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81. The growing role of finite mathematics

[ wish to begin with some arguments that go beyond the framework of
the basic subject of my talk. The formalization of mathematics according to
Hilbert is nothing but the theory of operations on schemes of a special form
consisting of finitely many signs arranged in some order or another and
linked by some connections or other. For instance, according to Bourbak1’s
conception, the entire set theory investigates exclusively expressions
composed of the signs

D,Tv V, _Ia = EyD

and of “letters” connected by “links” I as, for instance, in the expression

F ———1 11

1717 ler ] Jen o,
which is the “empty set”. Keeping the finite point of view, it would be
logical to adopt for an infinite sequence of “letters” some standard notation,

or another, for example,
]!7 [I1 II? Hy I]a e
0 1 10 31 100

(MThe text published here was prepared in 1970 in connection with my talk at the
International Congress of Mathematicians in Nice.
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Curiously enough, owing to the presence of ““links” M, expressions of the
formalized Bourbaki mathematics are not ‘“‘words’ extended in one line as,
for instance, in A.A. Markov’s theory of normal algorithms, but in fact one-
dimensional complexes with vertices marked by definite symbols.

But this conception of mathematics as occupied with the reorganization,
according to well-defined rules, of specified one-dimensional complexes is
only indirectly relevant to the real, intuitively accepted content of
mathematics. Bourbaki remarks that in his conception the expression with
the meaning “the number 1 contains some tens of thousands of signs, but
this does not make the concept of the ‘“‘number 1> inaccessible to our
intuitive understanding.

Pure mathematics develops securely and predominantly as the science of
the infinite. And Hilbert, the founder of the conception of completely
formalized finite mathematics, undertook his titanic work merely to secure
for the mathematicians the right of staying in “Cantor’s paradise’ of set
theory. Apparently, this state of affairs is deeply grounded in the structure
of our consciousness, which operates with great facility with intuitive ideas
of unbounded sequences, limit passages, continuous and even ‘“‘smooth”
manifolds, and so on.

Until recently, in the mathematical treatment of natural science too, the
prevailing way of modelling real phenomena was by means of mathematical
models constructed on the mathematics of the infinite and the continuous.
For example, in studying the process of molecular heat conductivity, we
imagine a continuous medium in which the temperature is subject to the

equation
ou 2%u %u d%u
1) Fr K( oz + oy 922 )

Mathematicians usually regard the corresponding difference scheme
2) Aju = K(Aou + Ayyu + A u)

only as arising out of the approximate solution of the “exact” equation (1).
But the real process of heat conduction is no more similar to its continuous
model expressed by (1) than to the discrete model directly expressed by (2).
Quite probably, with the development of the modern computing
technique it will be clear that in very many cases it is reasonable to conduct
the study of real phenomena avoiding the intermediary stage of stylizing
them in the spirit of ideas of mathematics of the infinite and the continuous,
and passing directly to discrete models. This applies particularly to the
study of systems with a complicated organization capable of processing
information. In the most developed such systems the tendency to discrete
work was due to reasons that are by now sufficiently clarified. It isa
paradox requiring an explanation that while the human brain of a
mathematician works essentially according to a discrete principle, nevertheless
to a mathematician the intuitive grasp, say, of the properties of geodesics on
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smooth surfaces is much more accessible than that of properties of
combinatorial schemes capable of approximating them.

Using his brain, as given by the Lord, a mathematician may not be
interested in the combinatorial basis of his work. But the artificial intellect
of machines must be created by man, and man has to plunge into the
indispensable combinatorial mathematics. For the time being it would still
be premature to draw final conclusions about the implications for the
general architecture of the mathematics of the future.

§2. Information theory

Discrete forms of storing and processing information are fundamental.
They are at the base of the very measure of the “quantity of information™
expressed in “*bits”, numbers of binary symbols. According to what has
been said before, the discrete part of information theory is to some extent
destined to play a leading organizing part in the development of combinatorial
finite mathematics. From the general considerations that have been briefly
developed it is not clear why information theory should be based so
essentially on probability theory, as the majority of text-books would have
it. It is my task to show that this dependence on previously created
probability theory is not, in fact, inevitable. However, I shall confine myself
to two examples. ’

The real substance of the entropy formula

¢} H = — 2 p;log p;

(here, and everywhere, the logarithms are binary) is as follows: if we carry
out a large number n of independent experiments with a probability
distribution

(plv p27 s vy ps)

of s possible outcomes of each experiment, then to record the result of a
whole series of n experiments we need approximately

nH

binary digits. But this result holds under incomparably weaker and purely
combinatorial assumptions. To record the result of our experiments it
suffices to state that each of the results appeared

my, Mo, . ., My

times, respectively, and only afterwards to indicate the ordinal number of
that of the

R n!

