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The first three sections are written informally. The first part of the
Introduction (§1) is a survey of investigations of nearly-integrable systems
that are based on the methods of perturbation theory. In the second half
of §1 we discuss in detail the results of this article. In §3 we explain
the proof of our main theorem, in which we establish an exponential
estimate of the time of stability; §§4—9 are devoted to the statement and
proof of this theorem. The proofs of certain lemmas used to prove the
main theorem, will be given elsewhere.1 These lemmas are stated in §10.
Their proofs, together with the contents of §§5—9, constitute the complete

It is hoped that this article will be published in the Proceedings of the Petrovskii Seminar, No.5, under
the title, "An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems. II".
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ЭЩ itlOqB SUOipnp9p UIB Ĵ9D ЩЪШ 01 UI9JO9qi ЩВШ ЭЩ JO JOOJd
эщ j o sB9pi рив spoi{i9iu э щ 9sn эл\ ii щ A||BUJJOJUI и э ц и м si χ χ §

•иШОЭЩ ЩВШ ЭЩ JO JOOJd

АЭЦ8ОЛОЩЭМ 'Μ W Ζ



An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems 3

intervals of time) stability in this sense, and not the usual Lyapunov
stability.

Some of the above questions go back even to Laplace and Lagrange, who
attempted to understand rather than explain the stability of the solar
system. Other questions were posed and investigated by Poincare [ 2 ] ,
Birkhoff [ 3 ] , and Siegel [4] and [ 5 ] . More recently, major contributions
to the solution of these problems have been made by Kolmogorov [ 6 ] , [ 7 ] ,
Arnol'd [8] — [ 1 1 ] , and Moser [ 1 2 ] , [ 1 3 ] .

1.2. Kolmogorov tori. Perpetual stability of two-frequency systems.
Arnol'd diffusion. Arnol'd [8], [10] has proved, in particular, the following
assertion. Let Ho be a function of "general form". Then, in the phase
space of a system with the Hamiltonian (1.1) there exists a set consisting
of s-dimensional invariant tori close to the tori given by the equations
/x = const, . . . , /s = const. This set, which is called a Kolmogorov set, is
closed and nowhere dense, but it forms a "large part" of the phase space,
more precisely, the measure of the complement of a Kolmogorov set tends
to 0, as ε-> 0.

As ε-> 0, the Kolmogorov tori of the system (1.1) are transformed
into the invariant tori {/, φ|/ = const} of the unperturbed system. Hence,
those solutions whose trajectories lie on a Kolmogorov set (this is the
"majority" of them) are perpetually stable.

A sufficient condition for the existence of a Kolmogorov set is that at
least one of the determinants Δ ΐ 5 Δ 2 , where

(1.2) A1 = det

(1.3) A2 = det

\ dl

does not vanish identically. Here Δ 2 is the Hessian of Ho, that is, the
determinant of the matrix of order s whose elements are the second

Э 2 я 0
derivatives -̂ 7-57—; the matrix in (1.3) is symmetric and of order (s + 1),

and is the vector whose components are the first derivatives of Ho.

As a consequence of these results, for systems of two degrees of freedom
(s = 2) the following stronger assertion has been proved: If Δ 2 does not
vanish, then all the solutions of the system are perpetually stable. A
detailed explanation of the meaning of the conditions Αλ ψ 0 and
Δ 2 φ 0, and of the nature of the perpetual stability, are given in the book
[27], 365-383.

The results mentioned above were first obtained under the assumption
that Η is analytic. Moser proved that this condition can be replaced by the
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existence of a sufficiently many (namely, 333) derivatives ([12], [13]). By
the efforts of Moser and Russman [31] and [32], the number of
derivatives has been reduced to 6.

Zehnder has proved that the existence of a Kolmogorov set follows from
a general theorem of the type of an implicit function theorem for non-
smooth functionals (see [33] and [34]).

In all these investigations, the behaviour of solutions in the complement
of the set of Kolmogorov tori for s > 3 has remained an open question.
Arnol'd has constructed examples of systems such that part of their
solutions I(t) is arbitrarily far from /(0) (see [11]); this effect is known as
"Arnol'd diffusion" ([14]).

1.3. An exponential estimate of the time of stability. The interval of
time during which the point I(t) for the unstable solutions constructed in
[11] is a short distance from /(0) grows exponentially, as ε decreases
linearly. In this connection, Arnol'd [15] has conjectured that for systems
with a Hamiltonian of general form, the "time of constraint" of I(t) close
to 1(0) grows faster than any power of l/ε for all initial conditions. This
conjecture has been verified. In this article we establish an exponential
estimate for the time of stability.

The precise statement of the exponential estimate forms the content of
Theorem 4.4, which is the main result of the article. We mention here a
theorem which is not completely accurate and differs from Theorem 4.4
in certain details.

1.4 THEOREM. Suppose that Η0 satisfies certain "steepness conditions",
which will be given in §1.7. Then there are positive constants a, b, and
ε0 with the following property.

Let 0 <. ε < ε0. Then for every solution I(t), φ(ί) of the system with
the Hamiltonian H0(T) + гНг(1, φ),

(1.4)

for all t G [0, T], where

The constants a and b depend only on Ho; ε0 depends only on Ho and
on the two parameters1 in Hx that estimate, respectively, the largest
quantity and the rate of decrease of the coefficients in the Fourier series
for # ! in terms of φ. The values of a and b are given in §1.10 and are
discussed in §§1.10, 1.11, and 2.IB.

The estimate (1.5) is proved under the assumption that Η is analytic. If
we only require Η to be smooth, then the estimate is not exponential, but
a power estimate whose exponent is the larger the more derivatives Η
has.

In Theorem 4.4 the role of the second parameter is played by the width ρ of the complex neighbourhood
of the real plane of the variables φ in which Я, is analytic. As is well known, this width determines the rate
of decrease of the Fourier coefficients.
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The exponential estimate is also valid for systems with a Hamiltonian of
a slightly more general form than (1.1). We describe these systems in
§§1.5 and 1.6. Generalizations of the estimate to systems essentially
different from (1.1) are discussed in §2.2.

1.5. The exponential estimate for systems with parameters. In §§4—9
we prove the exponential estimate for systems with the Hamiltonian

(1.6) Η = H0(I) + εΗχ{Ι, ρ, φ, q),

where ρ and q are {n -50-dimensional vectors (n > s), the variables / and ρ
are the canonical conjugates of φ and q, respectively, and Hl is 27r-periodic
in φ = φλ, . . . , φ8. When n = s, the Hamiltonian (1.6) is the same as (1.1).

This generalization allows us to apply our main theorem to a planetary
system like our solar system (for details see §1.18). We remark that the
generalization of the estimates to the system (1.6) hardly complicates the
calculations of their proof, and does not make these estimates worse.

We also remark that the assertion about the validity of the estimates
(1.4) and (1.5) for the system (1.6) trivially implies the equivalent assertion:
These estimates hold for non-autonomous systems for which the perturbation
depends on the "slow time" et, that is, for systems with the Hamiltonian

Η = H0(I) + гНг{1, φ, et).

We may call the variables ρ and q in (1.6) parameters. The dependence
of a perturbation on the parameters and the slow time does not worsen the
estimates (1.4) and (1.5) in the main theorem.

The Kolmogorov—Arnol'd—Moser theory (see §1.2) does not carry over to
the systems considered in this subsection, apart from those cases when the
Hamiltonian has the form (1.1) or can be reduced to this form.

1.6. Systems with a perturbation depending periodically on time. We
consider a system with the Hamiltonian

(1.7) Η = H0(I) + гНг{1, φ, t), where Нг{1, φ, t + 2π) = Я х (/, φ, t).

Conditions on Ho other than the steepness condition ensure an exponential
estimate of the time of stability of the solutions of this system. These
conditions (called conditions of P-steepness) are given in § 1.9B. They are
equivalent to the steepness conditions on a function SS of (s + 1) variables
Λ , . . . , Is, Τ that is defined in terms of Ho by SS (/, T) = H0(I) + T.

1.7. Steep functions. Now we turn to the formulation of conditions on
the unperturbed Hamiltonian Ho that ensure an exponential estimate of
the time of stability of the system (1.6). They generalize the condition
dH0(I)

> g > 0, which in an obvious way guarantees perpetual stabilitydl

with respect to / of the systems (1.1) with a single frequency, s = 1.
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Let #o be an arbitrary function defined in some domain G (~ to an open
set) of the Euclidean space E s. By afflne subspaces of Es we mean planes
of any dimension. Let / be any point of G, and let λ be a plane containing
/, dim λ Φ 0. We denote by grad Ш0\х) the gradient of the restriction of
Ho to λ, and by rrij λ(η) the smallest value of the length of this gradient
on the sphere with centre at / and of radius r\:

Щ, λ (η) = min | grad ( # 0 |λ) |i-1.
{ / ' ε λ | Ι ' Ι | >

1.7.A. DEFINITION. We say that a function Ho is steep at I on the
plane λ if we can find constants С > 0, δ > 0, and α > 0 such that

(1.8) max »»Γ. χ (η) > Cg*

for all £ G (0, δ ] . We call С and δ the coefficients and α the index of
steepness.

In the following two definitions, we only impose, in essence, conditions
for the uniformity of the estimate (1.8).

We denote by Ar(I) the set of all r-dimensional planes in Es that
contain I G Es.

1.7.В. DEFINITION. We say that a function Ho of s variables, s > 1, is
steep at the point I if the following conditions hold: Firstly,
I g r a d # 0 | 7 | > g, where g > 0. Secondly, when s > 2, for every
r = 1, . . . , 5 - 1 there are numbers Cr > 0, δ,. > 0, and o^ > 1 such
that Ho is steep at / on every plane λ €. Ar(I) perpendicular to grad H0\j
with coefficients Cr and δ,., and index ar. We call the numbers
g, Cx,. . . , Cs_ j , δ χ,. . . , ds_ j the steepness coefficients, and ax,. . . , as_ 1 the
steepness indices of Ho at /.

The following condition ensures the uniformity of condition 1.7.B at all
points where the function is defined.

1.7.С. DEFINITION. We say that a function Ho of s variables is steep
in a domain G with coefficients g, C l 5 . . . , Cs_1, δ 1 ( . . . , δ 5 - 1 and

indices al} . . . , as_l i f # 0 is steep at every point I G G with these
coefficients and indices.

Conditions 1.7.C ensure an exponential estimate of the time of stability
for all solutions I(t), φ(ί) of the system (1.1) with initial conditions in
the domain of G X Ts outside a small neighbourhood of the boundary of
this domain; here Ts is the s-dimensional torus, and φ € Ts.

1.8. Remarks on the steepness conditions. The geometrical meaning of
steepness. We explain the fundamental definition of these three (Definition
1.7.A). Suppose that Ho is steep at / on the plane λ with the coefficients
С and δ, and index a. Let 7 be any curve on λ that joins / to any other
point at a distance d from /, where d < δ. Then on this curve we can
find a point 7 such that the length of grad ( # 0 | λ ) at this point is bounded
below by a power estimate:



An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems 7

| g rad( t f o | , ) | T |>a f\

Precisely this property of steep functions will be used in the proof of our
main theorem.

We can give an intuitive interpretation of this property. We consider the
graph of Η0\λ. Then a traveller moving over the surface of the graph from
a point over / to the other point necessarily has to surmount the steep
slopes of this surface.

We remark that if the plane λ is not perpendicular to grad Η0\λ, then
grad (H0\x)j Φ 0, and the constants C, 8 and a mentioned above can
always be found; moreover, we can take α to be 0. If λ 1 grad HQ\j, as in
Definition 1.7.B, then grad (H0\K)j = 0. In this case Ho cannot be steep;
for example, if we can find a curve у passing through / and lying on λ
such that at all points of it grad ( # 0 | λ ) vanishes (for the details see §1.15).
If #o is steep at / on λ, then a. > 1 always, and the steepness index
cannot be smaller (this is a consequence of the smoothness of Ho).

We also note the relative independence of the steepness conditions at a
point for different r, where r = dim λ. The following fact points to this
independence. There are functions of three variables some of which satisfy
these conditions for r = 1 but not for r = 2, and vice versa for the others.
A function of the first type is, for example, {Ιλ — / | )2 + / | at the points
where /j - J\ = 0 and /3 Φ 0, and of the second type, Ix + J\ - I\ at
all points.

Conditions close to the steepness conditions were introduced by Glimm
in [16].

These conditions refer to the following situation: the system investigated
is not (1.1), but a neighbourhood of a position of equilibrium of an
arbitrary Hamiltonian system (see §2.2.B). In this case Glimm proved the
so-called formal stability of the system under the assumption that a certain
function defined by the system satisfies conditions close to the steepness
conditions. Glimm did not clarify whether functions of "general position"
satisfy his conditions. These functions satisfy the steepness conditions, as
is proved in [17] (see also §1.13 above).

1.9. Variants of the steepness conditions. 1.9.А. Conditions of

5-steepness. The condition
dl

> g > 0, which ensures the perpetual

stability of the system (1.1) for s = \, can be weakened. We can allow

—— to vanish, but require it to satisfy a power estimate. A generalization

of this condition to multi-frequency systems are the conditions of
/S-steepness stated below. They too allow grad Ho to vanish. Nevertheless,
they ensure the exponential estimate (1.5) of the time of stability of the
system (1.6), although with a worse value of a. This is a simple consequence
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of our main theorem.
DEFINITION. We say that a function Ho of s variables is symmetrically

steep (or S-steep) at I if the following holds: For every r - 1, . . . , s
there are numbers Cr > 0, br > 0, and ar > 0 such that # 0 is steep at
/ on every plane λ G Ar(I) with coefficients Cr and br and indices ar.

The requirement that these conditions hold uniformly at all points
where Ho is defined ensures an exponential estimate. This requirement is
formulated by analogy with the conditions of steepness in a domain (see
§1.7.C).

1.9.В. Conditions of P-steepness. The requirement that the following
conditions hold uniformly at all points where Ho is defined, guarantees an
exponential estimate of the time of stability of the systems in §1.6 with
a perturbation depending periodically on the time.

DEFINITION. We say that a function Ho of s variables is P-steep at Io

with coefficients Cr > 0 and dr > 0, and indices ar > 1 (r = 1, . . . , 5)
if the following condition holds:

We denote by &C the function ££(/) = # „ ( / ) - < co(/0), / >, where
ω(/ 0 ) = grad H0\j , (c%*is characterized by the fact that it differs from
# 0 by a linear function, and that its gradient at / 0 is zero.) Then ffi must
be S-steep at / 0 with coefficients Cr and δ,., and indices OLT.

1.10. Steepness indices and the time of stability of a system. The
constants α and Ь defining the estimates (1.4) and (1.5) of the main
theorem depend only on the steepness indices аг, . . . , <xs_1 (defined in
1.7.C) of the unperturbed Hamiltonian Ho and can be expressed in terms
of them as follows:

.. n . 2 , 3a

i 1 9 ) b

where

ζ = [ a i (a 2 . . .(a s_ 3(a s_ 2.s + s - 2) + s - 3) + . . . + 2) + 1]

for s > 2, and ζ = 1 for s = 2; s is the number of frequencies:

/ = /1, · . . , Is.

