernizing the N.-S. equations for large
values of \vx(t, x)\. I have frequently put forward such suggestions, and
this is not the place for a discussion on the subject. For one of the
modernizations I proposed there exists a compact global 5-attractor with the
same properties as 3K for the two-dimensional equations ([3]).

But let us go back to the work of Foias and Teman [13]. In contrast to
[ 1 ] , this paper deals with the non-homogeneous boundary condition
v{t, χ)|ββ = a(x). This can, with the help of the technique I used in the
study of the stationary problem ([2]), be reduced to the case of the
homogeneous boundary condition ν\βΩ = 0. The resulting system of
equations differs from the N.-S. system of equations only by the lower order
terms, which influence neither the arguments nor the final conclusions.
(I shall review this technique again in §2.) The homogeneous case is
covered by Theorem 1.1 and Corollary 1.1. However, in [13] the authors
only prove the existence of the sets ω(ν) for single semitrajectories y+(v),
while the attraction of υ to ω(ν) is guaranteed only in a norm that is weaker
than the norm of the space to which υ belongs. It should be noted that the
paper [13] does not pose precise questions. Nowhere does it say which
space has been chosen as the basic one, that is, the phase space for the
problem. From the arguments and results it appears that all the semi-

0 0

trajectories are taken to be in the space X = D1 s Wl(Q) Π Ι (Ω) > both
when η = 2 and η = 3, that is, for two-dimensional and three-dimensional
problems, while the attraction of these sets to ω(υ) is established only in the
norm of X = D° = /(Ω). The same remark applies to the authors' estimates
of the Hausdorff dimension dH(A) of invariant sets. These are assumed to
be compact in D1 (and even bounded in D2), while dH(A) is estimated for A
regarded as a subset of the space D°. However, in the case η = 3 the space
D° is inadmissible in the sense that in this space there is no determinacy. It
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is not clear why the authors did not use the paper [ 1 ] in order to get, with
its help, all the results obtainable for the problem they consider.

Let us move on now to the work of Babin and Vishik, which deals with
attractors for PDE's. Starting in 1982, they published a number of papers
on the subject ([17] -[21], and so on). In the beginning they considered
the two-dimensional N.-S. equation and parabolic equations, and later
studied semilinear wave equations. The analysis of the first topic is done in
full accordance with the treatment of the N.-S. equations in [1]. The paper
[1] is mentioned in the following words: "Thus, for example, in the work
[ 1 ] Ladyzhenskaya proved the existence of an invariant set for the two-
dimensional N.-S. system and showed that any trajectory in this set can be
reconstructed from its finite-dimensional projection." No reference to the
origin of the questions that they are studying is given, neither is there any
indication of what is really done in [ 1 ]. In their other publications the
authors omit altogether any comparisons of their results with the results in
[ 1 ]. Nevertheless, a whole series of propositions, which the authors
formulate as their own, are proved in [ 1 ] or are direct corollaries of
statements in [1]. Thus, for example, Theorem 3 of [17] on the existence
of a compact invariant set 3K for the two-dimensional equations is one of
the first results of [1]. Theorem 1 of §1 of [17] is a corollary of the
results concerning semigroups that correspond to N.-S. equations, which
appear in the early pages of [ 1 ], and so on.

Even if the reader can follow their analysis of the N.-S. and parabolic
equations, he will find their studies of semilinear wave equations with weak
dissipation much harder to understand. The desired goal, which is the
construction of the attractor ffl, is not stated clearly. Instead, the authors
introduce different definitions and concepts that vary from one paper to
another.

They introduce into the definition of an attractor some additional
properties that are not inherent in that concept. The authors could not
construct a minimal global 5-attractor SJt as we did in [ 1 ] for the N.-S.
equations, since this required showing that the sets 7f"(5) are precompact.
An answer to the question of which points of the phase space comprise SR
could have been obtained from an alternative description of 3ft which
appears in [ 1 ], that is, the set 2ft consists of full trajectories 7(1;), each of
which belongs to some bounded set. Moreover, in the hyperbolic case there
is no problem with continuing the semitrajectories y+(v) in the direction of
negative t. Thanks to the existence of a good Lyapunov function, that is,
one that is continuous in X and decreases strictly along all trajectories apart
from stationary points, in their chosen problem both "ends" of such
trajectories (as t -*• +°° and as t -*• — °°) have to approach somehow the set Ζ
of all stationary points. In view of this, a natural candidate for 8ft is the
set Ji consisting of the set Ζ and the points of all full trajectories connecting
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elements of Z. To justify this, one has to show that all sets bounded in the
ο

phase space Xo = Wffi) χ L2(Q) are attracted to Λ in the norm of Xo. This
is not done in the work of Babin and Vishik. There the following is proved:
Jl attracts the semitrajectories y+(v ), υ G I 0 (here "v" stands for the pair
(v, btv)) in the weak topology only. Strong attraction to Λ (that is, in the
norm of Xo) is proved only for y+(v) with S*" belonging to the space
X1 = W*-(Q) χ W (̂Q>, which is compactly embedded in Xo.

The authors construct the set Λ under the assumption that the set Ζ is
finite and that there is a "good" extension of invariant unstable manifolds
e*~(z<)» Ξ/ e Z, i = 1, ..., k, from small neighbourhoods of the points on
which they are defined. (It is not clear how to use their procedure without
these assumptions; they claim that it can be done.) Λ is the union of these
extended manifolds. The authors call it "the maximal regular attractor of
the problem". Haraux [39] showed that this set coincides with the set 3Ji
for the given problem.

In [38], under the same analytic conditions on the non-linear term as the
ones used by Babin and Vishik, but without their additional assumptions,
such as finiteness of Ζ and so on, Hale proved the existence of the set Sit as
well as its compactness and connectedness. Similar results appear in [44].
I shall quote these results and their extension in §3. There I shall also
introduce and study semigroups of class 2 (or AC semigroups). This class
includes semigroups of solution operators for semilinear wave equations,
which are investigated in the works just mentioned, and many others.

Let us consider further some questions of terminology. These questions
are important in the formation of a new direction in the study of PDE's.
Babin and Vishik introduced the concept of a "maximal attractor for the
problem", sometimes adding to it the symbol (X', X), which indicates that
attraction takes place in the weak topology only. (I shall only consider
attraction in the metric of X itself.) This concept seems unfortunate to me
for a number of reasons. The statement " Λ is an attractor" means
traditionally that it attracts. What and how it attracts has then to be
specified, while the attribute "maximal" is universally understood to mean
"the biggest". However, such an object is easily found, being X itself.

It is desirable, on the contrary, to look for the smallest attractor of a
problem, that is, its "minimal attractor". If we are talking about the search
for a set that attracts every point of X, the term "global" is used, and the
question should be posed as one in which "the global attractor of the
problem (or the semigroup)" is to be found. If, on the other hand, we want
to find a set that attracts uniformly every bounded subset of X, then it
makes sense to call this set a "global 5-attractor of the problem", and to try
to find the "minimal global 5-attractor". What this set will turn out to be
depends on the problem. It is not natural to prescribe any of its properties



Global attractors for partial differential equations 37

in advance, and, as Babin and Vishik do in their papers, to imply these in
the term "maximal attractor of the problem".

The epithet "maximal" is appropriate in the search for invariant sets of a
problem (or a semigroup). Here the following questions are of interest: to
find the maximal compact invariant set of a problem, or to find the maximal
bounded set of a problem. As is shown in [ 1 ], for the N.-S. equations the
set 2Ji of all limiting regimes turns out to be the minimal global 5-attractor,
the maximal compact invariant set, as well as the maximal bounded set for
the problem. Here it is assumed that the equations are supplemented by
some kind of boundary conditions. It would appear that the fact that the
answers to such different questions are actually identical provoked the shift
of the attribute "maximal" from invariant sets to attractors.

But let us return to more interesting subjects. New properties of the
attractor 2Ji for the N.-S. equations and for other PDE's mentioned above
were discovered in the process of determining the finiteness of various
dimensions of invariant sets. I shall use the symbols dx{$), dH(9[), and d/(2l),
respectively, for the topological, Hausdorff, and fractal (information)
dimensions of 8[. It is known that d^a) < dH($) ^ d/(2t), and that
finiteness of dt(Sl) does not guarantee finiteness of dH(2I)> n o r does finiteness
of dH{$) guarantee finiteness of d}(^i). As far as I know, the first such study
of invariant sets in locally non-compact spaces is the paper [9] of Mallet-
Paret. In this paper, finiteness of d,(8l)is established for a compact set Η
that is invariant, or at least "negatively invariant", with respect to a smooth
map whose differentials have a certain contraction property. This work led
to the appearance of papers in which estimates of dH{·) for the N.-S.
equations were found ([13], [17], [22], [24]). Better upper bounds (with
respect to the parameter v) of dH(3ft) for the N.-S. equations were established
in [18] using the results of the paper [25] of Douady and Oesterle.
Estimates for df(·) were tackled next ([16]). Unfortunately, it is impossible
to enlarge here on the results obtained in this field; this is the topic of my
paper [50]. In §2 I quote only a simple and easily applicable theorem on
the estimates of dH(2l) and d/(St) for bounded invariant sets. This result
c^mes from [22], although in [22] only an estimate for dH(2l) is discussed.
However, it follows from the argument there that if the contraction
coefficient δ < 1/2, then the same upper bound works also for d/(3)). It is
shown in § § 2 and 3 how to verify the condition of this theorem in actual
problems.

To conclude the Introduction, let me return to the beginning. I did not
arrive immediately at the idea of studying limiting regimes of the N.-S.
equations, that is, of looking for true global attractors under some boundary
conditions. Initially I tried to prove the conjecture of Landau that all then-
solutions are quasi-periodic in t, that the increase of their complexity
(transition to turbulence) is nothing but the appearance of new quasi-periods
that are incommensurate with the existing ones, and that the number of
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quasi-periods grows as the Reynolds number increases. But at some stage I
began to doubt the truth of this conjecture and embarked on the search for
ways of describing the sets of all points in the phase space in which the
system can find itself after very long times, without deciding in advance on
the character (dependence) of the dynamics Vt for large t.

The results obtained by this approach confirm the following part of
Landau's conjecture: the number of quasi-periods of all possible quasi-
periodic regimes (solutions) does not exceed the number dH(fSSl); that is, it
really is controlled by the stationary factors of the problem. I drew this
conclusion in [22]. But I think that it is not these solutions, or more
precisely the trajectories y(v) that correspond to them, that determine
dH(2R), that is, dH(3[) is probably larger than the maximum number of quasi-
periods of all quasi-periodic solutions. Some justification for this opinion is
provided by the Lorenz attractor.

§2. Problems with dissipation of parabolic type (semigroups of class 1)

Most processes in nature involve some loss (that is, dissipation) of energy.
This dissipation can take many different forms. In the framework of
equations that describe the process, it is expressed by the inclusion of terms
called dissipative. In some cases these terms are to be found among the
principal (from the point of view of the theory of equations) terms and
change the type of equation, in other cases they are to be found among
lower order terms. The influence of these terms grows stronger as time
progresses. Experts in mechanics and physics have for a long time held the
opinion that after a long time autonomous dissipative systems "forget" their
initial states and enter regimes "determined by stationary factors". Such
effects are definitely observed in fluids, both in nature and particularly well
in special experiments. I shall only discuss the case of incompressible fluids,
that is, when div ν = 0 for the velocity field v. The dynamics of such fluids
are usually described by the Navier-Stokes (N.-S.) equations and it is believed
that these equations do it in a deterministic way, that is, the solution
v(t) = Vt(v0) is uniquely determined for all t £ R+ by the initial state vQ and
the boundary condition. In the case η = 2 (that is, for two-dimensional
problems), this is really so. Moreover, for X we can choose one of many
different spaces. However, in the case η = 3 with large Reynolds numbers
no "interesting" spaces X have been found. Therefore, all propositions
below that deal with this case are of a conditional nature.