C(my, my, ..., mg)= ERENTN)

arrangements that took place.
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For this no more than
slog n + log Clmy, m,, . .., my)

binary digits are needed, and for a large n this is approximately
m; m;
2) n(—3 SLlog L) ~ni.

By the law of large numbers, in the case of independent experiments with
the probability distribution specified above, m;/n ~ p;. But our assumptions
in deducing (2) were far weaker.

A second example with the entropy of a Markov chain is completely
analogous. Here, too, the assumption that it is required to record the
information about the realization of the Markov process is grossly superfluous.

§3. The definition of “complexity”

If any object is “simply” constructed, then for its description a small
quantity of information is sufficient; but if it is “complicated”, then its
description must contain much information. According to certain arguments
(see below §7), it is convenient to call the quantity thus introduced the
“complexity”.

We regard as the standard way of conveying information binary sequences
beginning with 1,

1, 10, 11, 100, 101, 110, 111, 1000, 1004, . . .,

which are the binary expressions of the natural numbers. We denote by i(n)
the length of the sequence n.

Suppose that we are dealing with some domain D of objects in which
there is already some standard numbering of objects by numbers n(x).
However, indicating the number n(x) is by no means always the most
economical way of identifying an object x. For example, the binary
notation for the number

9999
is immensely long, but we have defined it fairly simply. We have to carry
out a comparative study of the various means of specifying objects in D. It
suffices to restrict ourselves to ways of identification that establish a
correspondence between any number p written in binary notation and some
number

= S(p)-

Thus, the way of specifying an object in D becomes nothing but a function
S of a natural argument taking natural values. Somewhat later we shall turn
to the case when this function is computable. Such methods can be called
“effective”. But for the time being we preserve full generality. For each
object in D it is natural to consider among the numbers p leading to it the
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one of smallest length /(p). This smallest length is the “complexity” of the
object x with the “specifying method §™:

Ks(z) = min I(p),
S(@p) = n(2).

In the language of the mathematics of computation, p can be called a
“programme”, and S a “method of programming”. Then we can say that p
is the minimal length of a programme by which the object x can be
obtained following the programming method S.

If there are several distinct methods

Sy Sar ...y S,

of specifying elements of D, then it is easy to construct a new method S
that gives us any object x € D whose complexity Kq(x) exceeds only, for
example, by log r the original minimum of the complexities

Ks, (z), Ks(z), ..., Ks, (2).

The construction of such a method is very simple. We have to reserve
sufficiently many initial digits of the sequence p to fix the method S; that
should be followed, by using as a programme the remaining digits of p.

We say that a method S ‘“‘absorbs a method S' with a precision up to I”
if always

Ks(z) << K (2) + L.
We have shown above how to construct a method S that is stronger with a
precision up to / than any of the methods S}, S5, ..., S,, where approximately
I~ logr.

Two methods S; and S, are called ‘““l-equivalent’ if each of them /-absorbs
the other. This whole construction would hardly be productive if the
hierarchy of methods with respect to absorption were quite odd.
Comparatively recently it was noticed that under some fairly natural
conditions this is not so. 1 follow my paper {1], but roughly the same ideas
can be found in (3], [4], and [S]; however, in [3] they appear in a
somewhat veiled form.

Theorem. Among the computable functions S(p) there exist optimal ones,
that is, such that for any other computable function S'(p),

Ks(z) < Ks- () + 1 (S, §').
Clearly, all optimal methods of specifying objects in D are equivalent:
| Ks, (z) — Ks, (z) | < L(Sy, So).

Thus, from an asymptotic point of view, the complexity K(x) of an
element x, when we restrict ourselves to effective methods of specifying,
does not depend on accidental peculiarities of the chosen optimal method.



34 A.N. Kolmogorov

Of course, the purely practical interest of this result depends on how great
the divergences in complexity are for various sufficiently elastic, but at the
same time convenient and natural, methods of programming.

8§4. Regularity and randomness

The idea that “randomness’ consists in a lack of “regularity” is thoroughly
traditional. But apparently only now has it become possible to found directly
on this simple idea precise formulations of conditions for the applicability of
results of the mathematical probability theory to real phenomena.

Any results of observations can be registered in the form of a finite,
though sometimes very long, entry. Therefore, when we speak of a lack of
regularity in observational results, we have in mind merely the absence of a
fairly simple regularity. For example, the sequence of 1000 digits

1274031274031274031 . . .,

changing with a period of six digits is certainly to be regarded as a ‘‘regular”
and not as “random”, The sequence of the first thousand decimal digits of
the fractional part of the number st

1415 . . .,

is known to have many properties of ‘“random sequences”. But knowing the
rule of its formation, we also refuse to accept it as “random™. But if we are
given a polynomial of degree 999 whose values forx =1, 2, 3, ..., 1000 yield a
sequence of integers p(x) between 0 and 9, obtained as a result of honest
random experiments like roulette play, then the presence of such a polynomial
does not prevent us from continuing to regard the sequence as “random”™.