For a we can obtain a better value:

where σ > 0 is arbitrarily small. In a subsequent article we shall explain
how this can be done, but it seems that this value could be improved.

Since ar > 1, we have ζ > s(s - l)/2, where equality holds if
OLr = 1 for all r. Thus, in all systems with the same number 5 of
frequencies, the best estimate of the time of stability strongly deteriorates
as s increases.

In the next two subsections we describe two important classes of steep
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functions.
1.11. Quasiconvex functions. DEFINITION. A function Ho is said to be

quasiconvex in a domain G, G С E s, if for every / £ G:
a) g r a d # 0 | 7 ^ 0 ;
b) the system

(1.10)
s

Σ 0<)

does not have real solutions η = ηί, . . . , ris (apart from the trivial
solution η = 0).

Condition b) can be restated as follows: the restriction of the second

order term Σ -^T^J of the Taylor series of Ho about / to the

hypersurface Σ —ζ τ?,· = 0 tangential to the level surface of Ho at /

has a fixed sign.
The level surfaces of these functions are convex, and this explains the

term "quasiconvex function".
The steepness of quasiconvex functions in some neighbourhood of any

point / in the domain of definition is obvious: for every subspace λ
s эяо(/)

containing / and lying in the tangent hyperplane Σ — = - — τλ· = 0, the
i= 1 dIi

graph of HQ | λ in a neighbourhood of / is close to an elliptic paraboloid
(a dish). Hence we also see that all the steepness indices αζ· (/ = 1, . . . , s - 1)
are equal to 1. Note that for every non-quasiconvex function with non-zero
gradient among the steepness indices there is at least one that is greater than
1. Hence, the quasiconvex functions are "steepest".

It is not difficult to verify that for functions of two variables (s = 2),
quasiconvexity is equivalent to the non-vanishing of the determinant (1.3).
Hence, a function in "general position" of two variables is quasiconvex.
For functions of three variables, quasiconvexity is equivalent to the
condition that the determinant (1.3) is negative.

REMARK. As we have already remarked in §1.10, the constant a
defining the estimate (1.5) of the time of stability depends only on the
steepness indices of Ho. The smaller these indices, the larger the estimate.
The author conjectures that, in fact, if we compare systems (1.6) with the
same number s of frequencies, then those for which Ho has smaller steep-
ness indices are in a certain sense significantly more stable than the systems
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with larger indices. In particular, systems with quasiconvex unperturbed
Hamiltonians Ho are the most stable.

For systems with three frequencies (s - 3), the validity of this conjecture
would imply that the stability of a system essentially depends on the sign
of the determinant (1.3): if it is negative, then the diffusion is much slower
than if it is positive. It would be interesting to verify this dependence
somehow, for example, on a computer.

REMARK. For periodic systems (1.7), the best estimate of the time of
stability of the solutions is obtained for systems with a convex # 0 , that is,
a function for which the second order term in the Taylor series has fixed
sign.

1.12. Conditions on a 3-jet function. We consider functions satisfying at
every point

1 — i i i · · · j -Is

of their domain the conditions:
a) g r a d # 0 | 7 Φ 0;
b) the system

у dH0(l)

2

i, j , h

has no real solutions, apart from the trivial solution η = η ΐ 5 . . . , η5 = 0.
It is not difficult to prove that in some neighbourhood of every point

of their domain such functions satisfy the steepness conditions.
Obviously, the conditions (1.11) are weaker than (1.10); quasiconvex

functions satisfy (1.11).
We also note that a function of three variables in "general position"

satisfies (1.11).
1.13. The infinite degeneracy of non-jet functions. The question arises

whether functions of "general position" of four or more variables are steep
in a neighbourhood of a point. It turns out that they are. Moreover, the
following theorem is proved in [17].

1.13.A. THEOREM. Suppose that the gradient at I of a function Ho of
s variables (s > 2) is non-zero. If Ho is not steep in any neighbourhood of
I, then it is infinitely degenerate: the coefficients in the Taylor series of Ho
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about this point satisfy infinitely many independent algebraic equations.
By slightly modifying the proof of this theorem, we can obtain a similar

assertion for the /'-steep and 5-steep functions defined in §1.9. These differ
from Theorem 1.13.A by the absence of the condition grad H0\j Φ 0.

1.13.B. THEOREM. If Ho is not P-steep (S-steep) in any neighbourhood
of I, then it is infinitely degenerate in the sense of Theorem 1.13.A.

1.14. Algebraic steepness criteria. 1.14.A. The set of jets of non-steep
functions with a non-zero gradient. The infinite degeneracy of non-steep
functions follows from the following fact.

We denote by Jr(s) the space of r-jets of functions of s variables at an
arbitrary point /, that is, the space of vectors formed from the lowest
coefficients, up to order r inclusive, in the Taylor series of the function
about this point. Then we can find in every space
Jr{s) (r, s = 2, 3, 4, . . . ) a semi-algebraic set Xr(s) such that the following
conditions hold: firstly the r-jets of all non-steep functions with non-zero
gradient lie in Xr(s), more precisely, every function Ho whose r-jets lie
outside Z r(s), either has grad Ho \f = 0, or is steep in some neighbourhood
of/; secondly, for every s = 2, 3, 4, . . . , the codimension of ΣΛ(ί) in
Jr(s) tends to infinity as r -*• °°.

The second property of the sets Xr(s) is a consequence of the estimate,1

which can be proved on the basis of results in [17] :

(1.12)
max

max [θ, г— i—s{s

A

 2 ) ] for even s,

[θ, r- 1 - ( s ~ 1 ) 2 ] for odd s.

We denote by rm(s) the smallest value of r such that functions of s
variables with a non-zero gradient at / whose r-jets are of "general position"
are steep in a neighbourhood of/. It follows from (1.12) that

s(s—2) . o „
—-j—- + 2 for even s.

( * ~ 1 } + 2 for odd s.

In particular, rm(2) < 2 and rm(3) < 3; we have already mentioned these
facts in §§1.11 and 1.12, when we asserted that functions of "general
position" of two or three variables satisfy (1.10) and (1.11), respectively.
Note that, in fact, rm(2) = 2 and rm(3) = 3.

1.14.B. The constructive nature of the conditions distinguishing the jets
of non-steep functions. We prove (1.12) elsewhere.2 We shall also describe
there the algebraic conditions that define a certain subset or(s) of Jr(s)

We assume that the codimension of Er(s) in Jr(s) is exactly equal to the right-hand side of (1.12).
Similar, but worse estimates are established in [17].



12 Ν. Ν. Nekhoroshev

whose closure coincides with Σ'Ο). Unfortunately, these conditions have
an implicit character, that is, they have the form of (1.10) or (1.11), and
not of (1.2) or (1.3). (More precisely, they have the form of a collection
of systems of polynomial equalities and inequalities in the lower order
Taylor coefficients and certain other variables (parameters).) The solubility
of at least one system of the collection for fixed values of the Taylor
coefficients means that the vector formed from these values belongs to
or{s).) In spite of the implicit character of these conditions, to a certain
extent they answer the question about the effective verification of the
steepness of the function along a jet.

1.14.C. REMARK. The conditions defining or{s) can be regarded as a
generalization of the steepness conditions (1.10) and (1.11). For these
conditions are close in form to (1.10) and (1.11). Moreover, the conditions
defining a2 (s) = Σ2($) for s = 2, 3, 4, . . . , are equivalent to the
conditions for quasiconvexity (1.10), and the conditions defining
a 3 (s) = Σ3(5) for 5 = 2 and 3, are only slightly different from (1.11).

1.14.D. REMARK. The steepness indices cez· of functions with a non-zero
gradient at / whose r-jets at this point lie outside Xr(s) are bounded above
by quantities depending only on s and r.

1.15. Examples of non-steep functions. The simplest examples of non-
steep functions are linear functions of two and more variables:

s

#o = Σ aJt + b.
i=l

Suppose that the domain G of Ho contains a finite or infinite segment
of a straight line for which the restriction of Ho to it is constant. Then
Ho is not steep at any point of this segment, and so not in any domain
intersecting it.

We consider a more general situation: there are a plane λ, dim λ Φ Ο,
and a curve 7 lying on this plane, such that the gradient of the restriction
of # 0 to λ vanishes at all points of 7:

(1.13) grad (#0Ιλ)Ιΐ = 0 for all / 6 Y·

Then # 0 is not steep at any point of 7.
Note that these examples of non-steep functions are also examples of

non-P-steep and non-S-steep functions.
1.16. The importance of the steepness conditions for an estimate of the

time of stability better than an a priori estimate. Necessary conditions for
such an estimate. It follows straightaway from Hamilton's equations that
for all solutions I(t), φ(ί) of a system with the Hamiltonian

(1.14) Η = H0(I) + βίΤι(Λ Ψ)

the point I{t) is close to /(0) during an interval of time much less than
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1/ε, We call this estimate (^Иг) a lower a priori estimate for the time of
stability of the solutions of the system. The steepness conditions on the
unperturbed Hamiltonian Ho guarantee an estimate better than an a priori
one (an exponential estimate if Η is analytic, and a power estimate if Η
has a certain number of derivatives). But, can this estimate hold for a system
with an arbitrary # 0 ? It turns out that the answer is no. We can claim that
a fairly large class ЭД1 of non-steep functions has the following property. Let
Ho 6 Ш. Then a system with the Hamiltonian (1.14) and with a suitable
perturbation гНг, Hx = H^HQ), has for any ε > 0 solutions /ε(ί), φε(ί)
such that Ie(t) leaves its initial position /ε(0) with a speed of order ε during
a time interval 1/ε. Thus, the time of stability of these solutions is much
less than 1/e and coincides with the a priori estimate.

Here is a simplified form of this theorem.
1.16.A. DEFINITION. A plane λ obtained by a translation from the

linear hull of vectors with integer components is said to be rational. (As
above, by a plane we mean an affine subspace of any dimension.)

1.16.B. NOTATION. We denote by Ш the class of functions whose
domains lie in Es, / £ Es, and which have the following properties
For every Ho £ Ш we can find a rational plane λ in Es and a curve
γ, γ С λ, such that, firstly, (1.13) holds, and secondly, there is an equation

/ = V(I) with a smooth right-hand side for which у is one of its phase
curves.

1.16.C. THEOREM. For every Ho 6 Ш we can find an Hx = Ηχ{1, φ)
and a one-to-one mapping £: [0, 1] -> Es with the following property. For
every ε ;> 0 there is a solution / ε(ί), φε(ί) of the system (1.14) that is
defined on [0, 1/ε] and such that /ε(ί) = ξ(εί).

1.16.D. REMARK. If # 0 and the field V are analytic, then for Hx we
can take an analytic function such that the Hamiltonian (1.14) is analytic.
This follows from the proof of the theorem.

The next result follows from Theorem 1.16.С
1.16.Ε. COROLLARY. In the class of conditions on the unperturbed

Hamiltonian Ho, the condition Ho £ Ш is necessary for an estimate of
the time of stability of solutions of (1.14) to be better than an a priori
estimate.

1.16.F. REMARK. An important difference between functions belonging
to Ш and the non-steep functions considered at the end of §1.15 is that
for functions from 3ft the corresponding plane λ is rational.

1.16.G. REMARK. The trajectories of I&(t) coincide with the curve
7 {{Ц1 =£(t),t G [0, 1]} = γ). For a suitable perturbation the curve у
becomes a "channel of superconductivity" along which I(t) moves with
speed ε.

For systems with two frequencies (s = 2), a necessary condition for an
estimate of the time of stability to be better than an a priori estimate is
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that E2 does not contain straight lines with rational slopes on which
Ho = H0(I1, I2) is constant.1 Below we give an example of a system for
which Ho has such a straight line and which has "fast" solutions

1.17. Example of a system with a fast evolution. The system with the
Hamiltonian

(1.15) Η = A (I\ - Ц) + ε sin (Ψ ι - φ2)

1 1

has the fast solution I±—— εί, / 2 = εί, q>1= — -^-εί2, φ 2 = — y s i 2 .
REMARK. For this system Ho = \{Γ\ — I\), consequently, the determinant

(1.2) does not vanish anywhere. Thus, despite the existence of a measurably
large Kolmogorov set of invariant tori, in the space of action variables / we
can have the "channels of superconductivity" described in §1.16.G. In this
case the straight line Ιχ + I2

 = 0 is such a channel.
Examples of systems with fast evolution similar to (1.15) have been given

by Moser [18], Khapaev [19], and others.
1.18. Non-linear weakly-connected oscillators. Stability of a planetary

system during an exponentially large interval of time. By non-linear weakly-
connected oscillators we mean a system with a Hamiltonian (1.16) such

s

that # 0 = Σ /J(/f) and the second derivatives of the ft and the gradient
i= 1

of # 0 do not vanish. If, moreover, these second derivatives have the same
sign, then Ho is convex, and so quasiconvex, hence, steep.

An example of this is a planetary system: 5 + 1 points are attracted to
one another by Newton's law, and the mass of one point (the sun) is
much greater than that of the others (the planets). In fact, it is well known
that in some domain of the phase space the Hamiltonian of the system can
be reduced to the form (1.6), and

i=l *

where the C/0) > 0 are constants.
Suppose that the initial positions and the velocities of the bodies are

roughly as in the solar system. We prove in §12 that in this case the system
does not collapse during a time Τ that is exponentially large in comparison

Note that if Ho is constant on a rational line, then the ratio of the frequencies ψ^Γ) = — (ζ = 1, 2)
bIi

of the unperturbed motion on this line is also constant and rational. The rationality follows from the
rationality of the line. The frequencies φ^{Γ) are the frequencies of the motion on a torus with "angular
coordinates" φ = φ1,φί for a given value of/. Similar relations between the frequencies φ^ hold also for
systems with more than two frequencies (s > 2), with Ho e 93? provided that the corresponding plane
λ is rational.
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with 1/e where ε is the ratio of the masses of the planets to the mass
of the sun. More precisely, suppose that the motion of the bodies in this
system ensures that initially: a) the planets are moving along ellipses that
are not too prolate; b) the lengths of the semi-major axes of these ellipses
are sufficiently different from one another; c) the angles between the planes
of the orbits are not too large, and the planets are moving in the same
direction. Then, during time T, it is impossible for the bodies to collide or
for a body to leave the system. Moreover, during the whole of this time,
conditions a), b), and c) hold, and the lengths of the semi-major axes of
the orbits hardly change.