The remark above about "forgetting" the initial state was the only idea
from the theory of turbulent flows that I found useful, and which led me to
start investigating ω-limit sets for N.-S. equations. In fact, if Β is that part
of the phase space X from which the experimenter chooses the initial states
of the system, then starting from some time r (and later) he can only
observe states that correspond to points of the set y?(B) (see § 1), and after
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"infinitely long time" only ω(Β) is left of this set (more precisely, of its
closure). In real experiments one is given the domain Ω that is filled with
fluid, the volume forces / = f(x), χ e Ω, and the boundary condition

(2.1) v(t, x) = a{x),

while the initial conditions

(2.2) »(f, x)\t=0 = vo(x), χ 6 Ω ,

are to be varied. In experiments in which the fluid is set in motion by, for
example, rotating the walls of the vessel (but in such a way that the shape
of Ω is invariant in R3), a in (2.1) depends initially on t, but stabilizes (that
is, becomes independent of t) after some time t0. Different rates of
convergence of ot(t, x) to a(f0, x) give rise to different values of v(t0, x).
Taking t0 as the starting time, the problem is reduced to the formulation
above. We also note that in this experiment the normal component (α, η)|ββ
of the field ν on 9Ω is 0.

To investigate the questions we are interested in, it is useful to reformulate
the problem (2.1), (2.2) in terms of the function u(t, x) = v(t, x)-a(x),
(t, x) £ R+ χ Ω, which satisfies, as does v, the incompressibility condition
div u = 0 (so that div α = 0). For u the boundary condition becomes
homogeneous: u\dQ = 0. The equations satisfied by u(t, x) when
(t, x) £ R+ χ Ω differ slightly from the N.-S. equations—their left-hand side
now includes linear terms of the form ahuXk + ukaXh == j(u), while the free

term changes as follows: f(x) ->• f(x) + ν Δα(ΐ) — ah{x)aXh(x) == f(x). In

general, linear terms can have a profound influence on the behaviour of the
solution u(t) = Ut(u0) as t -*• °°, but in this case one can extend oc|9Q from
θΩ to Ω in such a way that these terms are completely dominated by the
term -vAu. This can be done if a|Onis such that

(2.3) / f t = J (a, n)ds = 0 (k = i,...,m)

for each connected component Sk of the boundary 9Ω. We also remark
m

that 2 h = 0 due to the equation div u(x) = 0. This extension has the

following properties: div a(x) = 0, χ e Ω, and for every w € Dl (the space
D1 will be defined below) we have the inequality

(2.4) | j wh (x) aXh (x) w| j

where II · II is always the Ζ2(Ω) or the Ζ,2(Ω) norm. In fact, the extension of
CCIBQ can be constructed in such a way that on the right-hand side of (2.4)
we have an arbitrary ξ > 0 instead of v/2, but for our purposes ξ = ν/2
suffices. The smoothness of α(χ), χ G Ω, is determined by the smoothness



40 O.A. Ladyzhenskaya

of 9Ω and of a^g (an explicit construction of such extensions a(x), χ Ε Ω,
is given in the second Russian edition of [2]—see Chapter V, §4). For
simplicity of exposition, I shall assume that both 9Ω and α|βο are
"sufficiently" smooth, without indicating precisely what degree of smoothness
is required in each and every case. In fact, for the main propositions, not
much smoothness is required.

Inequality (2.4) ensures that the following inequality holds:

(2.5) j ( - ν Au + afcu,fc + uhaXh) udx = j (vu| + u feaI fcU) dx > -11| ux ||
2.

Once an estimate of llu(f)ll2 is found for all t, (2.5) allows us to make the
same qualitative conclusion as in the case of a(x) = 0, that is, to conclude
that there exists a bounded absorbing set Bo. This is quite sufficient for all
subsequent estimates of stronger norms of the solutions u(t), t > 0. From
these estimates will follow complete continuity of the solution operators Ut

for t > 0. The methods of [ 1 ] can be used to show that all the properties
of the semigroups Vt, t Ε R+ (corresponding to the case a = 0) which are
described in § 1 and in more detail in this section, are shared by the
semigroups Ut, t G R+. The only exception is provided by the injectivity of
the operators Ut for / > 0 if (α, η)|β β φθ. In [1] (§2) this property is
proved under the assumption that (a, n) |flc s= 0; moreover, a qualified
estimate of the modulus of continuity of the operators UJ1 is given. The
case (a, n)|eo Φ 0 under conditions (2.3) is covered by Lemma 3.1 in [13],
in which it is proved that the semigroup Ut is analytic for t > 0. From this
result it follows that Ut is injective on all our ω-limit sets.

In view of the above, I shall restrict myself to the case α = 0. For the
case α ψ 0 such that condition (2.3) is satisfied, and for the case of periodic
boundary conditions, the results are the same.

Thus, the first object of our inquiry is the following problem for the N.-S.
equations:

η

(2.6) dtv—ν Δυ -f- 2 vhvx =Vp + f, div ν = 0,

(2.7) *!<* = 0,

(2.8) v\t=0 = v0

where / = f(x); vk = vk(t, x) (k = 1, ..., n) are the components of the vector
v(t, x) G R"; χ runs through a bounded domain Ω C R", η = 2 or η = 3.
Let me briefly review that part of the results concerning the problem
(2.6)-(2.8) that I obtained in the fifties, and which are necessary for our
discussion (see [2] and so on).

0

The most important spaces for this problem are /(Ω) and Η(Ώ) (in the
notation of [2]). For brevity, let us denote them by / and D1. (The letter
Η is used in many works to denote the space Ζ.2(Ω); therefore I replace
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by D1.) I = /(Ω) is a subspace of the vector space Ζ,2(Ω). The set

/°°(Ω) of all infinitely differentiable divergence-free (solenoidal) vector fields

u(x), χ G Ω, with support in Ω is dense in /. The scalar product in Ζ,2(Ω) and

in / is defined by

(2.9) (u, v)=\u(x)v(x)dx,
a

0 —^-

and the norm is denoted by II • II. The orthogonal complement of / in
consists of gradient vector fields. Let us denote the orthogonal projection

of ΐΓ2(Ω) onto / by P.

The space Dl is the closure of the set 1X(Q) in the norm of the Dirichlet
integral, that is,

( 2 . 1 0 ) II «* ll« —

The scalar product in it is given by

(2.11) (u, »)»= J ux(x)vx(x)dj-

(in (2.9)-(2.11) summation over vector indices is assumed). The set D 1 is
0

dense in the space /.
A conceptually new stage in the study of the problem (2.6)-(2.8) was

inaugurated in the fifties by the complete exclusion from the equations of
the pressure p, the formulation of a closed form problem for the field
v(t, x), (t, x) G R+ χ Ω, and the development of tools for the treatment of
such problems. (Once the field υ is found, it serves to determine p; this
part of the problem is well researched, and I shall not touch on it.) This is
the spirit of one of the first works of this period—the 1951 paper [26] of
Hopf. Its significance was realized only later, after the results on unique
global solubility of the Cauchy problem for linear operator equations
([27], [28]) and on unique solubility of the non-linear problem (2.6)-(2.8)
(which are global for η — 2 and local, in various senses, for η = 3) ([29],
[30], [2]) became available. Exclusion of the pressure ρ is obtained by
applying the projection operator Ρ to both sides of (2.6). In view of the
above, the result is the following equation for v:

(2.12) ~ + νΑν+Β(ν)=ί,

where Av = —PAv, B(v) = P(vkvXk), while /, without loss of generality, is

assumed to belong to /, so that Pf = f. We supplement (2.12) with the
initial condition (2.8), while the boundary condition (2.7) is "hidden" in the
description of the "maximal" domain of definition D(A) of the operator A
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ο
considered as an unbounded operator on /. In this case this domain is
D(A) = Η |̂(Ω) Π D1, and on this domain A is self-adjoint. Moreover, A

0

defines a one-to-one map of D(A) onto /, A is positive definite, and A'1 is
compact. The non-linear operator Β is defined on D{A) and is bounded. In
a certain sense Β is "weaker" than A (that is, it is dominated by A).

The spectrum of A is discrete and positive. Let us denote the eigenvalues
of A by \k and let us order them in increasing order 0 < λι < λ2 < ... . We
denote the corresponding eigenfunctions of A by φ/ι (k — 1, ...) and assume

0

that they are orthonormal in /. The system {φ*}/£=ι forms an orthogonal
basis in the spaces / and D1. The same is true for all the spaces Ds, s € R,
which are defined as follows: the elements of Ds are vector fields w(x) of

oo oo

the form u(x) = 2 β*φΛ(*) f° r which 2 Kha\ < oo. The scalar product in
* = 1

OO OO

D* is defined by (u, v), = 2 Kahbk, where ulx) = 2

y(x) = 2 tkTk(a;)· We shall denote the norm in Ds by II · II.; D° = /. In

particular, the elements of D2 are vector fields in D(A) = W\(£L) η D1, and
the norm II · II2 is equivalent to the usual Sobolev norm of the space
this is a result of Solonnikov in 1960. The numbers λ^ -*• °° as k -*• °°;
moreover, Xk = 0{k) for η = 2 and λ* = 0(fc*/·) for n = 3. The precise
asymptotics of Xfc are given in [31]. Let us denote by PN the orthogonal

projection of / onto the subspace R-̂  spanned by the eigenfunctions

Let us first consider the case η = 2. In this case it has been proved that
the solution operators Vt of the problem (2.12), (2.8) form a continuous
semigroup X -*• X, t Ε R+, in Ds for any s > 0. Let us take the largest of

these spaces, /. The solutions v(t) — Vt(v0), v0 € / , satisfy for almost all
/ € R+ the energy equality

(2.13) γ-£-II *> (0 IP + ν || M ' ) II2 =(/."( ' ) ) ·

From this relation we can easily conclude that the ball

B0 = {v£l: | |ΐ>|ΚΛβ}, Λβ>(νλ,Γ»||/ΙΙ,

is an absorbing set for all Β cz 95, and that Vt(B0) C Bo. (All the solutions
v(t) of the three-dimensional equations (2.12), even the "weak" solutions of
Hopf, enter the ball Bo in finite time.) Moreover, for all e > 0, any solution
ν belongs to CXIe, oo), D1) and

(2.14) sup | |»(ί)| |;<ί-*ο*(| |»«ΪΗ|) for all β6(0, 1],
<€[e. » )
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where <>#(·) is a function continuous on R+. I shall not give its precise form
here, neither shall I indicate the dependencies on v, f, and 3Ω, since these
are considered to be fixed in this problem. Similar estimates uniform in
t ^ e > 0 hold also for stronger norms II I7(f)lls, s > 1, if/and 9Ω are
sufficiently smooth.

From (2.14) and from the continuity of Vt it follows that for t > 0 the
operators Vt are completely continuous. In view of this and the existence
of a bounded global β-attractor BQ we have the following theorem.