If by one method or another we have come to the conclusion that the
sequence of results of given experiments does not admit a complete
description in a form acceptable to us from the point of view of the
complexity of its form, then we say that this sequence is only partially
regular, or is partially “random”. But this is still not the “randomness”
that is needed to apply deductions of probability theory. In applying
probability theory we do not confine ourselves to negating regularity, but
from the hypothesis of randomness of the observed phenomena we draw
definite positive conclusions.

We see presently that practical deductions of probability theory can be
justified as consequences of hypotheses about the limiting complexity, under
given restrictions, of the phenomena in question.

85. The stability of frequencies

Following von Mises, the acknowledgement of the hypothesis on the
stability of frequencies is often put at the basis of applications of probability
theory. In a form close to the practice this conept was also accepted in my
well-known booklet on the basis of probability theory published in 1933.
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Suppose that the result of a sequence of a large number N of experiments is
recorded in the form of a sequence of 0’s and 1’s.

11010010111001011 . . .

We say that the appearance of a 1 is random with probability p if the
proportion of 1’s is
M
(). N
and this frequency cannot be altered substantially by a selection from our
sequence of a reasonably long subsequence according to a fairly simple rule
and so that the inclusion of some element of the original sequence in the
subsequence proceeds without using the value of this element (for the most
careful finite formulation of this principle of von Mises, see [17]).
But it turns out that this requirement can be replaced by another one

that can be stated much simpler. The complexity of a sequence of 0’s and
1’s satisfying (1) cannot be substantially larger than

nH(p) = n(—plog p — (1 — p)log(1 — p)).

It can be proved that the stability of frequencies in the sense of von Mises
is automatically ensured if the complexity of our sequence is sufficiently
close to the upper bound indicated above.

I cannot make here this result quantitatively more precise (see [17],
although the definition of complexity in [1] is not yet there) nor can I
discuss from this point of view more complex problems of probability
theory. But the principle is general. For example, assuming that a sequence
of 0’s and 1’s represents a Markov chain with the matrix of transition
probabilities

(Poo Pm) .

Pio Pu

then, in essence, we give approximate values of the frequencies of 1’s after
I’s, 1’s after 0’s, O’s after 1’s, and Q’s after 0’s. The maximal complexity of
such a sequence of length n can be computed. If the complexity of a
specific sequence with given transition frequencies is close to this maximum,
then automatically all the predictions of the probabilistic theory of Markov
chains apply to it.

§6. Infinite random sequences

So far the programme just outlined has not been carried out, but I have
no doubt that it can be done. In fact, its execution must connect the
mathematical probability theory with its applications more completely than
a construction of the type of von Mises. Here I have in mind that there is no
need whatsoever to change the established construction of the mathematical
probability theory on the basis on the general theory of measure.
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I am not inclined to attribute the significance of necessary foundations of
probability theory to the investigations [ am now going to survey. But they
are most interesting in themselves.

For a mathematician it is an attractive problem to determine what infinite
sequences of 0’s and 1’s should be called “random”. I confine myself to the
simplest case of sequences with frequencies of 0’s and 1’s equal to 1/2. In
close connection with what was said before, one would wish to require from
the sequence

2 =Ty, Toy + + oy Tny « )
that its finite segments
" = (Tyy Tgn - - zp)
have a complexity
Kiz®)>n—C,

where C is some constant (different for different x). But Martin-Lof has
proved the following theorem:

Martin-Lof’s first theorem. If f(n) is a computable function such that

1) Z 2-1m = oo,
then for any binary sequence

= (2g, Toy « - oy Tpy - +,0)

there are infinitely many values of n for which
K="y < n — f(n).

The condition of the theorem is satisfied, for example, by the function
f(n) = I(n). But if the series

@ 2 271

“converges constructively” (for details, see [8]), then almost all sequences x
(in the sense of binary measure) have the property

®3) K@) = n — f(n),

from some n onwards. It would be illogical to take the property (3) as
definition of a random sequence. Martin-Lof’s definition is more profound.
I cannot quote it here in full. Random binary sequences in the sense of
Martin-L&f have all the “effectively verifiable” (see again [8]) properties
that from the point of view of the usual modern probability theory are
satisfied “with probability 1” in the case of independent experiments in
which x,, = 1 with probability 1/2. For such random sequences Martin-Lof
has proved a second theorem:
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Martin-Lof’s second theorem. Random sequences of 0’s and s satisfy (3)
from some n onwards, provided that the function fis such that the series
(2) converges constructively.