We remark that this assertion does not follow directly from the main
theorem, since when at least two bodies approach one another, the
perturbation Η - Ho becomes small. We need to use another fact (the
existence of the integral of the moment of momentum) in the same way
as in a similar situation in [9] . The fact is that for fixed values of the
lengths a; of the semi-major axes, the length G of the moment of momentum
vector attains its maximum close to the points of the phase space corres-
ponding to the motion of the planets in circular orbits in the same plane
and in the same direction. Hence, for any pairwise distinct a,- > 0, we can
find a number у such that the conditions a{ = 0^(1 = 1, . . . , s) and
G ~> у characterize a set in the phase space to each point of which there
corresponds a position of the bodies of the system such that the distances
between them are not too small. (The conditions at - af and G > у are
sharper than a), b), and c).) Therefore, to prove that a close approach is
impossible during the time in question, it is sufficient to prove that during
this time the changes in the a{ are small. But it is well known that
at = C/1^//2, where the C^1^ > 0 are constants. Hence, a large deviation of
the η from their initial values would imply a large deviation of the action
variables /г· from their initial values. But this would contradict the main
theorem, since it would involve a small perturbation.

We digress slightly in the next two subsections, and consider non-
Hamiltonian perturbations.

1.19. Stability of the solar system. It is estimated that our solar system
has existed for such an immense period as 4 X 109 times the age of the
earth. This period could be compared with the estimate (1.5), or with other
more exact estimates, but we do not do this. Even if this period could be
explained only on the basis of the slowness of Arnol'd diffusion, it remains
quite obscure how at some instant the planets began to move in almost
circular orbits, and almost in the same plane. Hence, in an investigation of
the stability of the solar system we need to take account of non-Hamiltonian
perturbations. These are insignificantly small in comparison with Hamiltonian
perturbations, but the effect of the latter over a large interval of time is
also very small. Apparently, it is cancelled by the action of non-Hamiltonian
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perturbations, which tend to send the system into a stable state.
One of the explanations of this property of non-Hamiltonian perturbations

is that to a large extent they cancel the energy ht = -C[°^C[1^ — of the

planets rather than the length G, so that G tends to its maximum value
for the available lengths of the я,·. But then, by §1.18, the system tends
to a motion in orbits with zero eccentricity, and the planes of the orbits
do not deviate from one another.

Possibly the influence of tides and the resistance of the surrounding
medium play a fundamental role. Simple calculations show for example,
that a necessary relation between the decrease of the αζ· and G holds if we
take into account only the resistance of the surrounding medium and assume
that the particles of the medium are at rest relative to the centre of mass
of the system.

1.20. The main theorem and non-Hamiltonian perturbations. Actually, it
does not follow from the main theorem as stated in the text that if the
non-Hamiltonian perturbations are very small, then the time of stability of
the system becomes very large. But it follows from an analysis of the proof
of this theorem that the exponential estimate (1.5) holds also for systems
with very small non-Hamiltonian perturbations. A rough statement of this
generalization is as follows.

THEOREM. We denote by ε Η the magnitude of the Hamiltonian
perturbation, and by εΝ that of the non-Hamiltonian perturbation. We
write

= max[2eH,(log

where δ = δ(ε) > 0 is a known function that tends to 0 as ε -»• 0.
Suppose that 0 < ε < ε0. Then (1.4) and (1.5) hold for all solutions of
the system. Here a and ε0 are the same as in the main theorem.

This assertion can be stated as follows: The speed of diffusion, that is,
the mean speed of displacement of the action variables, over a sufficiently
large interval of time, is bounded by

max (2εΗθχρ [ -

Thus, a "superposition of estimates" holds approximately: the estimate of
the speed of diffusion produced by the combined action of both forms of
perturbations differs insignificantly from the sum of our estimate of the
speed of Arnol'd diffusion (that is, the diffusion arising only from
Hamiltonian perturbations) and the a priori estimate of the speed of
diffusion produced by the non-Hamiltonian perturbations.

The author thanks V.I. Arnol'd for introducing him to the problem, and
for teaching him the technique of constructing changes of variables by the
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method of successive approximations, which enabled him to obtain coordinates
in the phase space that are convenient for the investigation of the systems in
question. The author also thanks A.D. Bryuno for some useful remarks.

§2. Unsolved problems. Conjectures. Generalizations

2.1. The principal questions. 2.1.A. An exponential estimate from above
for the time of stability. Although we have constructed examples of
solutions in which I(t) moves away from /(0) exponentially slowly (see
§§1.2 and 1.3), we have not proved that such solutions exist for any
system with a Hamiltonian of "general position". A proof would allow us
to establish once and for all the exponential character of the dependence
of the time of stability of the system on the magnitude of a perturbation.
There is no estimate of the measure of unstable solutions.

The possible existence of unstable solutions, that is, of Arnol'd diffusion,
is clarified in § 11.4.

2.1.B. The dependence of the time of stability of a system on the
steepness indices. We feel that this dependence, which is indicated but not
proved, by our results is the most important consequence of practical
interest.

This dependence was first put forward as a conjecture in §1.11, where
it was suggested that it might be verified on a computer. It would be more
interesting to prove the result analytically. The author feels that
fairly precise upper and lower estimates of the minimum time of stability
(over all solutions) could be obtained by means of the steepness indices.
This would allow us to give a rigorous proof of the dependence mentioned
above.

2.l.C. The direction of diffusion. It would also be interesting to
investigate the direction in which unstable solutions move, and the
preferred direction of diffusion. In a certain sense the steepness of Ho con
differ in different directions, and this must affect the direction of diffusion.
Besides, other factors influence the direction of diffusion, namely, the
location in the space of action variables of the resonance zones, which
will be defined in §3.

2.I.D. Stability and resonances. Another problem is to explain the
observed stability of the so-called resonance relations (for the details see,
for example, [20]). To all appearances non-Hamiltonian perturbations
impart this stability to real systems. What conditions ensure it?

The same question arises when an unperturbed system is of general form
and not Hamiltonian, as in this article (see [37]). In the case of two
frequencies, the stability of resonances in systems of this form has been
discussed by Neishtadt [35], [36].

2.2. Generalization of the exponential estimate to Hamiltonian systems
of other types and to canonical mappings. We mentioned in §1.6 that the
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exponential estimate of the time of stability of a system in the action
variables holds not only for the systems (1.6), but also for the systems
(1.7) with a perturbation depending periodically on time. Here we consider
two further types of Hamiltonian systems, specifically, a neighbourhood of
the equilibrium position of the Hamiltonian systems, and two types of
canonical mappings. We state propositions on an exponential estimate of
the stability of these systems and mappings.

We do not prove these assertions formally. But the following fact points
to their validity. There are a number of theorems that hold with insignificant
variations both for the systems (1.1) and (1.7) as well as for the systems
and mappings discussed in this section. Among these theorems is one about
Kolmogorov tori, which is close in its direction to an exponential estimate
(this theorem is referred to in §1.2; see also [27]). The author is convinced
that the exponential estimate is a theorem of this type.

We mention that the systems and mappings below have been investigated
by several authors such as Siegel [4] and [5] , Moser [21], [22], [23],
[12], [13], and [18], Arnol'd [10], Glimm [16], Contopoulos [24],
Henon [25], Bryuno [26], and others. They have obtained deep and
important results, some of which are used later in this section.

2.2.A. The mapping of a 2s-dimensional ring. We consider the mapping

А: (/,<р)н-*(/', φ'), where /' = / _ | L , φ ' = φ + _ ^ ,

and the function S, the so-called generating function, has the form
S(I', ψ) = S0(I') + eS^I', φ), ε < 1. Here / G G С Es, and φ G Г ; Es

and Ts are, respectively, the s-dimensional Euclidean space and torus.
Τ Η Ε О R Ε Μ. Let So be P-steep in G (for the definition, see § 1.9.B). Then

there are constants a > 0 and b > 0, depending only on the index of
P-steepness of So in G, and having the following property:

Let / ( 0 ) , <p(0) be an arbitrary point of the domain G X Ts that does
not lie in a small neighbourhood of the boundary of this domain. Then

_ /(0) I < eb

for all integers m Ε [0, Τ], where

and / ( m ) , </>(m) denotes the point Am (/<°>,
2.2.B. A neighbourhood of an equilibrium position of a conservative

system. We consider a neighbourhood of a singular point of an arbitrary
autonomous Hamiltonian system with s degrees of freedom. We assume that
the eigenvalues of the linearized system are purely imaginary, and denote
them by t/coj, . . . , ±*ω 5 . Suppose that the eigenfrequencies ω;· do not
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satisfy any resonance relation of order / or lower order, that is,

s

2 kjtoj Φ ο
5=1

for all vectors к = kl} . . . , ks with integer components such that

s

0 < Σ | к/1 < /, where / is some natural number.
/=i

It is well known (see, for example, [27]) that in this case in a neighbour-
hood of a singular point we can make a canonical change of variables such
that the new coordinates p, q at this point are zero, and in these
coordinates the Hamiltonian Η of the system has the form

(2.1) H = H0{I) + H{l+i){p,q).

Here Ho is a polynomial in / = 11, . . . , Is of degree not higher than the
integer part [1/2] of 1/2, Ij = (pf + qf)/2, and the Taylor series of
# ( / + 2) in terms of ρ and q about the origin does not contain terms of
order less than / + 1.

We investigate a system whose Hamiltonian has the form (2.1).
THEOREM. Suppose that Ho = H0(I) is steep in a neighbourhood of

1 = 0. Then there are constants a > 0 and b > 0 depending only on the
steepness indices a{ of Ho, with the following property.

Let

(2.2) 1>J+1 (b = b(o!, ...,α,-Ο).

Let p(t), q(t) be an arbitrary solution of the system with an initial
condition p(0), q(0) sufficiently close to the origin. We put

ε = | ДО) l^-1)/2, where If(t) = (p}(t) + qj{t))/2. Then, \ I(t) -/(0) I < eb

for all t e [0, T], where Τ = -i exp ^ .

From this theorem follows the validity of the estimate of the time
during which the trajectory of the solution lies in a small neighbourhood
of the singular point; this estimate depends exponentially on the initial
distance to the singular point. A sufficient condition for the stability of
the singular point is the steepness of Ho and the absence of resonances of
order / and lower orders, where / and the α;· satisfy (2.2).

2.2.C. A neighbourhood of an equilibrium position of a system depend-
ing periodically on time. We consider a neighbourhood of a stationary
singular point of a system whose Hamiltonian is 27r-periodic in t. (The
Hamiltonian of a conservative system can be reduced to this form in a
neighbourhood of a periodic trajectory.) We assume that all the multipliers,
that is, the eigenvalues \\, . . . , λ*1 of the substitution of the fundamental
matrix of solutions of the linearized system for the period 2π, have
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modulus 1. Suppose that these numbers do not satisfy any resonance
relation

(2.3) λ*1 . . . λϊ' = 1

of order / or lower order, that is, for all к = kx, . . . , ks such that
0 < Σ | kj\ < /. Then in a neighbourhood of a singular point the
Hamiltonian of the system can be reduced by a canonical transformation
27r-periodic in t, to -the form (2.1), the only difference being that # ( / + 1}

is 27r-periodic in t: # ( / + 1 ) ( p , q, t + 2π) = Я ( / + 1 ) ( р , q, t).
The analogue of our main theorem for systems with a Hamiltonian of

this type differs from Theorem 2.2.В only in that we impose on Ho the
conditions for P-steepness (§1.9.B) instead of the conditions for steepness.

2.2.D. A neighbourhood of a fixed point of a canonical mapping. We
assume that all the eigenvalues λ*1, . . . , λ*1 of the linearization of the
mapping A have modulus 1 at a fixed point. Suppose that they do not
satisfy any resonance relation (2.3) of order / or lower order. Then in a
neighbourhood of the fixed point we can construct coordinates p, q that
vanish at this point, and in which the mapping A (with accuracy up to
the terms of order / in its Taylor series about ρ = q = 0) has the form

' ψ ^ dl ) ·

Here / = /χ, . . . , Is, φ = φί} . . . , φ3, where /;· and φ}- are defined by
Pj = \/(2Ij) sin ψ}, qj — y/(2I}-) cos <̂ ;·, and »SO(/) is a polynomial in
I1} . . . , Is of degree not higher than [1/2].

We investigate a mapping of this type.
THEOREM. Suppose that So is P-steep in some neighbourhood of the

origin. Then there are constants a > 0 and b > 0 depending only on the

indices of P-steep ness of So and having the following property. Letl>r

Then for every point p^, q^ in some neighbourhood of the fixed point
p = q= 0 we have | / ( m ) - / ( 0 ) | < eb for all integers m G [0, Τ], where

= 1 exp -a. Here / ( w ) denotes [(pjm))2 + (<7Jm))2]/2, where
i m ) * ( ) J i ) i o ) (0) & = | /(0) |(/-i)/2

§3. The main ideas of the proof of the exponential estimate

In this section we discuss certain ideas and the approach to the proof
of the main theorem (Theorem 4.4). For simplicity we give the arguments
for systems without parameters, that is, for systems with a Hamiltonian

(3.1) Η = H0(I) + ε#χ(/, φ).

3.1. The analytic and geometric parts of the proof. The proof of the
main theorem can be divided into two parts. The first, analytic part, relies
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on the methods of perturbation theory developed by Kolmogorov and
Arnol'd (see [6]—[9]); in this part we use in a straightforward way the
technique developed in [8] . The purpose of the main calculations in the
first part is to eliminate the so-called "non-resonance terms". The second
part is based on an investigation of the geometry of the "resonance zones"
and the "planes of fast drift" described below.

We remark that the general scheme of the proof of the main theorem is
close to the general scheme of the proof given by Glimm in [16] (see §1.8).

We explain the analytical part of the proof in §3.2.
3.2. Almost integrals. In this subsection we explain the main reason for

the stability of the projections /(/) of the solutions of the system (3.1) on
the space of the action variables /. It turns out that the domain G (/ 6 G)
of #o is "permeated" by surfaces of different dimensions such that the
average speed of the projections I(t) across these surfaces is much less than
the perturbation ε. By the mean speed we mean the ratio of the distance
between the initial and final points to the elapsed time, which we assume
to be sufficiently large.

These surfaces are planes in the space of the variables /, more precisely,
the intersections of planes with certain subdomains of G. Here and else-
where, by planes we mean affine subspaces of any dimension.

For every sufficiently small subdomain U of G we can find linear functions
such that the intersections of the level surfaces of the restrictions of these
functions to U are surfaces with the properties described above. We call
these functions almost integrals.

3.2.A. Description of the intersections of the level surfaces of almost
integrals. Let U be an arbitrary subdomain of G. We describe the planes λ
containing the intersections of the level surfaces of almost integrals defined
on the whole of this subdomain (provided that these almost integrals exist).
All these planes are parallel to one another; they are obtained by a
translation from the linear hull of the resonance vectors for U of lower
orders, as defined below.