0

Theorem 2.1. In the phase space X — I there exists a minimal global
B-attractor 3ft for the two-dimensional N.-S. equations with the boundary
condition (2.7) on the boundary of a bounded domain Ω C R2. 3JI is a

ο

non-empty connected set in I which is bounded in D", s > 1.
The quantity s in Theorem 2.1 is limited only by the smoothness of / and

9Ω. Theorem 2.1 is the first result in [ 1 ] concerning the problem (2.6)-(2.8)
(connectedness of 351 is not mentioned in [ 1 ]). The existence of 2Ji hinges
on the following two properties of the semigroup Vt, i £ R + : the complete
continuity of Vt for t > 0, and the existence of a bounded absorbing set Bo.
In § 1 I highlighted this fact, which follows from the reasoning of [ 1 ], in
the form of Theorem 1.1. Below I shall prove Theorem 2.5, which deals
with existence of 3Ji for class 1 semigroups under weaker assumptions on the
set Bo that attracts points of X.

The absorbing set Bo for the problem (2.6)-(2.8) has the property
Vt(B0) C 5 0 , t Ε R+, and therefore for this problem

m = ω (Bo) = Π lVt(B0)]x.
i>0

Moreover, it is proved in [1] that Vt([B]x) — lVt{[B]x)]x, and therefore
3Ji = a>{B0) = Π Vt(B0). Because 9K is invariant, every semitrajectory

7+(i>), v € 9tt, lies in 501 and can be continued in the following way: from ν
we can find νλ ζ 5JI such that υ = V^v^, from î  we can find v2 £ 9JI such
that υι = νΊ{υ2), and so on. We shall call the union of the points
y~(v) == {Vt(vh), t 6 10, 1), k = 1, 2, . . .} the negative semitrajectory, which
continues y+{v) in the direction of negative t (down to -°°), and
l(v) = y+(v) U y~(v) the full trajectory. Let us use the notation
Vt(vk) = Vt.k{v0), t e [0, 1) {k = 1, 2, ...). Then {Vt(v0), ί € R} = y(v) is a
continuous curve in SQfl, and V^+t(v0) = V^(Vt(v0)) for all t G R and all
r G R + .

In general such a continuation may be non-unique. However for the
problem (2.6)-(2.7) we proved in [1] that Vt(v0) Φ Vt(oo) for all t > 0 if

υ0 =£Τ)0 and v0, v0 £ Z)s+e, e > 0. (The same line of argument can be used to
lower 3 + ε to 2 + ε, e > 0.) In particular, this ensures that Vt is invertible
on 3tt, and from the estimates given in [1] a certain "qualified" continuity
of VfOn W can be inferred. The family of operators {Vt, ί € R} with
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Vt = Vz?t for t < 0 forms a continuous group on SJl. The construction of
backward continuation of y+(v), ν 6 501, to y(v) described above gives in this
case the only possible continuation, since the vk (k = 1, 2, ...) are uniquely
determined by v; moreover, y(v) = {Vt(v0), t ζ Ri}. This is one of the most
interesting facts proved in [ 1 ]. Let us formulate it as a theorem for
emphasis.

Theorem 2.2. The semigroup Vt: /-»-/, t £ R +, for the problem (2.6), (2.7)
in Ω C R2 can be continued on 501 to a continuous group Vt: 50i -»• 501,
t Ε R; u(f) = Kf(y0), ί Ε R, v0 6 501, « tfze solution of equation (2.12).

The solutions u(0> ί Ε Λ, in 501 are very smooth functions of {t, x) Ε R χ Ω
if / and 9Ω have the requisite smoothness.

The set 501 is characterized in [ 1 ] also in the following way.

Theorem 2.3. Any solution v(t) of the problem (2.12), (2.8) that exists for

all t Ε R and is contained in some Β cz. I is also contained in 3St (that is,
v(t) 6 3Λ, t Ε R). For all v0 6 501 there exists a unique solution v(t), t G R,
of the problem (2.12), (2.8) that lies in 501 and is equal to voat t - 0.

The second statement is a consequence of Theorem 2.2. The first
0

statement is true because the set y(v) == (y(i), t 6 R} is bounded in / and
invariant, and since all Β a 9& are attracted to 501, we have y(v) c 501.

I shall now describe, following [ 1 ], results that can be obtained for the
three-dimensional problem (2.6)-(2.8) in a bounded domain Ω C R3, with
3Ω and / smooth.

Suppose that in D1 there is a bounded set Β such that for all
ι ι ο € ί the problem (2.12), (2.8) has a solution v(t) = Vt(v0),

,Ζ)1), tha t i s^eClR*, D1), and Βχ = γ+(Β) s=
*, vo£B}is a bounded set in Dl.

Then we have the following result.

(2.15)

Theorem 2.4. Suppose that (2.15) holds for the three-dimensional problem
(2.12), (2.8). Then the solution operators Vt, i £ R + , form in X ss IBJ& a
continuous semigroup of class 1. The set ω(Χ) is the minimal global
B-attractor for this semigroup. This set is an invariant compact set in Dx.
On ω(Χ) the semigroup can be continued to a continuous group. Any
solution v(t) that exists for all t Ε R and is contained in X belongs to ω(Χ).
If f and 9Ω are sufficiently smooth, then ω(Χ) is a bounded set in D2 and
all D*, s> 2. If Β is connected, so is ω(Χ).

In this case we regard [BJDI s X a s a complete metric space whose metric
is induced by the metric (norm) of/)1. To prove the first statement about
the set ω(Χ) it is sufficient to show that the Vt, t Ε R:+, form on Ζ a
continuous semigroup of class 1. All analytical tools necessary for this are
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contained in [2]. Since Vt(X) C X, we have ω(Χ) = Π lVt(X))x In this

case also we can prove that Vt(X) = [Vt(X)]x. The fact that the operators
Vt are injective, from which it follows that the semigroup Vt, t € R+, can be
continued to a continuous group on ω(Χ), is proved by the same argument
as in [1].

In fact, particular features of the N.-S. equations played no role in the
proof of Theorems 2.1, 2.3, and 2.4; only certain properties of the
semigroups that they generate were of importance. To make the reader
appreciate this, let us isolate each of the features shared by semigroups of
class 1 in the form of a theorem.

We shall use the following concepts: a semigroup Vt: X -*• X, t Ε R+, is
called bounded if for all Β a SB the set y+(B) aSS. A semigroup
Vt: X -*• X, t G R+, is called point-dissipative if there is a set Bo cz $t that
attracts all points of X. Moreover, we shall use the following well-known
fact.

Lemma 2.1. ω(Β) consists of precisely those points that are limits of
sequences of the form {Vth(vh)}, th f oo, vk ζ Β.

The proof simply uses the definition (1.2) of the set ω(Β).
The following generalization of Theorem 1.1 is true.

Theorem 2.5. Let Vt:X-*X, t GR+, be a semigroup of class 1 (that is,
the Vt are completely continuous for all t > 0) in a complete metric space X.
Then it has the following properties:

1. // γ+(β) cr #, then ω(Β) is a non-empty compact set that attracts B.
2. Let the semigroup be bounded, and let there exist a set Bo cz 35 that

attracts all Β cr 3? (that is, there exists a bounded global B-attractor). Then
the minimal global B-attractor 2Λ of the semigroup is a non-empty compact
invariant set. Any bounded invariant set A, including the full trajectories

y(v0) == {v(t), t 6 R, v(0) = v0; FT(i;(i)) = Φ + t) for all >% ζ R +

and all t 6 R },
that lie in &0, is contained in 9K.

3. All the statements of part 2 are true if the semigroup is bounded and
point-dissipative.

4. // Vt for all t > 0 establishes a one-to-one correspondence between the
points of ω(Β) in part 1, or the points of 9JI in parts 2 and 3, then the
inverse operators VJ1 are continuous on ω(5) or on 9JI, respectively, and on
these sets the semigroup Vt, fGR + , can be continued to the group Vt, iGR,
where Vt == V"} for t < 0. // the semigroup Vt, i € R + , is continuous, then
so is the group Vt, t £ R.

5. / / X is a connected complete metric space, and Vt: X -* X, i £ R + , is
a continuous semigroup, then ω(Β) in part 1 is connected if Β is, and so is
Μ in parts 2 and 3.
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Remark 2.1. 1. To prove that F,(oo(£)) C ω(Β) and that F,(2tt) a 3flfc we
only use the continuity of Vt.

2. Under the conditions of parts 2 or 3 of the theorem, 501 consists of all
full trajectories y(v0) each of which lies in some Β a SB.

3. We shall prove Theorem 2.5 under the assumption that X is unbounded.
If X is bounded, many of the conditions of the theorem are satisfied
automatically. Thus, one can choose the set Bo required in parts 2 and 3 to
be X itself. The corresponding changes in the argument and in the
construction of 2ft are obvious.

4. All the statements of parts 1-3 of Theorem 2.5 are also true for
discrete semigroups {Vn} (« = 0, 1, ...), where V" is the w-th power of a
completely continuous operator V, with V° — I. In the case corresponding
to part 4 above, the semigroup can be continued to the group {V11}, η Ε Ζ,
where V~n = (V)"1 (n = 1, 2, . . .)·

The proof of Theorem 2.5 follows the lines of the proofs of all the
theorems we have formulated above. We quote this proof here, since we
have not given the proofs of any of the other theorems.

1. The sets yt(B) = Vt(y+(B)) are precompact for all t > 0, and
γ?2(5) cz y^B) for t2 > tx. Therefore the set

ω(Β) » Π Ιν?(Β)ϊχ = Π l
f>0 i>T

for all Τ > 0 is the intersection of nested compact sets. Therefore, ω(Β) is
a non-empty compact set, and sup inf p(u, v) -*- 0 as t -*• °°, that is,

the set Β is attracted to ω(Β). This last statement is proved by a standard
argument of ad absurdum reduction.

Let us show that Vt(oj(B)) C ω(Β) for t > 0. In fact, as we said in
Lemma 2.1, the points ν Ε ω(Β) are completely characterized by being
limits of sequences of the form Vth(vk), tk t °°, vk Ε Β. By continuity of

Vt, the point Vt(v) is the limit of the sequence Vt+th(vk), t + tk f oo, of the

same form and therefore Vt(<x)(B)) C ω(#).
To prove the reverse inclusion ω(Β) C νί(ω(Β)) we shall use the complete

continuity of Vt, t > 0. Let υ Ε ω(Β); then ν — lim Vth(vk), vk Ε Β, and
**•-

without loss of generality we assume that 1 + f < fj < r2 < ... . The set

{yw a» Vtk-t(vk)}%Li belongs to the precompact set yt(B). Let us pick out

from this set a convergent subsequence yk. -*-y,k}\ oo. Its limit y belongs

to ω(Β), and therefore ν = lim Vt. (vk.) — lim Vt(yh.) = Vt(y). Thus,

ω(Β) C Ff(o>(5)) for all t > 0, and therefore Ff(co(£)) = ω(Β), that is,
ω(Β) is invariant. As we showed above (before Theorem 2.2), it follows
that every semitrajectory y+(v) C ω(Β) can be continued to a full trajectory
y(v) C ω(Β).
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2. Suppose that the conditions of part 2 hold. Let us take any
ε-neighbourhood of Bo, Ot(B0) as Blt ε > 0 t, where Ot(B0) is the union of all
open balls of radius ε centred at points of 2?0 and let us check that
SJt s= ω(Βα) has all the properties indicated in part 2. We have only to
verify that ω(Β1) attracts all Β a $. The set J3j absorbs B, that is, Vt(B) C Bx

for all t > tx(B) (here we do not indicate the dependence of t1 one and Βχ,
since these are fixed), and Br is attracted to ω ^ ) . Therefore, ω{Β) C ω(Βχ),
and ω(Β{) attracts B. If moreover Vt(jt) = A for all i € R + , then J* c: ω(5α).