I quoted these subtle, but fairly special results of Martin-Léf to show that
here we have a field for very interesting mathematical research (in this
connection, see other papers by Martin-L6f and Schnorr, for example, [9]).

§7. Relative complexity and quantity of information

The complexity of specifying any object can be facilitated when any
other object is already specified. This fact reflects the following definition
of the relative complexity of an object x, given an object y:

Ke(z|y)=_min  1(p).
S(n(y), p)=n(x)
Here the method S of relative determinations is a function of two arguments,
the number of the object y and the number p of the programme for
computing the number n(x) when y is given. Concerning relative complexities,
everything that was said in §3 can be repeated.

If the relative complexity K(x|y)is much smaller than the unconditional
complexity K(x), then it is natural to interpret it as an indication that the
object ¥ contains some ‘“‘information’ about x. It is, therefore, natural to
regard the difference

Is(z | y) = Kglz) — Kslz | y)

as a quantitative measure of the information about x contained in y.
As a value of the second argument of the function S(n, p) we admit the
number 0, and we put

Sn, ) =n
(the zero programme from n produces n). Then
Kg(z|z) =0, Jslz | 2) = K s(x).

Thus, the complexity Kg(x) can be called the information contained in an
object about itself.

As regards applications, our definition of the quantity of information has
the advantage that it refers to individual objects and not to objects treated
as members of a set of objects with a probability distribution given on it.
The probabilistic definition can be convincingly applied to the information
contained, for example, in a stream of congratulatory telegrams. But it
would not be too clear how to apply it, for example, to an estimate of the
quantity of information contained in a novel or in the translation of a novel
into another language relative to the original. I think that the new
definition is capable of introducing in similar applications of the theory at
least a clarity of principle.
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The question arises whether the new definition allows us to prove a
number of basic propositions of information theory that recommend
themselves sufficiently. It is clear beforehand that they should hold merely
to within additive constants corresponding to the indeterminacy in §3. One
could not expect, for example, that the equality

1) Jely =90z

holds exactly, but a priori it would seem that the difference between the
left- and the right-hand side should be bounded. In fact, Levin and I have
established only a weaker inequality of the type

2) [ ly)— Tl | =0 (log K(z, y))

(see [16]). We have established that the difference can, in fact, be of this
order.

But in applications amenable to the probabilistic approach, (2) replaces
(1) completely. For the strict equality (1) of the probabilistic information
theory allows us to draw real conclusions only in application to a large
number of pairs (x;, y;), that is, essentially about the information in

(g, 29y + -y 27)
relative to
W1s Yoo+ o5 Ur)

and vice versa. And deductions of this kind can be made also from (2),
where in this case the expression on the right-hand side is negligibly small.

§8. Barzdin’s theorem

A new series of concepts turns out to be interesting even beyond the
limits of probability theory and applied information theory. To give an
example of it, I state a theorem by Barzdin’. It concerns infinite binary
sequences

Z = (Ty, To, v+« oy Tny o)

in which the set of numbers # with x,, = 1 is countable. If the complementary
set of numbers n with x,, = 0 were also countable, then the function

f(n) = x, would be computable, and the relative complexity K(x" |n) would
be bounded. But in the general case (when the set of 1’s is countable),
K(x" |n) can grow unboundedly.

Barzdin’s theorem {15). For any binary sequence with a countable set M
of 1’s and

K@® | n)Clogn + Cy
there are sequences such that for any n

K(a" | n) > log n.
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This theorem appears to me as having an interest of principle from the
point of view of investigations on the foundations of mathematics. To be
definite, we consider the following problem: we label all Diophantine
equations by the natural numbers. Matiyasevich has proved recently that
there is no general algorithm to answer the question whether the equation
D, is soluble in integers. But one can ask about the existence of an
algorithm that enables us to answer the question of the existence or non-
existence of solutions of the first # Diophantine equations with the help of
some supplementary information under one order of growth or another
of the quantity of this information as n increases. Barzdin’s theorem shows
that this growth can be very slow:

logrn 4 C.

§9. Conclusion

The talk was necessarily extremely incomplete. A detailed bibliography
of relevant papers can be found in [16]. I repeat some conclusions:

1. Information theory must precede probability theory, and not be based
on it. By the very essence of this discipline, the foundations of information
theory have a finite combinatorial character.

2. The applications of probability theory can be put on a uniform basis.
It is always a matter of consequences of hypotheses about the impossibility
of reducing in one way or another the complexity of the description of the
objects in question. Naturally, this approach to the matter does not prevent
the development of probability theory as a branch of mathematics being a
special case of the general measure theory.

3. The concepts of information theory as applied to infinite sequences
give rise to very interesting investigations, which, without being indispensable
as a basis of probability theory, can acquire a certain value in the investigation
of the algorithmic side of mathematics as a whole.
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