We denote by Zs the lattice of ^-dimensional vectors к = ki, . . . , ks

with integer components. Let ν > 0 be an arbitrary number.
DEFINITION. A vector к €Ξ Zs is called a v-resonance vector for a set

U if | < k, ω(/)>|< ν for some/G U. Here ω(Ι) = grad # 0 | 7 and (k, ω) is
the scalar product:

s

S

By the order of a vector к S Z s we mean | к | = Σ \ k-\. We denote by

λ 0 the linear hull of all ^-resonance vectors for U of order not greater
than some number TV. Let r < s, where r = dim λ 0 .

Then in U there exist s - r linearly independent almost integrals. The
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intersections of the level surfaces of these integrals are obtained from the
plane λ 0 by a translation.

The properties of almost integrals are determined by the parameters ε,
ν, and N. In particular, the smaller ε and the larger v, the more they
become similar to true first integrals.

3.2.B. Construction of almost integrals. Let Η = Xhk(I)elkip be the

к
expansion of the Hamiltonian Я in a Fourier series. The existence of almost
integrals is proved by reducing Η to a. special form by a canonical change
of variables close to the identity. This special form is such that Η hardly
differs from the function whose Fourier series contains only those harmonics
with the resonance numbers k. The reduction is carried out in Lemma 10.3.

This lemma, which is about the "elimination of non-resonance harmonics",
is roughly as follows: In U X Ts we can make the change of variables
Ι, φ -* J, ф such that the Hamiltonian has the form

(3.2) Η = # ( / , ψ) + R(J, ψ),

where the number к of each harmonic in the Fourier series for Η belongs
to λ 0 :

H= 2 hk(

and the effect | grad R | of the remainder R is very small for large iV:

(3.3) i "

here κ > 0 can be taken to be arbitrarily small. The deformation of
coordinates |(/, ψ) — (/, φ)\ under the change of variables is bounded above
by a product of powers of ε, ν, and N.

To prove the existence of almost integrals it remains to use the following
simple fact, which is a consequence of Hamilton's equations. We consider
the system with an arbitrary Hamiltonian of the form Ш- ^Lhk(J)elk^.
Then for every solution of this system the vector / defined by the harmonic
hk(J)elk* is increasing in the direction of k.

It follows from this proposition that the projections J(t) of the solutions
of the system with the Hamiltonian Η lie precisely on the planes obtained
from λ 0 by a translation. Hence, for the solutions ДО, Ψ(0 of the system
with the Hamiltonian (3.2) the length of the component of j(t)
perpendicular to λ 0 is not greater than | grad R |. If we take N sufficiently
large, then by (3.3), | gradi? | is much less than ε. We return to the
variables / and φ. If we take ε, ν, and iV so that the deformation of
coordinates is sufficiently small, then we obtain the almost integrals
described above.

3.2.C. REMARK (Drift and vibration.) The geometrical interpretation of
the reduction of the Hamiltonian to the form (3.2) is as follows. Let
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I(t), φ{ί) be an arbitrary solution of the system (3.1) whose trajectory lies
in U X Ts. Then we can separate the motion of/(/) into two motions. One
is that of the point /(/) = J(I(t), φ(ί)), while the other is the one we have
eliminated by the change of coordinates. The second is a small amplitude
oscillation (a "vibration"); it is not essential for the stability of the system.
On the other hand, the motion of J{t) is simpler than that of I(t), since the
speed of J(t) perpendicular to λ 0 is very small.

We can say that the motion of /(/) is the average motion or "drift" of
I(t). Here the drift across planes λ obtained from λ 0 by a translation is
very slow, and the speed of drift along them is of order ε. For this
reason we call the planes λ "planes of fast drift".

3.2.D. REMARK. We have constructed the new variables /, ψ in terms
of / and φ by making a large but finite number (~ N) of successive
substitutions. These are analogous to those made by Kolmogorov and
Arnol'd in proving the existence of a measurably large set of invariant tori
(see §1.2). Note that they considered an infinite and not a finite sequence
of these substitutions.

Now we explain the second, geometrical, part of the proof of the main
theorem.

3.3. Traps. Both the number of linearly independent almost integrals and
the location of their level surfaces in the space of action variables depend
on the subdomain of G in question. In particular, there are subdomains in
which we can distinguish a complete set of s linearly independent almost
integrals. In these subdomains the planes λ degenerate to points; hence, the
speed of drift of the projections I(t) of the solutions /(?), φ(0 in them is
practically zero for sufficiently large N.

Where the number of almost integrals is less than s, I(t) can drift with
a speed of order ε (that is, a relatively large speed) along planes λ of
non-zero dimension. But where Ho is steep, the almost integrals from the
given and neighbouring subdomains, trap I(t) in a set whose diameter is
small together with ε; I(t) is in a trap of small size, through which it can
move with speed ε.

To construct the traps we need the following concept.
3.3.A. Definition of resonance surfaces. Let к Ε Zs be an arbitrary non-

zero vector. We call the set of points / Ε G such that (k, ω(/)> = 0 the
\-fold resonance surface defined by k. Let k\ . . . , kr be r linearly
independent vectors from Zs. The set of/ G G such that
(Α:7, ω(/)> = 0 for all / = 1, . . . , r is called the r-fold resonance surface
defined by k1, . . . , kf.

Note that the surface defined by k1, . . . , kr is the same as the
intersection of the r 1-fold resonance surfaces M{№) (j = \, . . . , r), where
M(kj) is defined by W.

We fix some TV > 1 and consider only those resonance surfaces defined
by vectors whose order is not greater than N. It is useful to visualize the
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structure of the set of resonance points, that is, the union of all these
surfaces (see Fig. 1). Note that the structure of this set is determined by
the structure of the set of resonance frequencies:

{ω 6 Rs |3fc 6 Z s such that 0 < |A| < N and </c,o)> = 0}.

3.3.B. Resonance zones and blocks. We are interested not so much in the
resonance surfaces as in their neighbourhoods, which we call resonance zones.
In the proof of the main theorem a zone is a neighbourhood of a special
form of a surface J£, and it is characterized by a certain parameter v,
called the resonance width of the zone. The zone contracts to Μ as
ν -* 0.

In addition to zones, with each resonance surface J? we can associate a
set, called a block, which is the difference between the resonance zone of
Μ and the union of the resonance zones of all surfaces ffl' not containing
Jt, M'^M(Y\g. 1).

Fig. 1. The intersections of the resonance surfaces with the level surface of a function Ho

of 3 variables (s = 3). The intersection with the surface Ho - const of the block
corresponding to the 1-fold surface Zft is shown in black.

By the multiplicity of a zone and a block we mean the multiplicity of
the corresponding surface My and the vectors defining the zone and the
block are those defining this surface.

We call the complement in G of the union of all resonance zones the
0-fold or non-resonance block; we assume that its defining vector is the
zero vector.

We discuss which vectors к G Zs are resonance vectors for these blocks
and zones. Here and elsewhere we are only interested in those к whose
order is not greater than N, \ к | < N.

Both on a surface and on a zone the exact resonance relations
(k, ω(/)> = 0 can hold with very different k. In contrast to this, for a
sufficiently small ν > 0, all the ^-resonance vectors for a block belong to
the linear hull λ 0 of the vectors defining this block. Hence, we can apply
the arguments of §3.3 to a block and find that in a block the speed of
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drift of /(0 across the planes λ obtained from λ 0 by a translation is
practically zero for sufficiently large N.

3.3.C. Boundedness of fast drift. With each resonance surface we associate
a block and consider the set of all such blocks, adding to it the non-
resonance block. We take the blocks so that all the 1-fold zones involved in
the construction of any set of blocks have the same resonance width. In
this case the blocks of a set cover the whole of G.

We assume that I(t) can move in each block only along the planes λ. The
block is part of the corresponding zone. It turns out that the steepness
conditions on Ho ensure that /(/) can leave a resonance zone by a displace-
ment along a plane λ in any direction (Fig. 2).

Fig. 2. Three neighbouring 1-fold resonance zones of a planetary system with two planets
С С

{s-2,H0-- — -|, see § 1.18). The lines in each zone are the intersections of
the lines λ of fast drift with this zone.

We can choose the resonance width of the zones used to construct the
set of blocks so that if a point leaves each zone close to the corresponding
block, then it passes into a block of lower multiplicity than that of this
zone. For this reason, as /(/) moves from its initial position /(0). it passes
from one block into a block of lower multiplicity until it reaches a non-
resonance block. In a non-resonance block the planes λ degenerate to points.
By our assumption, the speed in this block is zero, and so it is impossible
for I(t) to move further away from /(0). The point /(/) is in a trap formed
from the intersections of the resonance zones with the planes λ (Fig.3).

3.3.D. Intersection of a plane of fast drift and a resonance zone. The
role of the steepness condition. Now we explain how the steepness conditions
ensure that a point can leave a resonance zone by a displacement along the
planes λ.

First we consider the intersection of a plane λ and a resonance surface.
Let Μ be an arbitrary resonance surface, λ an arbitrary plane of fast drift
in the block corresponding to M, and kl, . . . , kr the vectors defining M.
The plane λ is obtained by a translation from the linear hull of these
vectors, and Μ is the set of points where ω(Ι) = grad Ho \j is
perpendicular to them. Hence, grad H0\j is perpendicular to λ if and only
if / G M. But the projection of grad Ho on λ is grad ( # 0 | \ ) / f° r a ^ ^ G λ.
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Hence, Ι Ε Μ Π λ if and only if grad ( # 0 | λ ) 7 = 0.
Actually, in one aspect we can strengthen this assertion: The larger

I grad {H0\x)j\, the greater the distance from / to i?. The power character
of the lower estimate of the length of the gradient {valid for steep functions)
requires an upper power estimate for the diameter of the intersection of λ
and a resonance zone, depending on the resonance width of this zone.

3.3.E. REMARK. If the intersection of Μ and λ is not pointwise, then
there can be disastrous consequences. For a suitable perturbation &H1 every
smooth curve у lying in Μ Π λ becomes a "channel of superconductivity"
along which I(t) moves with speed ε. These channels were described in
§1.16, where they were characterized by another condition, namely, that
у lies on a rational plane λ, and grad (H0\x)j = 0 for all / G y. By the
arguments at the beginning of §3.3.D, this condition is, in fact, equivalent
to 7 С Μ Π λ.

3.3.F. REMARK. Every plane λ of fast drift touches the level surfaces of
Ho at each point of Μ Γ) λ and nowhere else.

Fig. 3. The part of the level surface of Ho = Ho (Ix, /2, / 3) close to the point 0 of the
intersection of this surface with a 2-fold resonance line. The black part, without gaps, is

the non-resonance domain, and the short lines are the intersections of 1-fold
zones with the lines λ of fast drift. In the white part the planes of fast drift are

2-dimensional, and the 1-dimensional and 2-dimensional planes are parallel to the
tangent plane to the level surface of Ho at 0. It is clear from the figure that if we assume

I(t) to move along only planes of fast drift, then it is perpetually close to its initial position.

3.4. Derivation of the exponential estimate. Here we explain how to obtain
the relations from which the exponential estimate follows.

In order to be sure that the construction from the intersections of the
resonance zones with the planes λ (roughly described in §3.3.C) actually
produces traps, we need to take the resonance width of these zones
sufficiently small. The 1-fold zones have the smallest width, and it is
sufficient to take it not greater than some positive power of \/N, which
we denote by v0 = vo(N). (The precise definitions of PO(N) and other
functions considered in this subsection will be given elsewhere.) All the
notation used in the proof of the main theorem is the same as here, except
that instead of ε we use M, where Μ has a slightly different meaning.
The power character of the estimate of the width follows from that of the
estimates in the steepness conditions. We take the resonance width of the
1-fold zones in the construction to be as large as possible, that is, vo(N).
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We have assumed that the motion in a block is just along the planes λ.
In fact, this is not so, and in the above construction of traps we need to
replace the planes λ by neighbourhoods of them. If the thickness of these
neighbourhoods is not greater than some bx = bl(N), a power of 1/iV, then
this modification to our construction does not change anything fundamental
and, as before, it gives traps of diameters that are small with \/N.

To justify the claim that in each block I(t) moves in a bx-neighbourhood
of the plane λ we only need to use the lemma about the elimination of the
non-resonance harmonics (see §3.2.B). For this it is sufficient that the
following three conditions hold. Firstly, the lemma about the elimination
is applicable to every block; for this it is sufficient to take ν in this lemma
not greater than v0, the smallest resonance width of the zones in the
construction of the blocks. Secondly, the deformation |(/, φ) - (/, ψ)| does
not exceed bi/2; this is needed to prevent I(t) from leaving a
^i/2-neighbourhood of λ by a "vibration". Thirdly, I(t) does not leave this
neighbourhood by a drift; for this we need to restrict the time of motion
Τ of this point.

As we noted in §3.2.B, the deformation of coordinates has an upper
estimate by a power product of ε, ν, and Ν, which we denote by
b = b(e, ν, Ν), and the speed of drift across the planes λ does not exceed
εβχρ(—ΛΓΐ~κ), where κ >> 0 is arbitrarily small. Hence, for these three
conditions to hold it is sufficient that

δ ( ε , ν ,

A value of Τ satisfying these inequalities is an estimate of the time of
stability of the system. Our problem is to obtain the largest possible value
of T. It follows from the third inequality that for this we must have TV as
large as possible. If we substitute the explicit values of PO(N), b(e, ν, Ν),
and bi(N) in the first two inequalities, then it is clear that the largest N
is obtained by replacing these inequalities by equalities, and using them
to express ν and N in terms of ε. These equalities are of power character,
so that ν and N are positive powers of ε and 1/e, respectively.

It follows from the third inequality that we can take

Τ = — expiV1-2*. Since Ν =Ν(ε) is a power of l/ε, we obtain an

exponential estimate of the time of stability T:

rp 1 1

ε r ва
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The main theorem is formulated in §4 and proved in §§5—9. The
proof is based on the lemma about eliminating non-resonance harmonics,
and on certain technical lemmas in §10.

§4. Steepness conditions. Precise statement of the main theorem

4.1. Steepness conditions. We denote by Es the Euclidean space of vectors
s

I = h, . . . , L with the norm | / | = 4 /( Σ/?), and by Лг(7) the set of all
/=i

r-dimensional afflne subspaces (planes) λ passing through the point / G EJ,
that is, I e\.

Let Ho be an arbitrary function defined in a domain G С Es (here and
in what follows a domain is an open set). Let I E. G and λ € Ar(I) be
arbitrary. We denote by ra7 λ(η) the lower bound of the lengths of
grad (Η0\λ) on the intersection of G with the sphere on λ of radius η and
with centre at /:

™. λ (η) = inf | grad (# 0 |λ) | r |,
{I'af]G |Ι'-Ι|=η>

'here Η0\λ is the restriction of Ho to λ.
4.1.А. DEFINITION. We say that Ho is steep at a point I G G on the

plane λ €= Лг(/) if we can find numbers С > 0, δ > 0, and οι > 1 such
that mI>λ(τ?) is defined on [0, δ), and

sup т1Л(г))>С1а

for all £ G (0, δ). We call С and δ the coefficients, and α the index of
steepness.