3. Suppose that the conditions of part 3 hold, that is, there is a set
Boa& that attracts all points υ Ε X. Then Vt(v) 6 ΒΎ = 0ε(5ο) f o r a 1 1

r > t^v). From the continuity of F f l ( o ) and the fact that Ot(B0) is an open set,

there exists a neighbourhood O(v) of the point υ for which 7<ι( ι ι ) (0(ι>)) cr Bt.

Hence it follows that Vt+tliv) (O(v)) d 7,(1^) for all / G R+, and since ω(50

attracts 5 l s F f + t l ( B) (O(y)) <=. Oei[u>(BJ) for all ί > ^(ej , where εχ is an

arbitrary positive number. Since from every covering U O(v) of the

compact set Κ one can choose a finite subcovering O(K) = U O(vt), vt Ε Κ,

m = m(K), we have Vt(O(K)) cz 0ε,(ω (By)) for all

i = l , . • . , τη

In particular, yt(O(a(fi))) c: Οε,(ω(βχ)) for all ί > ί,ίε^ ω(Β)). If one takes

into account that Vt(B) is absorbed by Ο(ω(Β)) in finite time (note that any
neighbourhood O(K) of a compact set Κ contains some neighbourhood of
the form Ott(K), e2 > 0), then it follows from the argument above that

Vt(B) cz Οει(ω(Β1)) for all t > t4(e l t B), that is, ω(Βχ) attracts B.
4. By hypothesis Vt (t > 0) is invertible on ω(Β); since ω(Β) is a

compact set, and Vt is continuous, it is well known that Vj* is also continuous
(and even uniformly continuous) on ω(Β). The group property of the
family {Vu t 6 R} is verified directly from the definition Vt Μ V_\, t < 0,
and the semigroup property of {Vt, ί 6 R+}· It only remains to verify the
continuity of Vt(v) in (t, v) € R" χ ω(Β). Thus, let υ and T> be in ω(Β) and

i < 0 . It is clear that / •• p(Vt(v), Vt+%(p)Xh + 7a. I where

and /, $

By uniform continuity of Vt on ω(5), /x < ε/2 if ρ(υ, ν) < δι(ε, t, to(B)).
The second term ; 2 also satisfies /, <ε/2 if | τ | ^ 6, = 6,(ε, (ύ(Β)), since
ρ(ν,(ιι>), w) < e/2 for τ S [0, δ2) and all w € ω(5).

5. Let us recall that the connectedness of X means that it is impossible
to represent X as the union of two non-trivial (that is, different from X
and φ) open subsets, while the connectedness of a subset <A c: X is the
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connectedness of A regarded as a topological space with the induced
topology of X. Let Β be a connected subset of X and f*(B) cz £. Then
all the sets yf(B) are connected and precompact for all t > 0, and so [yf(B)]x
are connected compact sets for all t > 0. Moreover, we know that <U(B)\ =

= (1 [yt(B)) and that lyi(B)]x <r Ot(<u(B)) for all t > i(e, 5), where e is any
t>o

number. Hence it follows that ω(2?) is connected. The connectedness of 3R,
whose existence is guaranteed by other parts of Theorem 2.5, follows from the
fact that W= ω(5) for all Β D Bu and in particular for a connected Β D Bv

The statement of part 3 of Theorem 2.5 is useful, for example, in the case
when the continuous semigroup admits a "good" Lyapunov function
L : X -*• R, that is, a continuous function on X that is a strictly decreasing
function of t on any semitrajectory γ+(ι>) = {Vt(v), t ζ R+}, υ € X, except
of course, the fixed points z, for which Vt(z) = z. Let us denote the set of
all fixed points of the semigroup by Ζ and assume that it is finite. Then Ζ
can serve as the set Bo of part 3 of Theorem 2.5. In fact, since L(Vt(v))
strictly decreases as t increases for all υ fcZ, there exists lim L(V|(i7)) SB l+(v),

<-+eo

and it is clear that L\oiV) — l+(v) = const. Therefore ω(ϋ) € Ζ for all i/GI,
and since ν is attracted to ω(ν), Ζ attracts all υ 6 X.

In view of the invariance of 3R, through each ν 6 SR there passes at least
one continuous trajectory y(v) = {v(t), t £R; v(0) = i;}cr SJt.. Since 301 is
compact, its segments γΐ(ι>) = {v(t), t ζ (— οο, τ]} are precompact, and they
define the α-limit set: α(γ~(ι;)) = f) Ιγΐ^ΐχ- Just as for ω(β), we can

prove that α(γ"(ϋ)) is a connected invariant compact set, and v(t) is attracted
to α(7~(ϋ)) as t 4· —°°. The function L(v(t)) increases as t I -°°, and is
bounded on the real line t € R. Therefore there exists lim L(v(t)) == J_(v~(i>)),

L\a<y-M> = l-(V~(v)) = const, and a ^ O ) ) C Z. Thus both "ends" of
m

V(y) c: 531 approach Z. If Ζ = U zr, then since ω(ϋ) and α(γ"(υ)) are
i=l

connected, each of these sets coincides with an element of Z. If Ζ consists
of only one point zlf then SDl = {zx} and ζλ attracts any Β c%, so that the
point zt is globally stable. If Ζ consists of a larger number of points, then
2R must, because it is connected, contain trajectories connecting points of Z.

The case considered above (when there is a "good" Lyapunov function)
shows just how much larger is the minimal global jB-attractor SOI of a

A

semigroup compared with its minimal global attractor SR. Let us formulate
the argument above as a theorem.
Theorem 2.6. Suppose that the class 1 semigroup Vt:X-+X, fGR + , is
continuous and bounded, and that there exists on X a continuous Lyapunov
function L : X -* R that decreases strictly on each y+(v) = {Vt(v), t £ R+}(

υ e X, as t t °° apart from γ+(ζ) = ζ e Ζ, the set of fixed points of the
semigroup. Then ω(ν) C Ζ for all i / € I , and therefore the set Ζ is non-
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empty and attracts all υ Ε X. If Ζ is a bounded set, then the semigroup has
a global B-attractor 331 with all the properties listed in part 2 of Theorem 2.5.
Both ends of full trajectories y(v) a 331 are attracted (as t -*• ±°°, respectively)

171

to Z. If Ζ = [} %i {m < oo), then each ω(υ) coincides with a point of Z,
1=1

and 331 consists of full trajectories connecting these points.

I have not introduced into this theorem statements relating to unstable
manifolds <M~(zi), since for their construction some additional conditions
have to be satisfied, and I am not able to enlarge on this topic here. The
foundation for the study and construction of a#"(zj) (and oft- for periodic
solutions) for PDE's and a certain class of semigroups has been laid in the
work of Yudovich [32] and Ladyzhenskaya and Solonnikov [33]. In the
cases they considered, as well as in the case of parabolic equations with
sufficiently smooth terms, a&~(Zi) in a neighbourhood of z,· is a smooth
finite-dimensional manifold. Much of Henry's book and the work of Babin
and Vishik and others deals with the analysis of these manifolds.

Let us also consider the question of "finite-dimensionality of the dynamics
Vt, t Ε R, on 331" or of "finite-dimensionality" of TO (or of ω(Β)).
I introduced the first concept "finite-dimensionality of the dynamics Vt,
t Ε R, on 331", in [1]. It has the following meaning: there exists a natural
number Ν such that any full trajectory y(v) = {Vt(v), t £ R } on 331 is
uniquely determined by its orthogonal projection PN(y(v)) on some finite-
dimensional subspace R^ = P^X of the phase space X, where in this case X
is some Hubert space. This fact was proved in [1] for (2.12) with η = 2.
It holds for any invariant set 21 that is bounded in the metric of D2 (or Dl

only), and not only for η = 2, but for η = 3 also. (The proof is the same
for both cases, but the magnitude of Ν is of course different in the cases
η — 2 and η = 3.) The orthogonal projection onto the linear subspace R^
spanned by φλ, ..., ψΝ serves as the projection PN. Let us reproduce this
proof here.

Let SSL be the invariant set for equation (2.12) that is bounded in the
metric of D2. If η = 2, 331 can serve as St; if η = 3, we can take ω(Χ) from
"Tieorem 2.4. Then there exists a common upper bound μ for all its
elements ν and fc ' max \v(x) \. In view of this, any two solutions

v(t) = Vt(v0) and T)(t) = Vt(v0), t Ε R, of (2.12) contained in % satisfy the
inequalities

(2.16) I (B (v (t)) - Β (v(t)), u (t)) I < v || A^u (t) ||* + μ2 (4v)-» || u (t) ||»

and

(2.17) I (B (v (i)) - Β (v(t)), QNu (t)) I <-g- II A*»QKu (t) | | 2 + ψ || u(t) ||»,

in which u(t) = v(.t)-T}(t), QN = I-PN- Let us recall that in the case η — 2
the number μ = sup max \v(x)\ is determined by v, f, and Ω.
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The solutions v(t) and Tf(t), t G R, are smooth: v, If G C(R, D2),

3rD, 3rlr G C(R, / ) and satisfy (2.12) for all t Ε R The difference
u(t) = v(t) —T)(t) satisfies the relation

(2.18) 1ψ- + vAu (t) + B(v (t)) - Β (v(t)) = 0, 16 R.

Taking its scalar product with w(i) we obtain

In view of (2.16) it follows that j-^-Wu(t)||*<m\\u(t)||2, m = μ«(4ν)-*,
and therefore

(2.19) ΙΙ«(ί)ΙΙΟ"Ίΐ«(0)ΙΙ-

Taking the scalar product of (2.18) and QjfU(t), using the fact that QN and
A commute and (2.17), we obtain also the estimate

(2.20) - | ± | | QKu (t) |P + 11| A^Nu (t) | | ̂ 8 m || u (t) ||*.

Let us now use the fact that every w G QNDl satisfies the inequality

(2.21)

where λ^+j -»- oo as Λ̂  -*• °°. If PNv(t) = Pjfiit), then u(t) — QNu(t), and we
obtain from (2.20) the inequality

(2.22) i A | | ̂ » ( t ) |P-f- (^- λΛ,+ 1-8πι) || QNu(t) | | ^ 0 .

Let us take JV so large that

(2.23) -^-λ^,-δπι^ε^Ο.

Then by (2.22)

(2.24) | | QNu (tt) | | < e-ei«i-O|| QNu (t) | |

for all tx > t. The norms IIQJV«(?)II are bounded uniformly i n i G R .
Therefore, taking in (2.24) the limit as t -*• —oo, we see that (2ΛΓ«(Λ)

 = 0 f° r

all tx G R, that is, ϋ(ί,) = υ ^ ) for all i t G R. Let us summarize this in a
theorem.

Theorem 2.7. / / N « taken so large that (2.23) holds with some EX > 0,
then from the equality of the projections PNv{t) and Pjfif(t) of any two full
trajectories in % namely v(t) andT)(t), t G Ri, it follows that v(t) = ΐΓ(/) for
all t G R,

We can also draw the following conclusions from (2.19)-(2.21):

JTII QNU (t) | |2 -f ν || A^QNu (f) |P<iGme*»' | | u (0) | |2,
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and therefore

(2.25) ΙΙ(?Ν"(ί)ΙΙ < δ(ί, N)\\u(0)\\,

where

(2.26) δ(ί, Ν) =

It is clear that for a suitable choice of Ν and t = ίλ the magnitude of
8(tv N) will be less than 1. This fact combined with (2.19) makes it
possible to find an upper bound for the Hausdorff dimension of SI considered

as a subset of the space /. More precisely, I proved the following theorem
in [22].

Theorem 2.8. Let Β be a bounded set in a Hilbert space X, and let there be
defined a map V: Β -> X such that Β C V(B) and for all » , ? e 5

(2.27) \ \ V ( v ) - V ( v ) \ \ ^

a n d

(2.28) II < ? W F (i^) — < ? J V F (ίΓ) |

where QN is the orthogonal projection of X onto the subspace X^ of
codimension N. Then

(2.29) dH (B)^N log (^g-)/log j ^ ^ d ,

where κ is the Gauss constant.

This useful statement is relatively easy to prove. By constructing suitable
coverings we see directly that the Hausdorff (d + e)-measure of Β is zero for
all ε > 0. This theorem gives an upper bound dx for the Hausdorff dimension

0

of the invariant sets 21 of Theorem 2.7 considered as subsets of /. Namely,
let us choose Ν and tt so that

(2.30) e " » W i = i and ; r - ^ — e * » * i < 4-.

Then 6s(/j, TV) < 2-1 and

(2.31) dH (9I)<JV flog 4/3)"1 log *'<2«+νλ*Γ4ΐ) β rf|#

Here Ν has to be s large that (2.30) is satisfied, namely;

(2.32) νλ*+1 log 2 m ^ w + 1 >2m log 4.

We recall that λ^ = O(N) for η = 2 and λ* = 0{Ν*/3) for η = 3. Thus, we
have proved the following result.

Theorem 2.9. The Hausdorff dimension of the set SI of Theorem 2.7,

considered as a subset of the space I, does not exceed the number dx of
(2.31), where Ν is such that (2.32) holds. In particular, for the two-
dimensional problem (2.7), (2.8), dH (W) < dv
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The proof of finiteness of the Hausdorff dimension of invariant sets Sf
regarded as subsets of the spaces Ds, s > 0 (in particular, of the set ω(Χ) of
Theorem 2.4 as a subset of D1) follows the same lines.

Remark 2.2. From the arguments of [22] leading to the proof of Theorem 2.8
it also follows that the d of (2.29) provides an upper bound for df(B) if
δ < 1/2. As can be seen from (2.19) and (2.25)-(2.26), the condition
δ < 1/2 can be satisfied by the choice of suitable Ν and tv In this way,
upper bounds for the fractal dimensions of the sets of Theorem 2.9 can be
obtained.

The paper [50] is planned for publication in 1987. It contains better
upper bounds of dH{·) and df{') for invariant sets for PDE's of different
types, including hyperbolic equations, as well as of the number Ν of
Theorem 2.7.

§3. Semigroups of class 2. Equations of hyperbolic type

The dynamics of problems of hyperbolic type are of a qualitatively
different character. The solution operators Vt that correspond to these
problems are not completely continuous for t > 0, and therefore most of
the arguments used in §2 for the problem (2.6)-(2.8) and other problems of
parabolic type are not directly applicable. Difficulties appear from the very
start when we try to establish that ω-limit sets for single points and for sets
Β cz. 35 are non-empty. However, a more careful analysis of what we have
done for linear hyperbolic equations shows that the methods for finding true
attractors for problems of parabolic type would still work in the semilinear
hyperbolic case. The reason for this is that an operator Vt can be represented
as a sum Wt + Ut of a contraction operator Wt and a completely continuous
operator Ut. Let us illustrate the process on the example of a semilinear
wave equation

(3.1) o*tv + zdtv—Av + f(v) = h, h = h(x),

/(0) = 0, e = const>0,

in a bounded domain Ω C R" with the boundary condition

(3.2) v'm = 0.

The functions / and h are regarded as fixed, with h £ Ζ,2(Ω); precise
conditions on / will be formulated below. The initial data

(3.3) ι>|<=ο = φ, 0,171,=o = <P

run through the linear phase space X.
Let us start with the homogeneous linear problem

(3.4)
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It has been thoroughly studied in the spaces D1 — D(A*/*), s G R, where A
is the unbounded self-adjoint positive definite operator in Ζ-2(Ω) generated
by the Laplacian multiplied by (-1) under the zero boundary condition:
w\aa = 0. I showed as early as 1950 (see [34], [35]) that its domain of

definition is the subset D(A) = W\{Q) f] ^ ί ( Ω ) o f t h e s P a c e ^ (Ω) if 3Ω is
C2; in all that follows we shall implicitly consider 9Ω to be sufficiently
smooth. Let us denote by D5 the domain of definition of the power Af/i

of A, equipped with the scalar product (u, v)s =s (A'^u, A'^v), where (,) is
the scalar product in ί.2(Ω), and the norm ||u||4 =s (u, ιΐ)\'1. This is a
complete Hilbert space, which we shall denote by the same symbol Ds,
D° = Ζ,2(Ω). The space Ds (for s = 1,2, ...) consists of those elements
u G ΗΊ(Ω) Ξ H'{O) for which A<m>u|eQ = 0 (m = 0, 1, ... [(s- l)/2]); its
norm II · II s is equivalent to the usual Sobolev norm of H*(Sl) [35]. The
spaces ϋΡ(Ω) for all s G R+ and their subspaces H%(£1) were introduced in
the late fifties, while in the sixties their connections with the spaces Ds were
established. For example, Ds « Η*(Ω) = Η&Ω) for s G [0, 1/2); Ds « #§(Ω)
for s G (1/2, 3/2); Ds « #*(Ω) Π #£(Ω) for s G (3/2, 5/2), and so on. For
more details on Hs(£l), HQ(£1), and Ds see [36]. We denote the norm in
£2(Ω) by 11-11.

To investigate the problem (3.1)-(3.3) we only need the continuity of the
embedding of Ds into Ζ,Ρ(Ω), where ρ = 2n/(n — 2s) for 2s G [0, η); ρ can
be any number in (1, °°) for 2s = n, and ρ = °° for 2s > n. Hence it
follows that Lp> (Ω), where ρ = p/(p~ 1), is continuously embedded in D~s

for 2s G [0, n).
Let us interpret the problem (3.4) as the problem of finding the pair

w(t) — Γ» '. > I with wlO) = Γ · 1 ^ φ. Appropriate phase spaces for this
Lo iw (i) J L φ J

problem are the spaces Xs = D'*1 x D*, s G R. The elements in Xs are the

pairs u = Γ " 1; the scalar product in Xs is given by

([u~\ [νΛ\ -lu v\ 4-iJ v\
11 · Ι« I · I I ~**~ It*· Ut*±-t "^ \U+ c/l>«II I » 1 If \ 1 /·~1 ι \ τ /β"

wnile the norm ir· Xs is denoted by ||· | |χ,. In any of the spaces Xs there

exists a unique solution w G C(R, Xs) of the problem (3.4) that depends
continuously on i^G Xs.

Thus, in Xs we can define a linear continuous group Wt: Xs -> Xs, t G R.
(We do not display explicitly the dependence of Wt on the index s.) The
solution w(t) = Wt(w0), t G R, forms a continuous curve in Xs, the full
trajectory y(w0). As before, we denote by γ "̂(νν0) the following part of this
trajectory:

y* (w0) Μ {Wt (w0), t ς [τ, oo)}; yl (w0) = γ+ (w0);
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The operators Wt: Xs -* Xs, t G R+, satisfy the estimates

(3.5) | | W, \\X{Xgt Xt)^mte-*', 16 R»%

for some α > 0.
These can be proved by Fourier methods, as I did in the late forties and

early fifties (see [37], [35]) for the equations (3.1) with ε = 0, as well as
for any equation of hyperbolic type, in which instead of Δ we have a
general symmetric elliptic operator with coefficients independent of t. The
presence of the term e dtw does not change anything in the argument,
introducing into the result only a factor e~at which decays with time.

Instead of Fourier methods, it is possible to apply the procedures for
obtaining a priori estimates for solutions of general hyperbolic equations that
were introduced in [35]. The same methods will also work for non-linear
equations. To exhibit the exponential decay of solutions w(t) as t -*• <», one
has first to make the substitution w(t) = w(t)e~at. Then w(t) satisfies the
equation

(3.6) UIIW=SCI\W+{E — ajdtW + AiW^O

where Axw = —Aw — a(e — a)w. For a > 0 sufficiently small we have
ε — α > 0 and the operator A1 has all the properties of the operator -Δ,
including positive definiteness. To prove (3.5) it is enough to verify that

(3.7) | | w(t) | |5+, + 1 | dtw(t) | | *<m; for all <€ R*.

The same estimates can be obtained by considering the equalities

(3.8) 0 = (A\/2 (fiftw («)), Afdtw(t)) =4-^-11 A['%w(t) ||« +

e-o) || A\'%w(t) |p -f I ± || A ^

We only need to take into account the fact that ll-dj/2!;!!«||(_Δ)·/«ι;|| = ||i;||t.

Estimates of the derivatives dfW(t) (k = 2, 3, ...) follow from the
estimates (3.7) and the equation (3.6). The same estimates for w(t) can be

obtained in "reverse" order: first estimate ||#+iw(t)\\2 + \\Α{'2 $w(t)\\2 using
the equalities

0 =(dt{°*w(t)), θΊ+V(0) = 4-^-Hdt+iw(t)\\* +

w(f) II* + i ± || dk

tA\'2w(t) ||»,e-α

and from these estimate \\A\>*w(t)\\ a n d p j / 2 d?w(t)\\ with the help of (3.6).
To get a priori estimates for the solutions of hyperbolic equations of

general form we have to use either the forward or the reverse method;
sometimes the two even have to be combined. By the same methods we
obtain estimates of the norms for solutions of semi-linear problems, provided,
of course, that some restrictions are imposed on f(v).
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The solution of the non-homogeneous linear problem

(3.9t) d*tu + Bdtu-Au=g\(t), u | e a = 0,

(3.92) u | i = 0 = 0, a t u | t = 0 = 0,

is, as is well known, determined with the help of the operators Wt by

0

In view of (3.5), this solution satisfies the estimate

(3.11) ||

The derivative dtu(t) can be considered as a solution of a problem of the
form (3.9i), but with free term dtg(t) instead of g(t), and with initial data
dtu\t^0 = 0,,<9,(<?<«)Ii-o = 2(0)· Therefore

and in view of (3.5)
ί

(3.12) || dtu(t) l U ^ n W " | | g(0) ||._, + «... J e-««-*>||d^g(τ) ||._, <*τ.
b

Let us now study the non-linear problem (3.1)-(3.3). Sufficient conditions
for its global unique solubility in the spaces Xs with s > 0 an integer have
been known since the fifties. The same line of argument also provides
sufficient conditions for such solubility in spaces Xs for all s > 0. These
conditions ensure that the solution operators Vt: Xs -*• Xs form a continuous
group Vt, i £ R , and not a semigroup, as in problems of parabolic type.
This important fact has not, for some reason, been used in a number of
studies of the problem (3.l)-(3.3). It immediately guarantees both the
existence of unique continuations of semitrajectories γ+(ϊΓ) to full trajectories
Tilt) on invariant sets, and the invertibility of Vt on ω(Β) and on SR.

Thus, suppose we know that the problem (3.1)-(3.3) corresponds to a
continuous group Vt, t G R, in X, where X is one of the spaces Xs, s > 0,
so that

Let us represent the solution v(t), t Ε R+, as a sum v(t) = w(t)+u(t),
where w(t) is a solution of the problem (3.4), while u(t) is the solution of
problem (3.9) with g(t) = -f(v(t)) + h. In the phase space X this can be
written as

(3.13) Vi (ψ) - Wt (φ) + Ut (φ), t ζ R+.
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The operators Ut are thus introduced in the following way:

(3.14) ^ ( ϊ ) 1
ο

where v(t) is the solution of the problem (3.1)-(3.3). These operators are
non-linear, and the family Ut, t G R+, does not have the semigroup property.
On the other hand, as we shall presently show, the Ut are completely
continuous if f(v) depends smoothly on υ and if it and its derivatives do not
grow "too fast" as In I -*• °°.