4.1.В. DEFINITION. We say that Ho is steep at a point I if the follow-
ing two conditions hold. Firstly, grad HQ |7 > g, where g > 0; secondly,
if the number s of variables is greater than 1, then for every
r = 1, . . . , s - 1, there are constants Cr > 0, δ,. > 0, and ar > 1 such
that # 0 is steep at / on every plane λ G Лг(7) perpendicular to grad H0\j
with Cr and δ,, as the steepness coefficients, and ar the steepness index.

We call the numbers g, C1} . . . , Cs_x and δ χ , . . . , δ 5 - 1 the coefficients
and « ! , . . . , OLS_X the indices of steepness o f # 0 at/.

4.l.C. DEFINITION. We say that Ho is steep in a domain G with
coefficients g, C\ , . . . , С $ - 1 , 8 1 } . . . , 8s_l and indices cxi} . . . , а$_г i f # 0

is steep at every point / £ G with these steepness coefficients and indices.
For the formulation of the main theorem we also need the following

function ξ of all the steepness indices, except o:s_1:

(4.1) ζ = [αι(α2. . .(as_3(as_2.s + s - 2) + s - 3) + . . . +
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for s > 2. If s = 2, then we put ζ = 1.
4.2. Notation. Let X be a subset of a metric space. We denote by Χ + ε

an ε-neighbourhood of X, and by X — ε the set of points that are
contained in X together with their ε-neighbourhoods.

Let (a..) be a complex square matrix of order s. We denote by 11(̂ )11
the norm of the linear operator in the Hermitian space Cs whose matrix
has the form (a/y), that is,

= max where

4.3. Description of the function Я. Canonical equations. We denote by
Я a function of the form

Я = #„(/) + #ι(Λ £> φ. 9)

that is 27r-periodic in φχ, . . . , φ5 = φ, where / is an s-dimensional and ρ
and q are (n - s)-dimensional vectors. We assume that η > s > 2 and that
the conditions 4.3.A and 4.3.В hold.

4.3.Α. Η is defined and analytic on the complex set F:

F = {I,p,(p,q: Re/^G, Rep, q£D, \ Im/, ρ, φ, g |<p},

where G and D are arbitrary domains in Es and E2(A2~^, respectively, and
ρ > 0. (Here and in what follows, | Im /, ρ, φ, q \ < ρ means

| I m ^ | < p , | 1 т д , | < р (/ = 1, ..., га —s).

Apart from this norm and the norm of the integer vectors к (introduced
below in the proof of the main theorem), all the other norms in the
finite-dimensional spaces are the usual Euclidean or Hermitian norms.

For real values of the arguments, Я is a real-valued function.
4.3.B. The Hessian of Я о is uniformly bounded on F, that is, if

// ON II d2ffo (Л II
(4.2) m. = sup — " L

F II dl II
then m < oo, where — = I ) is the matrix of the second order

Э/2 V 3/,-Э/у /
derivatives of Я о .

4.3.С. By a system of canonical equations with Hamiltonian Я we mean
a system:

, p=—Hq,



3 0 Ν. N. Nekhoroshev

4.4. The main theorem. Suppose that Η = H0(I) + HX(I, ρ, φ, q) is
defined on the set F, where Η and F are as in §4.3.A. We assume that Ho

is steep in G with coefficients g, Cr, and br, and indices ar {r = 1,. . . , s~ 1).
Then there is a positive constant Mo = M0(H0, p) not depending on any
characteristics of Ηλ other than p, and with the following property. Let

(4.3) Μ = sup | gradtfil,
F

and suppose that 0 < Μ < Mo. Let I(t), p(t), φ{ί), q(t) be an arbitrary
(real) solution of the system of canonical equations with Hamiltonian H,
such that

1(0) £ G —d and p(t), q(t) £D —d for all ί £ [О, С],

where С > 0 is arbitrary. Then

Here

\I(t) - /(0)| <d/2 for all t 6 [0, min [C, T]\.

(4.5) T = ±-exV(-L)°, α -

and ζ = ξ(αλ, . . . . a s _ 2 ) is defined by (4.1).
4.5. REMARKS. 4.5.A. The assertion of the theorem is completely

unchanged if we take Μ to be sup | Ηχ | instead of sup | g rad#! I (see (4.3)).
F F

4.5.B. Mo depends only on the steepness coefficients and indices
g, Cx, . . . , Cs_ j , δ ι, . . . , bs_ 1 , « ! , . . . , as_ j and on m and p.

Part of the assertions forming the proof of the main theorem (Propositions
8.6 and 9.2) is true not only for the systems described above, but also for
a wider class of systems including, for example, Hamiltonian systems in a
neighbourhood of a singular point when the eigenvalues of the linearized
system are purely imaginary (see §2.2.B). We call them systems with
frequencies; they are defined below.

§5. Forbidden motions

5.1. Forbidden motions of frequency systems. Let Zs be the lattice of
5-dimensional vectors к with integer components.

5.1.А. DEFINITION. By the order of a vector к = k^, . . . , ks G Zs we
s

mean I A: | = Σ \ k{\.

5.1.В. DEFINITION. Let ω: Υ -• С5 be a mapping from an arbitrary set
Υ into the complex vector space. Then к G Zs is called a v-resonance vector
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for Υ relative to ω if we can find а у G Υ such that | (k, ω θ ) > | < ν,
s

where (k, ω)= Σ k^{ is the scalar product of к and со, and ν is a number.
/ = 1

Let X be a vector field on a real manifold V and J : V -*- G a mapping,
where G is a subset of E s, which we call the space of action variables. Let
ω: G -+ Rs be a mapping, where Rs is an ^-dimensional linear space, which
we call the frequency space.

5.l.C. DEFINITION. We call the triple (X, J , ω) a frequency system.
5.I.D. DEFINITION. We say that (X, J , ω) satisfies the condition of

forbidden motions with the parameters N, v, b, and Τ if the following
condition holds:

Let U be an arbitrary subset of G — 2b. Let λ 0 denote the linear hull
of all ^-resonance vectors к for U (relative to ω) for which \ к \ < N. Let
U be such that dim λ 0 < s. Let v(t) be an arbitrary solution of the system
of differential equations υ = Χ(υ) defined by a vector field X, such that

J (v(t)) 6 U and v(t) eV - 26 for all t 6 [0, C],

where с > 0 is arbitrary. Then

р(УШ), λ) < δ for all ί 6 [0, min [С, Т]),

where λ is the afflne subspace in Ε obtained from λ0 by a translation and
containing the point J(v(0)), and p(J(v(t)), λ) is the distance from J(v(t))
to λ.

5.2. The condition for forbidden motions holds for a system with
Hamiltonian H. Let Η = H0(I) + H1(I, ρ, φ, q) be analytic on the complex
set F, where Η and F are as in §4.3. We recall that

F = { R e / 6 ^ , Rep, qiD,\lmI, ρ, φ, q\ < p},

where G and D are domains (open sets).
We denote by V the real set

(5.1) V = {I £G, p, q£D, φ 6 Ts),

and by X the vector field on V defined by H. Let J : V-+G be a mapping
such that J (/, ρ, φ, q) = I, and ω: G -• Rs a mapping such that

5.2.A. DEFINITION. We say that the so constructed frequency system
(X, J , ω) is obtained from the system with the Hamiltonian

Η = #o + Hi.
The following proposition is a consequence of Lemma 10.3 on the

elimination of non-resonance harmonics.
5.2.B. PROPOSITION. We consider the frequency system (X,J, ω)
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constructed from a system with the Hamiltonian H. Let m and Μ be as in
(4.2) and (4.3), respectively. Let N, v, b, and Τ be positive numbers such
that we can find α κ G (0, 1) for which (10.1)—(10.4) hold (these relations
are cumbersome, but they are only needed to make sure that the conditions
of Lemma 10.3 hold, therefore we do not write them out). Suppose also
that

(5.2) AmbN^v,

(5.3) 26 < p ,

Only N, v, b, Τ, κ, Μ, m, ρ, η, and s occur in all these equalities and
inequalities. Then (X, J, ω) satisfies the condition for forbidden motions
with the parameters N, v, b, and T.

5.3. PROOF OF PROPOSITION 5.2.B. Let U G G - 2b, and let AF be
the closed set

{ q , Rep,qiD — 6, jlm/, p, q\^b, \ Ιπιφ |

(The bar denotes closure.) It follows from (5.3) that AF С F.
By Aj we denote the set

Аг = {I : R e / 6 U + b, | Im / | < b}.

Let U be such that dim λ0 < s, where λ0 is defined in §5.1.D.
5.3.A. ASSERTION. Every (v/2)-resonance vector к G Z s for Al such

that | к | < N belongs to λο ·
In fact, for such а к we can find an / G AI such that

I (k, ω(/)>| < v/2. It follows from the definition of Aj that we can find
an /' G U such that the segment joining / and /' lies entirely in AI and
its length is less than 2b. For such a point / ' we obtain

From this and (5.2) we find that \(k, ω(/ ' ) ) | < ν. It follows from the
definition of λ0 that к G λ0, and so the assertion is proved.

Now we apply Lemma 10.3 (about the elimination of non-resonance
harmonics), with λ0 in place of λ, to Η restricted to AF. By this lemma
and (5.3) we can make on the real set

(5.5) {/, ρ, φ, q : / 6 U,p, q 6 D - 26, φ 6 Г }

an analytic canonical change of variables /, ρ, φ, q -> /, Ρ, ψ, Q such that
on this set

(5.6) | / (/ , ρ, φ, g) - J | < i .

In the variables /, Ρ, ψ, Q the Hamiltonian Η has the form Η - Η + R,
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where the expansion of Η contains only those harmonics whose number к
belongs to λ0 i l Z J :

(5.7) H= Σ Μ/, P,Q)e**,

k£Xof)ZS

and

(5.8) |gradi?|<8CTs — Μ ехр(-р^~К).

Now we need the following lemma.
5.3.B. LEMMA (ON THE CONTRIBUTION OF A HARMONIC). Let

$8= ^hk{J, P, Q)elk^ be an arbitrary Hamiltonian, and let
J(t), P(t), φ(ί), Q(t) be an arbitrary solution of the system with this
Hamiltonian. Then the direction in which the vector J defined by the
harmonic hk(J, P, Q)elk^ is increasing is the direction of k.

The lemma is proved by calculations based on Hamilton's equations1

^ =kj(-ihh(J, P, ?)*«•)+... (7 = 1 s).

5.3.C COMPLETION OF THE PROOF OF PROPOSITION 5.2.B. Let
v(t) = I(t), p(t), φ(ί), q(t) be any solution of the system with Hamiltonian
Η such that /(/) G U and v(t) G V - 2b for all t G [0, C], where
С > 0 and the set V is defined by (5.1). It is not difficult to see that the
trajectory of this solution for t Ε [О, С] belongs to the set (5.5). We
denote by /(/), P{t), φ(ί), Q(t) the same solution in the coordinates
/, Ρ, Φ, Q-

It follows from (5.7), (5.8), and Lemma 5.3.В that the length of the
component of j(t) perpendicular to λ0 is less than w for all t G [0, C],
where w denotes the right-hand side of (5.8). Let λ' denote the plane in
Es that is obtained from λ0 by a translation and contains /(0). Then the
distance p(J(t), λ') from J(t) to λ' is less than tw for / G (0, C]. It follows
from (5.4) that p(J(t), λ') < b/2 for / G [0, min [С, Т]]. By using (5.6)
and the fact that λ'ΙΙ λ we obtain

ρ(/(ί), λ)<ρ(/(ί), /( i» + ρ ( / ( ί ) , λ') + ρ(λ\ λ χ ^ - f 4 + Ί Τ < δ

for all these t, as required.

§6. Resonances. Resonance zones and blocks

Thus, the behaviour of /(0 depends strongly on what and how many
vectors k, | к \ < N, are resonance vectors for some neighbourhood of this
point. In this context the following concepts are useful. Let iV > 0 be an
arbitrary number.

This simple calculation is the only place in the proof of the main theorem where the Hamiltonian
property of the system is used in an essential way.
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6.1. DEFINITION. Let к1, . . . , /^ be arbitrary linearly independent
vectors of Zs of order not greater than N, | kl | < N. We denote by ZN

the set of all к G Zs belonging to the linear hull of kl, . . . , kr and such
that \k\ < N. We call ZN a resonance of multiplicity r and order N. We
call the kl (i - 1, . . . , r) the defining vectors of ZN. The set (θ) consisting
of the zero vector only is called an 0-fold resonance; we take its defining
vector to be к - 0.

Note that for every N > 1 there is only one 5-fold resonance. (For
N = 0 there is only one resonance, the 0-fold one.)

We consider the s-dimensional vector space Rs (the frequency space); let
w G R s.

6.2. DEFINITION. Let ZN be an arbitrary r-fold resonance, where
r Φ 0, and let ν > 0 be arbitrary. We denote by 0{ZN, v) the set:

O(ZN, v) = {w ζ Rs:we can find r linearly independent vectors k{ ζ ΖΝ

such that | {k\ w > |< ν (i = 1, . . ., r)}

which we call a zone of influence of Z^ of width ν or simply a
Z^y-resonance zone. By the multiplicity of O(ZN, v) we mean the
multiplicity r of ZN. For every i> > 0 the zone of multiplicity 0 is the
whole of R s.

We fix TV > 0 and denote by $h the set of all r-fold resonances, and
by &N the set of all resonances:

SN= ύ 8Sr.

Let iV and vx, . . . , vs be arbitrary positive numbers. Let Or denote the
union of all r-fold resonance zones of width vr\

(6.1) Or= U

We consider the mapping from &N into a subset of Rs that associates
with each resonance ZN Ε ftN the subset В = B(ZN):

Vr)

Vr)\O

if

if

r+l

J

r =
if

' = 0,

(6.2) < B = O(ZN, vT)\Or+i if r = l , 2, . . . , * - ! ,

where r is the multiplicity of ZN.
6.3. DEFINITION. We call this mapping a partition of R s mio blocks

with the parameters N, vlf . . . , ^ s. T h e set B(ZN) is called t h e block of
this partition corresponding to ZN.

(Roughly speaking, a block B(ZN) is the difference of the zone of
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influence of ZN and the union of the zones of influence of resonances not
contained in ZN.)

6.4. PROPOSITION. For any positive N, v±, . . . , vs, the union of all
blocks of multiplicity less than r in the partition with the parameters

r

N, vx, . . . , vs is Rs\ Π Ot. The union of blocks of all multiplicities is R s .

PROOF. It follows from (6.2) and (6.1) that the set
U Β (ΖΝ)

coincides with Or for r = s, and with Or\ Or+1 for r = 1, . . . , s - 1.
Therefore,

ι ' U В (ZN) = ГО* (^\O i + 1)I U (Rs \ Ox) = Rs \ Л Ot.i 0 & i 1 i 1

This proves Proposition 6.4.
6.5. Zones of influence, and the partitioning into blocks on an arbitrary set.

Let ω: G -* Rs be a mapping of an arbitrary set G into the frequency space
Rs. We fix G and ω.

Let ZN be an arbitrary resonance, and let Ν, ν, and v^, . . . , vs be
arbitrary positive numbers. Suppose that B(ZN) is a block of the partition
of Rs with the parameters N, pi} . . . , vs.

6.5.A. DEFINITION. We call the inverse image ω'1(Ο(ΖΝ, ν)) of
O(ZN, v) a zone of influence of width ν of ZN on the set G (relative to
ω). The mapping that associates with ZN G Bwthe subset ω'1 (B(ZN)) of
G is called a partition of G (relative to ω) into blocks with the parameters
N, Vi, . . . , vs, and ω~1(Β(ΖΝ)) is called the block in G corresponding to
ZN. By the multiplicity of this block we mean that of ZN.

In what follows, for brevity we denote the sets ω~1(Ο(ΖΝ, ν)) and
ω~1(Β(ΖΝ) by O(ZN, v) and B(ZN), respectively; this should not cause
confusion since we shall not use the corresponding sets in the frequency
space any more.

The next assertion follows from Proposition 6.4.
6.5.B. COROLLARY. We consider a partition of a set G into blocks,

with arbitrary positive parameters N, v^, . . . , vs. Then the union of all
r

blocks of multiplicity less than r is G\ Π Oit where Ot is the union of all
i = l

i-fold resonance zones on G of width vt. The union of all blocks coincides
with G.
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§7. Dependence of the diameters of discs of fast drift on the
steepness of the unperturbed Hamiltonian

Let ZN be an arbitrary resonance, and let / be a point in E s. We denote
by λ(ΖΝ, Γ) the affine subspace of Es that is obtained by a translation from
the linear hull of the vectors kl G ZN, and contains /.

7.1. DEFINITION. We call \(ZN, I) the plane of fast drift for ZN that
passes through /.

Note that dim X(ZN, I) = r(ZN), the multiplicity of ZN.
Let ω: G ->· Rs be a mapping of some domain G С Es into Rs.
Let ZN Φ 0 be an arbitrary resonance, ν and b arbitrary positive numbers,

and / G G. We consider the intersection O(ZN, ν) Π (λ(ΖΝ, Ι) + b) of the
resonance zone O(ZN, v) on G (relative to ω) defined in §6.5.A, and a
^-neighbourhood of the plane \{ZN, I).

7.2. DEFINITION. We denote by D = D(ZN, v, b, I) the connected
component of this intersection that contains / and call it a disc of fast
drift on G relative to ω, or simply a disc, for the resonance ZN and the
point /. We call ν the width of the resonance of the disc and b the
thickness of the disc.

We call that part of the boundary of the disc contained in the boundary
of O(ZN, v) the lateral surface of the disc, and the part contained in the
boundary of the Ь-neighbourhood of λ(ΖΝ, I) the base of the disc.

Let #o be an arbitrary twice differentiable function defined in some
domain G С E s, and let m > 0 be arbitrary.

7.3. DEFINITION. We say that # 0 is generalized steep in G with
coefficients g, m, Cx, . . . , Cs_x, δι, . . . , 5 S _ 1 , and indices щ, . . . , as__l

if the following two conditions hold:
A. # 0 is steep in G with steepness coefficients g, Q , . . . , C s _ l 5

δι, . . . , δ 5 - 1 , and steepness indices ax, . . . , a ^ j (see Definition 4.1.C).
B. In G

(see (4.2)).
7.4. PROPOSITION. Let HQ be generalized steep in some domain

G С E s with coefficients g, m, C t , . . . , Cs_l> 6 l s . . . , 6 S - 1 and indices
«!, . . . , a s _ 1 . Let ω: G -> Rs be /7ze mapping defined by ω(/) = grad# 0 | 7 .

Lei Ẑ y be аи arbitrary r-fold resonance, where r - 1, . . . , s - 1. Z,e?
D be a disc on G of thickness b and resonance width ν {relative to ω) for
ZN and any I G G — 2d, where N, b, v, and d satisfy the conditions

(7.1) d^.min[gl?>m, δΓ],

(7.2) e<g/4,

(7.3) b<min[d/4,

(7.4) rN



An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems Ъ1

where ε is the quantity

(7.5) ε = 4'

Then the diameter of D is not greater than d.
The proof relies on the technical Lemmas 10.6 and 10.5; it is by

contradiction.
Suppose that the diameter of D is greater than d. Since D is an open

linearly connected set, there is a curve у lying in D and having the
properties 10.6.A-10.6.C of Lemma 10.6 with λ = \(ZN, I). The validity
of 10.6.D in Lemma 10.6 follows from (7.1)—(7.3). From this lemma we
obtain that there is a point / G γ such that

(7-6) | g r a d ( # 0 | r ) | r > e ,

where λ = λ(Ζγ, /) is the plane of fast drift for ZN through /.
On the other hand, it follows from the definition of O(ZN, u) that for

any / G O(ZN, v) we can find r linearly independent vectors kl G ZN

(/= 1, ...,/•) such that | (k*, ω(/)>1 < ν. By Lemma 10.5,
I pr^ ω(/)| < rNr~1p for all / G O(ZN, v), where λ0 is the linear hull of
the kl (i = 1, . . . , r), and prx ω(Ι) is the orthogonal projection of ω(Ι)

0

on λ0. By taking into account (7.4) and the fact that у С D С O(ZN, ν),
we obtain

(7.7) |pr,0 ω(/)| < ε

for all I G у. But grad ( # 0 | \ ) | f = ΡΓλ0

 ω ( ^ ) ' n e n c e ( 7 · 6 ) a n d ( 7 · 7 )
contradict one another. This proves Proposition 7.4.

§8. Condition for the non-overlapping of resonances

Let / be an arbitrary point of some domain G and b a positive number.
8.1. DEFINITION. The intersection of G with the ball of radius b and

centre at / is called the disc on G for the 0-fold resonance ZN = {θ) and
/; b is called the thickness of the disc. By the base of this disc we mean
the whole of its boundary, and we regard the lateral surface as being the
empty set (see Definition 7.2).

8.2. The rigging of blocks by discs of fast drift. Let ω: G -> Rs be a
fixed mapping. We consider a partition of G (relative to со) into blocks
with fixed parameters N, vx, . . . , vs (see Definition 6.5.A). As in §6,
B(ZN) denotes the block of this partition that corresponds to the resonance
ZN.

Let ZN be arbitrary, / any point of B(ZN), and b a positive number. We
denote by r the multiplicity of ZN, and by D = D(ZN, I, b) the disc for
ZN and / of thickness b and (for r φ 0) resonance width vr (see Definitions
7.2 and 8.1).
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DEFINITION. We call D = D(ZN, I, b) a disc of thickness b of the
rigging of the block B(ZN) at I.

We consider the partition of G relative to ω with the parameters
N, Vi, . . . , vs such that vs_ x = vs. Let b > 0 and v0 > 0 be arbitrary
numbers.

8.3. DEFINITION. We say that ω satisfies the condition for the non-
overlapping of resonances with parameters N, v0, p l } . . . , vs_x, b i f t h e
following conditions hold:

A. The 5-fold block is empty.
B. Let ZN be an arbitrary resonance of multiplicity r (r = 0, 1,. . . , s - 1).

Let D be any disc of thickness b of the rigging of B(ZN) such that D is
contained in G. Then D does not intersect O(Z'N, vr) for any Z'N <£ ZN:

D[\O(Z'N, vr) = 0 for all Z'N£ZN.

8.4. PROPOSITION. Suppose that a continuous mapping ω satisfies the
condition for the non-overlapping of resonances with parameters
N, vQ, VX, . . . , vs_x, b. We consider a partition of G relative to ω with
the parameters N, vly . . . , ^ _ 1 5 vs = vs_x. Then the following assertions
hold.

A. Blocks of the same multiplicity in this partition are disjoint.
B. Let D be an arbitrary disc of thickness b of the rigging of an_

arbitrary block B{ZN) of multiplicity r = 1, . . . , s - 1 such that D С G.
Then the lateral surface of D is contained in the union of blocks of
multiplicity less than r.

С Let D be an arbitrary disc of thickness b of the rigging of an arbitrary
block B(ZN), and let D С G. Then the set of all vr-resonance vectors
к G Zs for D whose order is not greater than N (see Definitions 5.1.В and
5.1.A) is contained in ZN, where r is the multiplicity of
ZN(r = 0,\,...,s- 1).

A follows from condition 8.3.В and Definitions 6.5.A and 6.1.
Let us prove B. Since a resonance zone is an open set, the boundary

dO(ZN, vr) of the zone O(ZN, vr) does not intersect it. Hence and from
condition 8.3.B, the lateral surface of D can only intersect O(Z'N, vr)
when Z'N С ZN. Consequently, this surface is contained in G \ Or, where Or

is defined in Corollary 6.5.B. By this corollary, the union of blocks of
multiplicity less than r contains G\Or, and this proves B.

Proof of С Suppose that we can find an / G D such that
I U, ω(/)> I < vr for some к G Zs, | к \ < N. If к = 0, then к G ZN always.
Suppose that к Φ 0. Then / G O(Z'N, vr), where Z'N is a 1-fold resonance
defined by к (see Definition 6.1). From condition 8.3.В we obtain
Z'N ^ %N- Hence, in this case, к G ZN, as required.

Proposition 8.4 is now completely proved.
8.5. DEFINITION. We say that the mapping ω: G -• Rs satisfies the
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extended condition for the non-overlapping of resonances with the parameters
N, v0, VI, . . . , vs_l, b, d0, di, . . . , ds_x, if the following two conditions
hold.

We denote by G' the interior of the set G~2(d0 + d{ + ... + ds_l)
and by ω' the restriction of ω to G'. Then:

Α. ω' satisfies the condition for the non-overlapping of resonances with
t h e p a r a m e t e r s N, v0, vy, . . . , vs_ly b.

B. We consider a partition of G' into blocks relative to ω' with the
parameters Ν, νγ> . . . , vs_lt vs = vs_l. For any block B(ZN) of this
partition, the diameter of every disc of thickness b of the rigging of B{ZN)
is not greater than dr, where r is the multiplicity of B(ZN)
(r= 0, 1, . . . , i - 1).

8.6. PROPOSITION. Let Ho be generalized steep in G with coefficients
g, m, Cl} . . . , Cs_lt δ ι , . . . , 65_!, and indices alt . . . , a s _ 1 (see
Definition 7.3). We denote by ω: G -*- R s the mapping defined by
ω(7) = grad Ho |7. Then ω satisfies the extended condition for the non-
overlapping of resonances with the parameters N, v0, v1} . . . , vs_l, b,
dQ, dx, . . . , ds_x, provided that for all r = 1, . . . , s - 1,

(8.1) d,<min[

(8-2) εΓ<-§-,

(8.3)

(8.4) b<d0,

(8.5)

(8.6)

(8.7)

(8.8)

where

(8.9)

8.7. PROOF OF PROPOSITION 8.6. To prove this it is sufficient to
show that ω' satisfies conditions 8.5.B, 8.3.A, and 8.3.B. We do this below.

8.7.A. Estimate of diameters of discs. For r - 1, . . . , s — 1, condition
8.5.B follows from Proposition 7.4 and the inequalities (8.1)—(8.3) and
(8.6). For r = 0, this condition follows from (8.4) and Definition 8.1.

In the following lemma and its two corollaries, zones and blocks refer
to the whole set G.

8.7.B. LEMMA. Under the conditions of Proposition 8.6, the s-fold zone
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0{ΖΝ, 2vs_l) of resonance width 2vs_l is empty.
This lemma follows from the technical Lemma 10.5 and (8.5). We prove

Lemma 8.7.В by contradiction. Suppose that the zone in question is not
empty; then we can find an / £ G and s linearly independent vectors
kl eZ5

i\ki\<Ni such that \(k\ ω(/)> I < 2vs_1(i = 1, . . . , s). It follows
from Lemma 10.5 that | ω(Ι)\< 2sNs~1vs_i. From (8.5) we obtain
| co(/) | < g. But this contradicts the condition in Proposition 8.6 that
| ω(Γ) | > g in G (see Definition 7.3), and so the lemma is proved.

8.7.C. COROLLARY. Under the same conditions, an s-fold block is
empty.

For it follows from Definition 6.5.A, firstly, that O(ZN, v) С O(ZN, v')
for every ZN and 0 < Ρ < ν', and, secondly, that B(ZN) С O(ZN, vr), where
Ν, νλ, . . . , vs are the parameters of the partition, and r is the multiplicity
of ZN. Hence, in our case,

В {ZN) <=O(ZN, νβ_0 Ξ Ο (ZN, 2v8.i) = 0 ,

where ZN is an 5-fold resonance.
8.7.D. COROLLARY. Under the same conditions, the mapping ω

satisfies condition 8.3.В when r = s - 1.
PROOF. Let ZN be an (5 — l)-fold resonance, and Z'N a resonance such

that Z'N <£. ZN. Then if follows from Definition 6.5.A that

O(ZN, vs_0 П О (Z'N, vs_t) ΕΞ Ο (Ζ"Ν, 2vs_0,

where Z'^ is an 5-fold resonance. It follows from Lemma 8.7.B that the
intersection on the left-hand side is empty, and from Definition 7.2 that
D С O(ZN, v^i), where D is the closure of the disc of the rigging of the
block B(ZN). Hence, D Π Ο(Ζ'Ν , vs_1)= 0 , as required.

It follows from Corollary 8.7.C that ω ' satisfies condition 8.3.A, and
from Corollary 8.7.D that it satisfies condition 8.3.В when r = s - 1.

8.7.E. PROOF THAT CONDITION 8.3.В HOLDS FOR r = 0, 1, . . . , 5 - 2.
Let ZN be an arbitrary resonance of multiplicity r, and D a disc of thick-
ness b of the rigging of the block B{ZN) of the partition of G'. Let / be
any point of D, and к any vector from Zs such that | к \ < N and
к φΖΝ. By §8.7.A, we can find an / 0 G B(ZN) such that | / - / 0 | < dr,
where r is the multiplicity of B(ZN). It follows from Definitions 6.5.A
and 6.3 that \(k, ω(/ 0 )> | > vr+l.

The segment joining / and / 0 in G' is contained in G. By using
condition 7.3.В and (8.7) we obtain \(k, ω(/)>1 > \<k, ω(Ι0))\-ηι | f c | | / 0 - / |
>vr+i -mNdr > vr+j2.

By (8.8), I <k, ω(/)> I > vr for every I_G D and к φ ΖΝ, \k\< N. Hence

and from Definitions 6.5.A and 6.2, if D Π O(Z'N, vr) Φ φ, then we can

finii a system of vectors defining Z'N (see Definition 6.1) each of which

belongs to ZN. Hence Z'N С ZN, as required.
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Proposition 8.6. is now completely proved.