Suppose that X = Xs for some s > 0, h Ε Ds, and that for the solution
if(0 of the problem (3.1)-(3.3) we know that t e C(R+, XS) and

(3-15) l l . .
where oMx(') is a continuous non-decreasing function of its argument; we do
not explicitly indicate the dependence of β*! on i, h, and /, since these are
fixed. Let us further assume that /(φ^ Ε D s for all φα £ D'+1, and that for
some δ Ε (0, 1 ] we have /'(ψ1)ψ2 £ D'**-1 for all φχ £ £>s+1 and all φ2 Ε Ds,
and moreover

(3.16) W(9i)ll.<-*,(llq>ill.+i),

while

(3.17) || /' (φ,) φ2 H.+e.^ ·* , (|| Φ ι | | .+ 1, | | φ2 | | t ), δ € (0, 1] r

where β^ι(·) (and all the functions e*i(·)) introduced below) are some
continuous non-decreasing functions of their arguments. From (3.11),
(3.14), (3.15), and the condition (3.16) we conclude that

(3.18) | | Ut (φ) ||xa<m,a-» [|| h | | , + Jtt(«rf»(||^>||.v#))]s·*4(|| φ \\χ).

The inequality (3.12), with s+δ instead of s, and (3.14)-(3.17) give us
the following:

(3.19) || dtUt (φ) l U ^ ^ n v ^ e - " | | -/(φ) + h |

sup Ι Ι / ' ^

e-«* [*t (|| φ | |,

( sup || ν (τ) ||,+ι, sup || dxv (τ)||,)<
t€[0, «] T€[0 , i]

| φ |

/,{m i( | |Φ | | Λ ί ) , Uff (||φ | |χ,))^<^5(| | φ

(where I have assumed without loss of generality that ||u||#t ^ ||u||e, for

sx < s2). From the estimates (3.18), (3.19) and from equation (3.9j) we
have the following estimate for U(t):

(3.20) || Ut (φ) ||χ,+4<*#β (|| ΦIU,), δ > 0.



Global attractors for partial differential equations 57

Since the space Xt+t with δ > 0 is compactly embedded in Xs, we conclude
from (3.2) that the operators Ut, t G R+, viewed as operators from Xs into
Xs, are compact.

Thus, we have demonstrated that under conditions (3.16), (3.17) an
operator Vt, i £ R + , can be represented as a sum Wt+ Ut (see (3.13)), where
Wt has the contraction property (3.5) and Ut is compact. We are only
interested in the cases in which the Vt: Xs -* Xs, i € R , form a continuous
semigroup. In these cases the Ut are completely continuous for all t 6 R+.
As we show below, true attractors for such semigroups can be found by
using the methods we applied to semigroups of class 1.

Next we introduce a class of semigroups that includes the class of
semigroups just described, semigroups of class 1, and more generally all
semigroups with the property that for all Β c: 3?/such that y+(B) cz£ there
exists a compact attract or that attracts B.

Let us call a semigroup Vt: X -*• X, i £ R + , acting on a complete metric
space X asymptotically compact or a semigroup of class 2 if for each Β ci $}
such that y+(B)c=£ any sequence of the form {Vtk(vh)}^=i, th f oo, vh £ B,
is precompact.

We shall restrict ourselves to continuous semigroups of class 2. Our aim is
to prove for these semigroups propositions similar to those proved in §2 for
class 1 semigroups. We first give two propositions that are true for any
continuous semigroups. We shall use Κ to denote compact sets.

Proposition 3.1. For any compact set Κ the sets

TS. T(K) Ξ [Vt(v); t 6 [0, Τ), ν£Κ), Τ < oo

are compact.

In fact, the Vt, i 6 R + , define a continuous map V :Y = R+ χ Χ -*• X,
and γο, τ(Κ) is the F-image of the compact set [0, Τ] χ Κ. Thus, as is well
known, γ$, τ(Κ) is also compact.

Proposition 3.2. If y+(K) is precompact, then a>(K) — Π ίγί(^)1χ is a non-
empty invariant compact set that attracts K. t>0

The set ω(Κ), being the intersection of nested non-empty compact sets, is
a non-empty compact set. The inclusion Vt(cu(B)) C ω(Β) for all t > 0 is
true for any Β and any continuous Vt, as we remarked in §2. The reverse
inclusion, ω(Β) C Υί(ω(Β)), has in fact also been proved in §2. The
compact set [y+(K)]x can be regarded as the phase space for the semigroup
Vt, t e R+, since Vt([y+(K)]X) C [7+(/01ΛΤ· In view of this, the semigroup
on this set is a semigroup of class 1, and in § 2 we proved invariance of
ω-limit sets for such semigroups.

Proposition 3.3. // Vt, f € R + , is a continuous semigroup of class 2, then
for any compact set Κ the boundedness of y+(K) entails the precompactness
of y+(K), and therefore all the statements of Proposition 3.2.
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To prove this, let us take an arbitrary sequence yk (k = 1, 2, ...) of
elements in y+(K), that is, yk = Vth(vh)i vk G K. If all tk belong to the

interval [0, T] for some T< °°, then {y*}*Li is precompact by Proposition 3.1.
If on the other hand {{»}£·>! form an unbounded sequence, then a subsequence
{'*>}£.«can be chosen such that tkj f oo, and {Vtk (Vkj))%.i is precompact by
the assumption that the semigroup is asymptotically compact.

Proposition 3.4. Let Vt, t G R+, be a continuous semigroup of class 2.
Then for all Β such that y+(B) is bounded, ω(β) is a non-empty invariant
compact set that attracts B.

It is clear that ω(Β) is closed, bounded, and non-empty, since ω(Β)
includes non-empty sets ω(υ), υ G Β. Moreover, as we remarked in the
proof of Proposition 3.2, Γ,(ω(5)) C ω(Β) for all t > 0. Let us show that
ω(Β) C Vt(o3(B)) for all t > 0. Let υ G ω(Β); there exists a sequence of
the form {V«fc(i>k)})£,,, tk t °°, vk E.B, that converges to ν (see Lemma 2.1).
Each of the V|k(t;A) with tk > t can be written as Vt(Vth_t(vh)). The sequence
{Vtfc_t(p»)}iA>( is precompact because Vt, t G R+, is asymptotically compact,

and all its limit points belong to ω{Β). Let us choose from this sequence a
convergent subsequence and denote its limit by Ί). From what we have said
and the continuity of Vt it follows that υ = Vt(v), that is, that ω(Β) C
C ν,(ω(Β))-

It remains to prove that ω(Β) attracts B. Suppose not; then there exists
an ε > 0 and a sequence {^(v*)}·.,, tk t °°, vk G B, such that
dist{F<ft(yfc); ω(Β)} > ε. But this contradicts the fact that all such sequences
are precompact and all their limit points belong to ω(Β).

Proposition 3.5. // Vt, i £ R +, is a bounded point-dissipative semigroup and
the Vt are continuous for all t G R+, then there exists a bounded set Bx that
absorbs small neighbourhoods O(K) of any compact set Κ in finite time;
moreover, Vt(Bx) C Bv

Proof. Let Bo be a bounded set that attracts all υ Ε X. Let us take a small
neighbourhood O,t(B0) of Bo with ε0 > 0 fixed, and consider the set
Bx = y+(Ot,(B0)). Since the semigroup is bounded, Bt cz<8. It is clear that
F,(5i) C Bv For all ν G X there exists a t(v) such that Vt(v) a Ot, (Bo) for
all / > t(v). Since the operator ν«Ό) is continuous there exists a neighbourhood
O(v) of the point υ for which Ff(r)(0(i>)) c: 0e.CSo). Hence it follows that

Vtiv)+t(O(v)) cz V,(Oe,(B0)) c: Bx for all t > 0, that is, Bx absorbs O(v) after
time t(v). Since from a covering U O(v) of a compact set Κ we can choose a

finite subcovering [j O(vt) = O(K), vf G AT, m = m(̂ T) < °°, it follows that
1-1

O(K) is absorbed by 5j after time t(E) = max t(vt).
i l
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Let us note that boundedness of the semigroup was only needed to ensure

the boundedness of the set Bv

Theorem 3.1. Let Vt: X -*• X, i £ R + , be a continuous bounded point-
dissipative semigroup of class 2. Then for this semigroup there exists a non-
empty minimal global B-attractor Eft. It is compact and invariant. If X is
connected, so is 2R.

The attractor 3ft is constructed by the formula

(3.21) 5tt = ω(Β,) = Π IVtiBtfx,

where Β ι is the set from Proposition 3.5. As we showed in Proposition 3.4,
ω(Βι) is a non-empty invariant compact set that attracts Bt. The same
properties are shared by ω(Β) for all Β a8&. Let us show that every Β cz$
is attracted by the set ω(Βχ). We take an arbitrary le-neighbourhood
0Ε(ω(£χ))( ε > 0. It absorbs Βγ in some finite time tx — ^(ε). In its turn,
Βγ absorbs the compact set ω(Β) and even some neighbourhood of it,
0(ω(Β)), in finite time t2 = ί2(ω(Β)) (see Proposition 3.5). Finally, 0(ω(Β))
absorbs Β in finite time i3 = t3(B, 0(ω(Β))). Thus, an arbitrary Β cr 3? is
absorbed by 0 ί(ω(51)) in finite time tx +12+t3, which of course depends on e
and B. From this and the invariance of the sets ω(Β) it follows that
ω(Β) C ω(Β1) for all B, and for Β D B1 we have ω(Β) = ω ^ , ) . If X is
connected, then by taking for Β some connected set Β a SB containing Bx

we get a connected ω{Β), which coincides with ω(β{).

A useful criterion for ascertaining whether or not a semigroup belongs to
class 2 is given by the following proposition.

Proposition 3.6. If a semigroup Vt, t ER+, acts on a Banach space X, and
Vt can be represented as a sum Wt+ Ut in which Wt, t G R+, is a family of
contraction operators, or more precisely, of operators such that

(3.22) \\Wt(B)\\x

where mk(·) are continuous functions on R+ and m^t) -*• 0 as t -*• °°
s i sup \\υ\\χ, while Ut for all t Ε R+ maps bounded sets into precompactp

sets, then Vt, i £ R + , is a semigroup^ of class 2.

Let y+(B) be a bounded set. Let us check that an arbitrary sequence
aM = {Vtk(vh)}~=l, tk t » Vk G B, can be covered by a finite ε-net for all

ε > 0. For a fixed ε > 0 let us choose the number / such that
/rex(Z) ^ ε[2ηι 2 ( | |5 | | χ )]" 1 and let us split the set oM into two parts:
<**i = {FfcfaHSi.! with tk < 1 and <M% = { ^ ( » Μ ) ) ^ 1 + Ι with tk > 1. The

set e# s is a subset of the set Vi(y+(B)), whose elements can be represented in

(1)The semigroup Vt, t G R+, may act only on a part cM of the Banach space X. In that
case Vt: <M -*• aM, t G R+, is a semigroup of class 2.
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the form W,(v)+ U[(v), ν Ε y+(B). The set U,(y+(B)) is precompact and can
therefore be covered by a finite ε/2-net, and since the norms of the elements
W,(v), υ Ε y+(B), do not exceed ε/2, the set V,(y+(B)) can be covered by a
finite ε-net. Thus it is clear that the set o* can also be covered by a finite
ε-net.