§9. Traps in frequency systems. Completion of the proof of
the main theorem

We consider an arbitrary frequency system (X, J , ω) (see Definition
5.1.C). Let d and Τ be positive numbers.

9.1. DEFINITION. We say that (X, J , ω)is d-stable during time Τ if
the following condition holds:

For every solution v(t) of the system such that

J (v(0)) £ G — d and v(t) £ V — d/2 for all t 6 [0, C],

where С > 0 is any number, we have

№(*)) - № ( 0 ) ) l < 4 for all t e [0, min [С, П ] .

Here F is the phase space of the system, and G is the domain of the
mapping ω: G -*• R s.

9.2. PROPOSITION. Suppose that the system {X, J, ω) ta f/ze follow-
ing properties:

A. /i satisfies the condition for forbidden motions with the parameters
N, v, b, and Τ {see Definition 5.1.D).

B. G is an open set, and ω: G -> Rs is continuous and satisfies the
extended condition for the non-overlapping of resonances with the
parameters N, v0> vx, . . . , vs_x, b, d0, . . . , ds_l.

C. These parameters satisfy the inequalities

(9.1)

(9.2)

(9.3)

Then (X, J, ω) is d-stable during the time T, where d is any number
satisfying the inequalities

(9.4) d > 4 6 ,

(9.5) · d > A(d0 + dx H- . . . + <*.-!>.

Everywhere in the proof of Proposition 9.2, by blocks and discs we mean
blocks of a partition of G and discs on G.

For the proof of Proposition 9.2 we need the concept of a trap for the
point /; this is a special form of a neighbourhood of /.

9.3. Traps. We fix a mapping ω and consider a partition of G (relative
to ω) into blocks, with parameters N, v±, . . . , vs.

Let / be any point of G, and Bx any of the blocks containing / whose
multiplicity is the lowest of those of the blocks containing / (in general,
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there can be several such blocks). Let b > 0 be any fixed number.
9.3.A. DEFINITION. A disc Dx of thickness b of the rigging of a block

Β ι at / is called a disc of the first rank for /. A disc D2 of the same
thickness that is a disc of the first rank for some point of the lateral surface
of Di is called a disc of the second rank for /. Similarly, a disc of thickness
b of the first rank that lies on the lateral surface of a disc of the (/ - l)th
rank for / is called a disc of the jth rank for /.

9.3.B. DEFINITION. We call the union of all discs of all ranks for
/ G G a trap in G for I with the parameters N, vx, . . . , vs, b, and denote
it by %{I).

9.3.C. LEMMA. Suppose that a continuous mapping ω: G -+ Rs satisfies
the extended condition for the non-overlapping of resonances with the
parameters N, v0, vx, . . . , vs_x, b, d0, . . . , ds_x. We denote
d0 + dx + . . . + <*,_! by d'. Then, for every I G G - Ad', the diameter
of the trap X(I) in G with the parameters N, v1,. . . , PS_1 , vs = vs_x, b is
not greater than 2d' - d0.

PROOF. By 8.5.A and 8.4.A, the number of discs of the first rank for
any point in the interior of G - 2c/' is 1. Let Dx be a disc of the first rank
for / G G ~ 4d'. Then there are two possibilities: r = 0 and r = 1, where
r is the multiplicity of Dx. In the first case X{I) = Όλ since, by definition,
the disc of zero multiplicity does not have a lateral surface. Hence and from
8.5.B,

diam X(I) = diam Ог < d0 < Ы' — d0.

Let r > 0. It follows from 8.5.A and 8.4.B that the multiplicity of every
disc of the second rank for / is less than r. We prove the following assertion
by induction on / = 1, 2, . . . , r + 1, using the same condition and
proposition, and the fact that an 0-fold disc does not have a lateral surface.
The multiplicity of every disc of rank / for / is not greater than
r - j + 1, and there are no discs of rank greater than r + 1. By using
condition 8.5.B, we obtain

diam X{I) < dr + 2dr.x + 2dT.z + . . . + 2d0 = 2d' — dQ.

This proves Lemma 9.3.C.
9.4. PROOF OF PROPOSITION 9.2. Let #(/)be a trap for / G G - d

with the parameters iVj, ply . . . , vs_^, vs = vs_l, bx. Then, by Lemma
9.3.C and (9.5),

(9.6) diam#(/)<4-*do·

Hence, to prove Proposition 9.2 it is sufficient to establish the following
result.

9.4.A. ASSERTION. For every I G G - d, and for every solution v(t)
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such that J(v(O)) = I and v(t) G V - d/2 for all t G [О, С], where
С > 0, we have

J(v(t)) 6 X(I) for all t e [0, min [С, Т]).

It follows from (9.6) that X(I) cz G — 4 — d0-, therefore, all the discs

forming the trap X(I) also lie in G — -x — d0. From the definition of a

trap we see that to prove 9.4.A it is sufficient to establish the following
result.

9.4.B. ASSERTION. Let D be an arbitrary disc of the rigging of some
block В at some point Io. Suppose that D is contained in the interior of
the set G — d/2. We consider any solution v(t) such that

J(v(0)) = I0 and J(v(t)) e D, v(t) e V - j for all t£ [0, CJ,

where C\ > 0. Then either

J(v(t)) 6 D for all t 6 [0, min [Clt Л1,

that is, for these t the trajectory J{v(t)) is contained in the interior of D
and does not touch its boundary, or we can find a t G (0, min [ С ь Т])
such that J(v{t)) belongs to the lateral surface of D.

Let us prove 9.4.B. Let ZN be a resonance corresponding to B. It
follows from condition 8.5.A, Proposition 8.4.C, and (9.5) that all the
Pr-resonance vectors к, \ к \ < Nl, for D belong to ZN , where r is the
multiplicity of ΖΝχ. It follows from (9.1) and (9.2) that all the
i>-resonance vectors к, \ к \ < N, for D belong to ZN .

Now we use the fact that our system satisfies the condition for forbidden
motions with the parameters N, v, b and Τ (see Definition 5.1.D). For U
we take D. Then it follows from this definition and from (9.3) and (9.4)
that J(v(t)) during the time min [Clt T] cannot leave D across its base
(see Definitions 7.2 and 8.1). Hence, it can only leave across the lateral
surface, as required. This proves Proposition 9.2.

9.5. Proof of the main theorem (Theorem 4.4). We consider the frequency
system (X, J , ω) obtained from a system with the Hamiltonian Η (see
Definition 5.2.A). By Propositions 9.2, 5.2.B, and 8.6, this system is
d-stable during the time T, provided that d and Τ satisfy the following
condition:

9.5.A. CONDITION. We can find positive numbers

(9.7) κ, TV, v, 6, JVi, v0, . . ., v s_ l5 blt du, . . ., d8.x, e1? . . ., ε8^,

where

(9.8) χ < 1,
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which, together with d and T, satisfy (9.1)—(9.5), (10.1)—(10.4), (5.2)-(5.4),
and (8.1)—(8.9), where N and b in (8.1)—(8.9) are replaced by Nl and blt

respectively.
The technical Lemma 10.7 asserts that there is a constant Mo > 0 such

that for any positive Μ < Mo the system 9.5.A of equalities and inequalities
in the variables (9.7) has a solution such that d(M) and T(M) are given by
(4.4) and (4.5), respectively. We take Mo in Theorem 4.4 to be the constant
whose existence is asserted by Lemma 10.7. Then we find that the frequency
system in question is d-stable during the time T, where d and Τ are given
by (4.4) and (4.5).

Now we assume that the assertion of Theorem 4.4 is not true. Then we
can find a solution v(t) = I(t), p{t), φ(ί), q(t) of the system such that

/(0) = J (v(0)) eG-d, p(t), q(t) £D -d for all ί 6 [0, С],

where С > 0 is an arbitrary number and | / (^)—7(0) | = d/2 for some
tx G [0, min [C, T] ]. Hence, we can find a t2 Ξ [0, tx ] such that

\I(t2) - /(0)| = d/2 and | I (t) — /(0) | < d/2 for all t 6 [0, tt].

Consequently, v(t) G V - d/2 for t G [0, tx ] = [0, min [tlt T]], where
V is given by (5.1). But the existence of such a solution contradicts the
G?-stability of the system during the time T. This proves Theorem 4.4.

§10. Statement of the lemma on the elimination of non-resonance
harmonics, and of the technical lemmas used

in the proof of the main theorem

As above, let Z s be the lattice of s-dimensional vectors к with integer
components.

10.1.A. DEFINITION. By the order of a vector к = kx, . . . , ks G Zs

s
we mean \k \ — Σ | kt\.

i=l

Let U be an arbitrary subset of either the complex space C s or the
real space R s. Let Ho be a fixed function that is differentiable on U
(that is, in some neighbourhood of U).

10.1.B. DEFINITION. A vector к Ε Zs is called a v-resonance vector
for U if for at least one point / G ί/

| (fc, ω(Ι) > | < ν,

where <,) is the scalar product and ω(Ι) = grad # 0 | / .
10.2. Description of H. In Lemma 10.3 below, Я is a function of the

form
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Η = #o(/) + #ι(/, ρ, φ, 9)

that is 27r-periodic in φ1, . . . , φ5 = φ, where / is an s-dimensional, and ρ
and q are (n — sO-dimensional vectors, η ~> s > 1. We also assume that the
following conditions hold (which differ slightly from those in §4.3).

10.2.A. Η is analytic on the complex set ·

AF: I, p, q£A, | Im φ | . < ρ ,

where A is a closed set and ρ > 0.
10.2.B. If we put Aj = {I |3 ρ and q such that I, p, q 6 A], then

for some m < °° (see (4.2)).
10.3. LEMMA (ON THE ELIMINATION OF NON-RESONANCE HAR-

MONICS). Let Η be defined on AF, where Η and AF are described above.
Let M, N, and ν be positive numbers with the following three properties:

A. sup | grad Ht \ < M.

AF

B. Let λ denote the linear hull of all the —resonance vectors к of

order at most N, \k\ < N, for AI. Then dim λ < s.

C. There is α κ Ε (0, 1) such that for M, N, and ν

(10.1) N>N0,

where

•N0 = N0{s, κ) =

_ f 27 (1-х) (s + l) 1 nJ~ 3(l-x)(a + l) / 9 \ l " > t

f 1 f i r ν <1-*><«H-D ]\ *
-\ ^лщг l o gL ъ. \Ί£Γ) (lbLi> J/

(10.2)

and

(10.4)
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where

(·+2)/2

Then there is an analytic canonical diffeomorphism B: J, Ρ, φ, Q*+I, ρ, φ, q
with the following properties:

D. В maps a set contained in AF onto the set AFj:

AFX = {/, p, q 6 A — b, | Im φ | < p j ,

where
9 >Pi >0.

E. The following estimate of the difference of В and the identity
mapping % in the metric of С holds'.

\\в-п\\<-~,
where

|| В - % || = sup \B (/, Λ ψ, (?) - /, Ρ, φ, <? |.
£l(AF)

terms of J, Ρ, ψ, Q, the Hamiltonian Η has the form

H' = Я(/, Ρ, ψ, (?)

where Η and R have the following properties:
F. The Fourier series of Η contains only those harmonics whose number

к belongs to X О Zs, that is, Η has the form

H= Σ hk{J, P, Q)eik* .
k<=\n Zs

G. For real ψ, that is, at all points J, Ρ, ψ, QEB'^AFi) Π {Im ψ = 0},
we have the following estimate for the derivatives R^. of R with respect
to ψ,: 7

8π s l / 2 Μ exp (—ptf1"*) (/ = ! . . . . . s).1 Щ. I <

10.4. REMARK. In fact, it follows from the proof of Lemma 10.3 that
Η has the form

Η = H0(J) + Я х (/, Ρ, Ο) + 3β (/, Ρ, ψ, <?),

where Ηχ = & Ηχ (J, Ρ, ψ, Q), and \SS[ and | grad SB\ are of order
(2π)5 «J

Λί, more precisely, Ic^l < A-nM^Js and |grad <^| < SjrMy/s. This refinement
ρ

is not used in the proof of Theorem 4.4.
We turn to the technical lemmas.
10.5. LEMMA (ON A PROPERTY OF THE INTEGER LATTICE).

Suppose that for some vector χ = χ ι, . . . , xs from Es, for a v > 0, and
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for r linearly independent vectors k} from Zs with \ k}\<:N(j = \, . . . ,r)
we have

| (k\ x)\<v (/ = 1, · · . , r),

where (, > is the scalar product. We denote by λ the r-dimensional linear
subspace of Es spanned by the kl. Then the length of the orthogonal
projection of χ on λ is less than rW'^v, that is,

I ргя x | < гЛГ-Ч.

10.6. Steep functions and almost plane curves. LEMMA. Let Ho be
generalized steep in some domain G С E s with coefficients
g, m, Ci, .. . , Cs_l, 8i, . . . , 5 s_j, and indices α^ , . . . , ois_1 (see
Definition 7.3). Let λ be an arbitrary affine subspace of Es, dim λ = r,
where r = 1, . . . , s - 1. Let у be a continuous curve with the following
properties:

A. 7 lies in a b-neighbourhood of the plane λ in Es: у С λ + b, where
b > 0.

Β. γ joins two points Io and lx and is contained in the closed ball

U(I0, d) of radius d and with centre at Io, and I1 belongs to the boundary

of this ball.

C. U(I0, d) is contained in G.
D. d and b satisfy the inequalities:

(Ю-5) d < min[g/3m, 6 r],

(Ю.6) ε < g/4,

(Ю.7) 6<min[d/4, ε/4/τι],

where

5 \ 2

Then we can find a point I on у such that

where λ /5 the affine subspace of Es that is obtained by a translation from
λ and passes through I.

10.7. LEMMA. Let s > 2 be any integer. Let
g, m, Cj, . . . , Cg_lt δ ΐ 5 . . . , 8s_lr and ρ be arbitrary positive numbers,
let OLX, . . . , as_ j be greater than or equal to 1, and η > s. We call all
these numbers and also functions of them, constants.

We use the single word "relations" for equalities·and inequalities. We
consider relations involving the constants, a number Μ > 0, and the positive
numbers
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(10.8) κ, iV, Νχ, ν, ν 0 , v l t . . ., ν ^ , b, 6 l f d0, . . ., de_ l f ε1 ? . . .

Ρ d Τ

in which r - 1, . . . , s — 1:

(9.8) κ < 1 ,

(9.1)

(8.5)

(8.6)

(8.9)

(8.7)

(9.3)

(5.2)

(10.4)

where the constant Alr and the constants A2 and A3 occurring below, are
given by (10.9);

(10.1) No < N,

where
κ

_- Г 2 7 ( 1 х ) ( « + 1 ) 1 о с Г З ( 1 х ) ( « + 1 ) / 9 \ l / ( l H ) , ( ) ( + ) \
0 Ι κ log 2 1 U e L 2κ ll^IJ # i 1 « J/

(10.2) Λ

(5.3)

(9-5) 4

(8.1) <2r<minte/3m, 6r],

(8.8) v ^ < V 2 ,

(9·2) v<min[v0, vlf . . .