From the analysis of problem (3.1)-(3.3) above it is clear that the
semigroups Vt, t Ε R+, corresponding to it in spaces X = Xs, s > 0, satisfy
the conditions of Proposition 3.6 if h Ε Ds and if the requirements (3.16)
and (3.17) hold for /. To check that class 2 semigroups are point-dissipative,
the following theorem is useful.

Theorem 3.2. All the statements of Theorem 2.6 are true for a continuous
bounded class 2 semigroup Vt: X -*• X, t Ε R+, that admits a "good"
Lyapunov function.

In view of Theorem 3.1, the proof of this theorem is exactly the same as
the proof of Theorem 2.6 for semigroups of class 1.

Let us next formulate some results concerning attractors for the problem
(3.1)-(3.3). For brevity, let us restrict ourselves to the most interesting case
of Ω C R,3. We shall begin by quoting results concerning the solubility of
the problem (3.1)—(3.3) (which have been known to me since the mid-fifties).

1. Let / be a differentiable function, and

(3.23)

υ

for some Cj Ε R+, and let its primitive JF(u) — f f(s)ds satisfy the condition
J o

(3.24) (1, Ρ (u)) >-( ·§•-·e, ) | |u x | |»-e,

for some ej > 0, where c2 Ε R+ for all u ED1. Then the problem (3.1)-(3.3)
is uniquely soluble in C(R, Xo) for all h Ε Ζ,2(Ω), and the solution operators
Vt, i £ R , form a continuous group Vt: Xo -*• Xo, t Ε R. The corresponding
semigroup Vt: Xo -* Xo, t Ε R+, is bounded.

2. If for every u Ε D1

(3.25) (/ («), u ) > - (1 - e.) | | ux | |»-c,

with ε8 > 0 and c3 Ε R+, h Ε Ζ,2(Ω), and 9Ω Ε C2, then the stationary
problem

(3.26) -te+ f(z) = h, z\ea = 0,

is soluble in Dl. The set of its solutions is bounded and closed in the spaces

D1 and D2. Therefore the set Ζ of all stationary points ζ = Γ^Ι of the

semigroup is bounded and closed in the spaces XQ and Xv
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There exists a "good" Lyapunov function for the problem (3.1)-(3.3)
under conditions (3.23)-(3.24) in the phase space Xo. It has the form

(3.27) Z([l])=^(\\u\\*+\\ux\\*) + (i,f(u))--(h,u).

Along solutions of the problems (3.1)-(3.3) we have

(3.28) -i-£Mt))=-

This equality is none other than the basic energy relation for (3.1)—(3.3).
We note that all the conditions (3.23)-(3.26) are satisfied by functions

f(v) = cv3 + P2(v), where c = const > 0 and P2(v) is an arbitrary quadratic
polynomial. The following is a new result for the problem (3.1)-(3.3).

3. If Ρ satisfies (3.24) and

(3.29) /(0) = 0, | / ' ( t t ) | < c t ( l " | 2 " v + l)

for some y > 0, then conditions (3.16), (3.17) are satisfied with s = 0 and
δ = γ/2, and therefore Ut($) satisfy (3.20) with s = 0 and δ = 7/2. The
same fact guarantees that the semigroup Vt: Xo -> Xo, t £ R+, belongs to
class 2 by Proposition 3.6. In view of all we have said above concerning the
problem (3.1)-(3.3), Theorems 3.1 and 3.2 can be used to obtain the
following result.

Theorem 3.3. If f satisfies conditions (3.29), (3.24), (3.25) and h € Ι2(Ω),
then the solution operators Vt: Xo -*• Xo, t € R+, of the problem (3.1)-(3.3)
for a bounded domain Ω C R3 with 9Ω € C2 form a continuous bounded
point-dissipative semigroup of class 2, and therefore the statements of
Theorem 3.1 hold with X = Xo. The set Ζ of all stationary points is its
minimal global attractor. It is a compact set in Xo and a bounded closed
subset of Xv The minimal global B-attractor 9ft is compact, invariant,
connected and consists of full trajectories connecting points of Z. Each full
trajectory y(v) in a bounded set Β C Xo belongs foSK. If Ζ consists of

finitely many points: Ζ = [) zt, then for each ν 6 SRs^Z the points Vt(v )

converge as t -*• °° to one of the points Yu and Vt(if) -+Ϋ} ΦΫί as t -*• -«>.
The set 3Jt is bounded in the space Xv

All the statements of Theorem 3.3, apart from the claims that Vt(v) is
attracted to Ζ as t -*• -°° and that 'SSI is bounded in Xx, have already been

proved. For υ £ SQfl the set γ(ϊΓ) is precompact. Therefore for this set there

exists a non-empty α-limit set a(v) = (] yl(v), γ7(υ) aa {Vx(v), τ 6 (—<». t]}]

α(ϊΓ) is a compact invariant connected set, which attracts it as t -*• —°°.
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It is clear that X\ - = Jim X(Vt(v)) κ IJv) = const and therefore
<*(») <-*._oo

α(ϊΓ) C Z. If Ζ = I) 2<t then since the sets co(iT) and α(ϋ*") are connected,

each of them coincides with a point of Z, and these points are different for

It remains only to show that 2ft is a bounded subset of Xv Let v0 ζ 9Λ;
taking fj < i, let us represent lt(t) = Vt(v^), t € R, in the form

v(t) = V,.tl (v

Making ix tend to -°o in this equality and using the fact that Hy^Jllx, is
uniformly bounded in tu we obtain

t

(3.30) v(t)=vt(v0)= f wv
J

Using this representation, we can estimate ||i>(i)lljrv/2 just as we estimated

ΙΙ#ί(φ)ΙΙχτ/2 above (see (3.20)), and reach the conclusion that

This new information on lt(t) and the representation (3.30) allow us to
repeat the calculations and to arrive, after finitely many steps, at an estimate

of sup IKOIIx, in terms of \Μβ)\\χ,.
ten
This procedure can be extended to establish the boundedness of 3JI in the

spaces Xs for s arbitrarily large if/, h, and 9Ω satisfy appropriate smoothness
and compatibility conditions.

I think that Theorem 3.3 has, in essence, been proved in Hale's paper
[38]. However, the paper [38] has not reached Leningrad yet, and I judge
its contents from the preprint [6], which refers to it, and from the book
[7], which contains a number of propositions that could be used for this
purpose.

The claim 3 above about the validity of (3.20) with 5 = 0 and δ = y/2
under condition (3.29) has also been proved by Haraux [39]. He effectively
found a set Bo that is bounded in Xo and absorbs any Β cr SB. Had he used
the results obtained earlier by American mathematicians, he could have
proved all the statements of Theorem 3.3. But it appears that Haraux was
unaware of these papers, since they are not referred to in his work, and he
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only concludes from his results that the "maximal (Χχ, Z0)-attractor"
presented in the papers [20] and [21] of Babin and Vishik attracts (in the
norm of Xo) all bounded sets Β cr 9S. I have placed inverted commas
around the words "maximal (Xv X0)-attractor", since this term, which is
introduced in the work of Babin and Vishik, is not defined here. These
authors construct it with the help of unstable manifolds under a number of
conditions additional to the ones needed here. In fact, of course, it
coincides with SR.

In their preprint [6] the authors tried to remove the restriction (3.29),
that is, they tried to consider the case (3.23). However, there is a mistake
in their argument, and it cannot be corrected with the means they have at
their disposal. Hale himself found the mistake, and notified me of this fact
in a letter. The mistake can be corrected if one has available the following
estimate for solutions of the linear problem (3.9X) with initial data in XQ:

p(3.31) sup( j

(r,g, sup ||u(i)||xo)(l+sup \ \\ g(t) ||dt), r>6,
<6R+ v 16R+ ·' '

·
Suppose that (3.31) holds with some r > 6 and q = 2. Let us consider a

solution t e C(R+, Xo) of the problem (3.1)-(3.3) as the solution of the
linear problem of the form (3.90 with g(t) = -f(v(t)) + h and u*"(0) = ̂ "G Xo.
For this solution, in view of (3.31) and (3.23), we have

t+i

(3.32) sup ( j | | i>(T) | |£ r ( Q ) dT) 1 / 2 <^ 9 (r, 2, | | ? | | X t ) ;

(3.33) || dtg (t) \\LpW = | | - / ' (i; (t)) dtv (t) | | L p ( 0 ) <

|| ν (t) | | V Q ) + (mes Ω)1^2 <^x (IIΨ

vith ρ = 2/7(4 + r ) > 6/5 and

(3.34) sup [ j (τ) ώ τ < ^ 1 0 (r, 2, | | φ |U0).
ten* Jten t

Since Lp(Sl) C D~0, β = 3(1 Ip- 1/2) < 1, and ||dfg(i)||<-P) < c\\dtg{t)\\Lm), we
have

(3.35) sup f \\dxg(x)\\{^dT^eJia{r, 2, | | φ | | ^ .
/eR+ i

Now we can estimate ||<Wi(<P)ll.r . ' using (3.35) and the representation

(3.12) in which we have to takeg(O) = -f(ip) + h and dtg(t) = -f\v(t))dtv(t).
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to obtain

(3.36) || dtUt ( ϊ ) ||ζ_ρ<«(_Ρ)β-β' II - / ( φ ) + h ||(.

ιι(Γ, 2, | | φ |U 0).

From this and (3.9j) with g(t) = -f(v(t)) + h we get

(3.37) sup ||Ut (φ) l l x ^ ^ ^ i i ( r , 2, || φ | | Ζ β ) ,

Thus, Ut maps sets bounded in Xo into sets bounded in Xx_p, 1 -β > 0, that
is, Ut are compact operators, and Vt: Xo -*• Xo, t G R+, is a semigroup of
class 2. Therefore the following (conditional) theorem holds.

Theorem 3.4. Suppose that f satisfies conditions (3.23)-(3.25), h G 2

and that the solutions it G C(R+, Xo) of the linear problem (3.9^ w/tfi imrta/
</afa m Xo satisfy the estimate (3.31) with some r > 6 awd q = 2. Then all
the statements of Theorem 3.3 are valid for the semigroup Vt:X0-+ Xo,
t G R.+, of solution operators of the problem (3.1)-(3.3).

The estimate (3.31) is very plausible. It holds for periodic boundary
conditions; in this case, however, the norm in Xo is defined slightly
differently:

ItilL-
while the role of the "principal" linear operator A of the stationary part of
the equation is played by the operator - Δ + / with periodic boundary
conditions. For these boundary conditions the estimate (3.31) with any
r G (6, °°) and q = 2r/(r— 6) has been proved by Kapitanski, by using
analytic tools developed by a number of authors for the Cauchy problem
for the wave equation (see [40], [42], and so on). (Let me again remind
the reader that I only quote results for η = 3; analogues of all these results
have been established for all n.) Therefore the following theorem holds.

Theorem 3.5. If f satisfies conditions (3.23)-(3.25) and h G Ι 2(Ω), then all
the statements of Theorem 3.3 are true for equation (3.1) with periodic
{in xk) boundary conditions in a parallepiped Ω C R3.

In [43] I obtained the following result for the problem (3.1)-(3.3) with
7 = 0:

Theorem 3.6. If f satisfies conditions (3.23)-(3.25), h G Ζ,2(Ω), and
3Ω G C2, then the solution operators Vt form a group in Xx; the
corresponding semigroup Vt:Xx-* Xv t G R+, is bounded; the set Ζ is
bounded in Xv If moreover f is twice differentiable and

(3-38)
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whereοβ{') is a function bounded on any bounded subset of the positive
real line R+, then the group Vt: Xt -*- Xu t e R+, is continuous. If h G D1

and 3Ω G C3, then the semigroup Vt: Χλ -*• Xu t G R+, is point-dissipative
and of class 2. All the statements of Theorem 3.3 hold for this semigroup
with the space Xx instead of Xo, and with X2 instead of' Xx.

The first statements of this theorem are proved with the help of some
results concerning the linear problem and the a priori estimate

sup IKOHx, <

for exact solutions of the problem (3.1)-(3.3) and their Galerkin
approximations. This estimate is obtained by the method described at the
beginning of this section and with the use of an optimal embedding theorem.
(In [20] and other papers, such an estimate is obtained under more severe
restrictions on /, which include the condition (3.29) with 7 > 0.) To check
that the semigroup is of class 2, we use the same line of argument as in the
preceding theorems which deal with the problem (3.1)-(3.3). Some of the
terms (definitions) that appear in this paper are still absent from [43].

Let us show how, with the help of Theorem 2.8, we can obtain an upper
bound for dim# of any set 91 that is bounded in the metric of Xt and
invariant with respect to the group Vt:X0-+ Xo, t G R. Thus, let SH be

invariant and \\Έ ||x, < c. Then for all ΰ = Γ " 1 6 91 there exists a common

upper bound for the quantities

(3.39) | |u , II, | |u,,II, max | u(x) |, | |u | | , | |ύ , ||, | | u | | t , ( Q ) < C l .
xEQ

The trajectories y(it) on 2 are smooth curves: solutions Jf(t) = Vt(o"(Q)),

t e R, of the problem (3.1)-(3.3) with ϋ(0) ζ % are elements of C(R, Xx),

dtv G C(R, Xo); the estimates (3.39) hold for u = u(/) and u = d,t;(t)for all
t €E R, and for djv(t) we have the estimate

(3.40) || d\v (i) IKc2 for all t ζ R.

L·: view of this,

(3.41) I/(i>)|, |/'(») I, \r(v)\<c,

for all ν g % where c3 = sup (I ̂ 4 ^ 1 , fc =* 0, 1, 2 ) .

For any two solutions v(t) znd'v(t) of the problem (3.1)-(3.3) with initial
data in 21

1

= 5 1ξ f
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1

where %(t) = \ f'llv(t) + (1 - l)Z(t)]dl, and u(t) = v(t)-l)(t). From (3.41)
t

it follows that

(3.42) | i ( * ) l < e t . for all t 6 R.

Moreover,

and

(3.43) | - ^ τ τ | < e 4

 ( l d*v ( i ) ' + ' ^ ( i ) ' ) f o r

To verify the conditions of Theorem 2.8, let us decompose Xo into the
orthogonal sum of two subspaces X$ and X^1. The elements of X% are the

pairs Γ " 1 in which u and ΰ are of the form u = u(x) = 2 fljifkW.

u = u(x) = 2J **ΦΛ(*)Ι where φΛ(χ) are the eigenfunctions of the operator

-Δ, namely,

(3.44) — ΔφΛ = λΛφΛ, (pft|ea = 0, (φΛ, φ,) = δ£,

and afc and i»fc are arbitrary numbers. The elements of Xf?1 are the pairs
oo oo

[ · with u = Σ αΛφΛ a n d w = Σ &ΛΦ>Ι· The norms in XF and Xî -1-
u J ft=JV+l ft=JV+l

are naturally the same as in Xo. Let us denote orthogonal projections onto
these spaces by PN and QN, respectively. For u(t) = v(t)-!)(t) we have

(3.45) d2tu(t) + ldtu(t)-Au(t) + n(t)u(t) = O, i^R-

Let us denote the pair L·"^ ,f>lby «"(i). Taking the scalar product of (3.45)

with dtu(t), we obtain the following estimates:

\4f (II d'u WII2+IIM*> II2)+SII «««(0(Ρ = - ( * W , »(*). «»«(*))<

< c 3 1 | α (f) | | | | dtu (t) | | <c,Xf1/2 | | u, (i) || | | dfu (f) | | < e e (|| dtu (t) | | 2 + 1 | u, (i) ||«),

where c6 = tf,(2X,'/2) -1. Hence it follows that

(3.46) ll

Let us take the scalar product of (3.45) with dtu"(t), where u"(t) = QNu(t),
and bring the result into the following form:

I «4(0 II s )+ e

(?ψ- u{f) + t (t) dtU (ο, Β-
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From this and (3.39)-(3.43) it follows that

( 3 · 4 7> ΊΓ [ τ 'I d*u' W I ' 2 + τ II"* <*) I ' 2 + < g W " < * ) - " " (*))]+
e4 | |( |9«ι>(ί) | + | <?,*(*) |) \u(t)\ \\ + cs\\dtu(t)\\) | | u '

(II 5 ty (i) | | w a ) -f-1| dtv (t) ΙΙ^β,) | | u (t) | | L

Let us introduce the function

Ψ <f) - -j (|| 5fu" (i) |p +1| u'x (t) |p) + (f (i) u (I), u" (0) + e, («' (ί), 5,Η' (ί)),

where &x is a small positive number to be chosen later. In view of (3.47)
and (3.45),

(3.48) J^L < - ε || dtu' (t) ||« + β, || dtu' (t) | | · + ε, (u* (i),

+ c« II u (t) | |Z o || u'(i) || = (ε-e.) | | 3 tu' (ί) ||» + ε, [ - ε || dtu' (t) | | «-

- i i «6 (*) n2-(g ω"(th «·(*»]+ce ii«(o IIX.II

(3.49) ^ L

u (t) |U, || u* (t) || + ε? || u' (t) || || dtu' (t) || <

x. II u- (i) || + ̂  || u· (t) ||».

Let us take, for example^ = ε/3, so that j — -^- + ej8 > 0,-|±- = ε3(162)-χ.
We now use the inequality

(3.50)

which holds for a- ' w Ε QNDl. In particular, it holds for u"{t). With the
help of this inequi '-fy, it follows from (3.49) that

(3.51) - ^ - + ε ψ ( ί ) <

< —J- (-f—|r λ ^ ι ) IKO I I 2 + T C ^

Let us take Af so large that

(3.52) ^ i L |
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Then the first term on the right-hand side of (3.51) can be neglected, and
after the resulting inequality is integrated with respect to t we get

t

(3.53) Ψ (*)<β-«.'Ψ (0) +-§-ήλ^,β-*' J | |ΐ(τ) |fc0 β·* Λ.
ο

Because of (3.46) it follows from (3.53) that

(3.54) Ψ (t)<·—«Ψ (0) + c\ (ε,λ^+,Γ1 (β, + 2c8)"i e*·* fu (0) |ft,,

where ej = ε/3. Furthermore,

(3.55) yP(t)>-Y\\u'(f)\\l[o-es\\u(t)\\\\u'(t)\\-ei\\u'(t)l\\\dtu'(t)\\>

>-γ II «* (0 III·, - e,XJ5V? || u (i) || || u"x (t) || - ε,λ*V,2 || u; (f) || || d(u' (t) || >

+ T
while

(3.56) Ψ(0)<

4 I d f U "
Let us impose another restriction on the choice on N:

(3.57) j g j

Then from (3.54)-(3.57) and (3.46) we deduce the estimate

(3.58) -J· II»" W l l l · , ^ II u(t) II* X5i, + c7e-.« | | «(0) | |^ ο

< II u (0) Ifr, {«««.'Xwii [cj + 9cje-i (ε + 6c,H

Let us choose t = tx so that

(3.59) c 7 e-* < l / 3 = (32)"1, that is, ί, = 3ξ-* log (32c7),

and take Ν so large that

(3.60) eW^U [c\

Then

(3-61) II »*

The inequalities (3.61) and (3.46) with t = tx guarantee that the conditions
of Theorem 2.8 hold, and therefore we have the following theorem:
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Theorem 3.7. The Hausdorff dimension of any set 2t that is invariant with
respect to the group Vt: Xo -*• Xo, t £ R, and bounded in the metric of Xx does

not exceed some finite number determined by ||2ΠΙχ, = sup ||ν||χ, ss c, ε, Ω

and c3 of (3.41).

Remark 3.1. From Remark 2.2 it follows that the fractal dimension of the
set 21 of Theorem 3.7 is also finite. Moreover, the set 2Γ, just as in
Theorems 2.7 and 2.9, does not have to be an attractor in any sense
whatsoever. Only its invariance and boundedness in the metric of Xx are
required. For groups Vt: X -*• X, i £ R , such sets can also be found by
constructing ω-limit sets. For these sets, less information on the group is
required than in the case of attractors. Namely, the invariance of ω(β)
follows directly from the fact that the operators Vt are continuous for all
t Ε R. The fact that ω(Β) is bounded in X follows from the fact that the
set y+(B) is bounded in X. (The facts that ω(Β) is non-empty and Β is
attracted to ω(5) are an entirely different matter, and are not implied by
the conditions above.) For example, for the problem (3.1)—(3.3) the
continuity of the group Vt, t Ε R, on Xo holds already if conditions
(3.23)-(3.25) are satisfied. Moreover, the corresponding semigroup
Vt:X0-+X0, t Ε R+, is then bounded and has a bounded absorbing set Bo,
which of course contains the set Z. Therefore ω(Β0) is a non-empty
invariant bounded subset of Xo. All the other invariant bounded sets are
contained in ω(Β0). If we choose a subset of Bo, Bo D Z, that is bounded in
the metric of Xu then ly+(B0)]x<l will be bounded in Xu and ω(2?0) will be an
invariant set bounded in Xx. (All the properties of solution operators for the
problem (3.1)—(3.3) listed here have already been mentioned above.) The
finiteness of άΗω(Β0) is ensured by Theorem 3.7, and that of <ί^ω(50) by
Remark 3.1.

Better upper bounds for dH{') and df(') for sets ?I in the space Xo that
are invariant and bounded in Xr can be obtained by making use of [25] (see
[44] and [50]).

The presence of a "good" Lyapunov function is not a necessary condition
foi a system to hi. e a compact global 5-attractor Sft. For example, we can

η

introduce in (3.1) a term of the form 2 ο.Λχ)νχ with α,·(χ) sufficiently small.
i=l '

This will destroy the Lyapunov function, but will not prevent the existence
of a compact 3it. The general theorems of § §2, 3 cover very diverse
equations and systems (not only of parabolic and hyperbolic type). In § 1
I indicated a number of systems of equations of hydrodynamics for which
attractors SJl can be found with the help of the theorems of §2. To this
one can add the equations of motion of Oldroyd fluids (see [45] and so on).
The semigroups generated by the Navier-Stokes-Voigt equations belong to
class 2, and for these existence of the attractor 501 is guaranteed by theorems
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of §3 [46]. To this class there belong also the semigroups corresponding to
semilinear equations with strong dissipation in which the dissipative term is
of the form — &Adtv, ε > 0. It appears that this was the first type of PDE
for which a solution operator Vt was represented as the sum Wt + Ut of a
linear contraction operator Wt and a compact operator Ut. These equations
are the subject of research by Webb, Massatt, and others ([47], [48], [46],
and so on).

It is not possible for me to give here anything like a complete list of
papers dealing with the search for attractors for PDE's. A great number of
these have been published in recent years, and this number is growing all the
time. Let me just stress again that the class of semigroups introduced in §3
(semigroups of class 2) includes all the semigroups for which the sets ω(Β)
are compact and attract Β for all Β cz St.
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