(8.2) er<g/2,

(8.4) 6 l < d 0 l

(8.3)

(9.4)
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(10.9) A ^
log 2

2 7 ) m.og2

Then there is a constant Mo > 0 (the value of Mo will be given in the
proof of the lemma) with the following property: For every Μ G (0, Mo)
we can find values of the quantities (10.8) such that, together with M, they
satisfy the above relations. Here,

where the constant ξ is given by (4.1).

§11. Remarks on the proof of the main theorem

In this section, as in §3, we discuss systems with a Hamiltonian of the
form

(H.l) Η = #o(/) + гНг{1, φ).

11.1. The power of a harmonic, and the dependence on the order of
its number. Let Σ zhh(I)eik4> be the Fourier series of the perturbation гНг,
and let I(t), φ(ί) be an arbitrary solution of the system (11.1). By the
power of the harmonic ehh(I)e lh9 we mean the speed of the displacement
of lit) stipulated by the influence of this harmonic. It follows from
Hamilton's equations that this influence is proportional to the amplitude
euft(/)rand is roughly ε \к \hk(I). The amplitude of a harmonic decreases
rapidly as the order | к | of its number increases; for example, if Hx is
analytic, then we assume henceforth that the rate of decrease is exponential:
I hk\ < Me~lk{p, where Μ > 0 and ρ > 0 do not depend on k. Thus, the
power of a harmonic, decreases exponentially as | к | increases linearly.

11.2. Dependence of the width of a resonance zone on the order of the
number of a harmonic. The A:th harmonic induces only small oscillations
of I(t) almost everywhere. This harmonic significantly affects the displace-
ment of /(0 only in a narrow resonance zone, a small neighbourhood of
the surface < k, ω(Ι)) = 0.

As a rule, the thickness of this zone is also bounded by a quantity that
decreases exponentially as the order | к | of the number of the harmonic
increases linearly. To all appearances, this estimate holds for systems with
any unperturbed Hamiltonian Ho, apart from those infinitely degenerate in
the sense of §1.13.A. If Ho is quasiconvex, then the thickness of the zone
is close to the square root of the amplitude of the harmonic.

We note that this dependence of the thickness of a zone on the order
I k | of a zone was not taken into account in proving the main theorem.
(The thickness of a zone is connected with its resonance width v, and ν
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was chosen to be independent of | к |.) A calculation of this dependence
would possibly allow us to improve the value of the constant a, which
determines the estimate of the time of stability obtained in this theorem
(see (4.5) or (1.5)).

11.3. Dependence of the diameter of a trap on the multiplicity of a
resonance and on minimal order | к | of the vectors forming the resonance.
In the proof of the main theorem, the diameters of the traps for the
solutions with initial conditions /(0), φ(0) such that 7(0) belongs to an
/--fold block are bounded by the quantities dr, for which dr+1 > dr for
ε <ζ 1. This reflects the increase in the diameters of traps as the
multiplicity of the resonance corresponding to this block increases.

The size of a trap depends on the minimal order of the vectors forming
this resonance; the greater the order, the smaller the diameter of a trap,
and moreover, the slower the drift into the trap (see §§11.1 and 11.2).

11.4. Overlapping of resonances. Arnol'd diffusion. One of the important
parameters in the proof of the main theorem is the highest order N of the
resonances in question. By means of the zones corresponding to these
resonances we construct blocks in each of which fast drift can only occur
along the planes λ obtained by a translation from the linear hull of those
resonance vectors for this block whose order is not greater than N. All
resonance vectors for the block that are not parallel to the planes λ are of
order greater than N. The harmonics whose numbers are these vectors
cause a drift across λ into the intersections of the block with the zones
corresponding to these harmonics. When N is large, the speed of this drift
is small, since the amplitudes of the harmonics causing the drift are small;
this speed is estimated by a quantity close to the total power of these
harmonics (~ε exp (—N)).

When N is not too large, the point I(t), which in each block moves
close to the plane λ, is in a trap that is small together with 1/iV. By
increasing TV we obtain a better estimate of the speed of drift across λ,
and this allows us to improve the estimate of the time /(/) spends in the
trap. For this reason we have to take N as large as possible, but the
following situation shows that we cannot increase N unboundedly. As N
increases, the network of resonance zones becomes more dense, and
beginning from some value, the system of isolated traps loses its precise
outline and becomes a more ramified gallery of transitions permeating the
whole of the projection G of the phase space on the space of action
variables. For any two points from G, the projections I(t) of the solutions
of the system, while moving along these transitions, can a priori go from
any arbitrarily small neighbourhood of one point into such a neighbour-
hood of the other. All this points to the possibility of diffusion. It seems
that the rate of diffusion is greatest in the zones of influence of the 1-fold
resonances of small orders (Fig. 4).
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Fig. 4. The solid curves represent the intersections of 1-fold resonance surfaces with
a section of the level surface of Ho = Ho (/,, /2, / 3 ) . The order of the

vector defining the surface 31 is small, and the orders of the "irreducible"
vectors defining the other resonance surfaces intersecting the section,

are large. The segments of parallel lines are the intersections with the resonance zone
corresponding to M, of the straight lines λ of fast drift. (This zone is outlined by

a dotted line.) Every such segment intersects at least one resonance surface other than M.
Outside very narrow zones lying close to surfaces other than M, the point /(f) drifts

only along the straight lines λ, and inside these zones it can also drift across these lines.
Hence, it is possible, a priori, that if I(t) receives a "lateral impulse" when it passes a

resonance surface other than £ft, then it jumps from one line λ to another. When I(i) moves
in this way close to M, then it leaves its initial position.

The mechanism of diffusion has not yet been completely explained, and
a strict proof of the existence of unstable solutions for a system of
"general position" (see §2.1.A) is very difficult. For details of the
mechanism of diffusion, see [11], [14], and [29].

11.5. Factors restricting the movement of I{t). In proving the main
theorem we only took into account one factor, the existence of almost
integrals. In other words, we only considered the existence of those planes
λ across which the speed of average motion J(t) of the points /(0 is
very small; here I(t), φ{ί) is a solution of (11.1), and /, ψ are the variables
constructed in Lemma 10.3 (see §3.2.C). But there is another obvious
restriction. By Remark 10.4, J(t), \p(t) is a solution of a system with a
Hamiltonian of the form H0(J) + zM\ (J, Ψ), which differs only slightly
from H0(J); here а)£л is a certain function. Hence, while I{t) is in the
block in question, J(t) moves close to the level surface of Ho.

By taking account of this restriction on the movement of I{t) we could
possibly improve the value of the constant a, which determines the estimate
(4.5). It is curious that when we take account of this factor, we can
obtain, in the following situation, a significantly better estimate of the time
of stability than in the main theorem. Namely, for the solutions of systems
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with a quasiconvex unperturbed Hamiltonian Ho, with initial conditions /(0)
lying in the resonance zones of maximum multiplicity (that is, s - 1, where
s is the number of frequencies) and of small order. By means of Lemma
10.3 it is easy to obtain for these solutions an estimate of the form (4.5),
in which as s increases a decreases like \/s and not like \/s2, as in the main
theorem. It is unlikely that by using equivalent arguments we could obtain
such a good estimate for all solutions.

This fact is of interest in connection with the stabHity of the resonance
relations that is observed in practice and is produced by non-Hamiltonian
perturbations (see §2.1.D). If in a resonance zone of maximum multiplicity
and small order the diffusion produced only by Hamiltonian perturbations
is slower than in the whole space, then the transition of a real system into
such a zone gives it greater stability with respect to all the action variables.

11.6. Behaviour of solutions in a resonance domain. Suitable coordinates
for investigating resonance solutions. So far we have been interested mainly
in the behaviour of the projections /(/) of the solutions I(t), φ(ί) of the
system (11.1). How do the solutions behave? We assume that Ho is quasi-
convex and consider any r-fold block B, where r = 1, . . . , s — 1. It turns
out that in the domain Β Χ Γ5 of the phase space consisting of points
/, φ such that / G B, the system (11.1) is in a certain sense close to the
system describing the motion of a material point along an r-dimensional
torus in a field of force with potential energy of order ε.

To see this, we construct in В X Ts certain coordinates /, ψ, which may
also be useful for a more detailed investigation of solutions in this domain.
To do this we first transform to the coordinates constructed in Lemma
10.3 (here we denote them by / ' , ψ'). Then we make a linear substitution
of the form J = KJ', ψ = {Κ7)'1 ψ', where AT is a unimodular matrix with
integer elements, and {KT)~l is the inverse of the transpose of К; а
substitution of this form is canonical. Let k', . . . , kr be the vectors
defining B. We choose К so that in the coordinates /, the planes λ of fast
drift (that is, planes obtained by a translation from the linear hull of
k', . . . , kr) are given by Jr+1 = const, . . . , Js = const. This matrix always
exists (see, for example, [28], Ch. 7, §1).

Note that the resonance surface ГЯ corresponding to B, which in the
coordinates / ' has the form

has a simpler form in the coordinates / :

(11.2) M= = 0 , i = l , . . . , r } (see§3.3.D).

We express the Hamiltonian of the system in terms of/', ψ' (see (3.2)),
discard the remainder term R(J', ψ'), and make the change of variables
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/ ' , φ' -* J, ψ. Then we obtain a function Зв independent of
i//r+1, . . . , \ps. It follows from the proof of Lemma 10.3 (see Remark
10.4) that 38 actually has the form

where 38\ is a certain function.
Since Зв does not depend on \pr+ 1} . . . , \jjs, the variables / r + j , . . . , Js

are first integrals of the system with the Hamiltonian 38, which is essentially
a system with r degrees of freedom. (The functions Jr+1, . . . , Js are crucial
for the existence of the almost integrals of the original system (11.1).) Let
λ be an arbitrary plane of fast drift that intersects B, and let
cr+l, . . . , cs be constants such that

λ = {/ I / , = ct (i = r + 1, . . ., s)}.

Let Cj, . . . , cr, cr+ 1, . . . , cs be the coordinates of a point of intersection
of λ and Ή. Then the values of the vector of the variables Jx, . . . , Jr at
the points of intersection of λ and В lie in a neighbourhood of the constant
vector cl, . . . , cr. The diameter of this neighbourhood has the same order
as the thickness of the zone close to °Л that we used to construct the
block B, which is part of it. We assume that this thickness is small together
with ε.

We fix the values of the arguments Jr+ x, . . . , Js of 38 by putting
Ζ,- = ct, and approximate the resulting function in λ Π Β more simply as
follows. It follows from (11.2) that with these values of /,.+ 1 , . . . , Js the
expansion of H0(K~l J) in terms of / t , . . . , Jr at the point cx, . . . , cr,
after neglecting terms of the third and higher orders, has the form

r

a0 + Σ tfiy(/; ~ £,·)(/· — с,), where a0 and ai}· are constants. We approxi-
i,j= ι

mate the perturbation z3B\ by the function

1, . . ., cs, \j3lt . . ., ψΓ),

which we denote by ε£/(ψ ΐ 5 . . . , фг). As a result we find that for fixed
values of Jr+l, . . . , Js, 38 is close to the function

r

(11.3) a0 + 2 a w (/, - c , ) ( / , - Cj) + εί/(ψΐ5 . . ., ψΓ),
i, j = l

where U is 27r-periodic with respect to its arguments. Since Ho is quasi-
convex, the symmetric matrix {αφ formed from the constants яг/·, is of
fixed sign.

The system with the Hamiltonian (11.3) describes the motion of a
material point over an r-dimensional torus with a constant metric, under
a field of force with a potential energy εί/. Here the ψ,- are the coordinates
of a point of the torus, and the Ji - c{ are the components of its
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momentum (i = 1, . . . , r). Zero momentum corresponds to the point in
the space of action variables that lies on the resonance surface %.

§ 12. Application of the main theorem to the many-body problem

12.1. A planetary system. We consider a system of s + 1 points
attracted to one another by Newton's law. We assume that the mass of
one of them (the sun) is much greater than the mass of any of the
others (the planets). We say that this system is perturbed relative to the
following system: the planets are attracted towards a fixed centre by
Newton's law, and there are no mutual interactions. The motion of the
planets in the unperturbed system is the limit of their motions in the
perturbed one, as their masses tend to zero. Note that the motion of the
planets in the unperturbed system does not depend on their masses.

We assume that the masses of the sun and of the centre of attraction
are each 1, and that the ratios of the masses т{ of the planets are fixed,
that is, rrii = μχ{ (i = 1, . . ., s), where the κέ > 0 are constants and μ
is a small parameter.

The unperturbed system has been thoroughly studied, since it is integrable
by quadrature. We assume that the energy of any planet is insufficient for
it to go to infinity, and that the moment of momentum of every planet
relative to the centre of attraction is non-zero. Then each planet moves in
a closed elliptic orbit with one focus at the centre of attraction. The
important parameters of these solutions are the lengths at of the semi-major
axes of the orbits and their eccentricities et (i = 1, . . . , s), and the angles
bi}- (/, / = 1, . . . , s) between the planes of the orbits.

Points in the phase space of the unperturbed system are characterized by
the positions and speeds of the planets relative to the centre of attraction,
and for the perturbed system, by the positions and speeds of the planets
relative to the centre of mass of all the bodies in the system. This allows
us in an obvious way to identify the configuration and phase spaces of
both systems; in particular, we assume that the centre of attraction in the
unperturbed system is the same point as the centre of mass in the
perturbed one; we denote it by O.

Let Ve be the domain in phase space that corresponds to the elliptic
orbits of all the planets in the unperturbed system. We regard au et, and
b.. as functions on Ve; they are first integrals of the unperturbed system,
and on solutions of the perturbed system they vary with time. If the
distances between the bodies of the system are not too small, then the
speed of displacement is of order μ. If the distance between at least two
bodies is small, then this speed is large, and tends to infinity as the
distance tends to zero.

Theorem 12.3 below asserts that Ve contains subdomains with the
property that the values of the functions at on every solution with an
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initial condition belonging to any of these subdomains hardly change during
a time interval that is exponentially large in comparison with l/μ. Moreover,
during the whole of this time, collisions or even close approaches of the
bodies of the system are impossible. These subdomains are called domains
of planetary motions, since they correspond to motions similar to those of
the bodies of our solar system. We now define these subdomains.

12.2. Domains of planetary motions. Let Gf be the moment of momentum
vector of the /th planet relative to O, GH the moment of momentum vector

s ι
of the whole unperturbed system relative to O, GH = Σ Gt, and N - — G. It

is not difficult to see that in Ve we have | Gt\ = тд/(я г(1 ~е?)). Hence, the
length of JV in Ve depends only on ait et, by, and xf but not on μ.

Let OL = ( * ! , . . . , as and β = βχ, . . . , β5 be any two vectors, and у а
number. We denote by B(a, β , у) the subset of Ve defined by:

( 1 2 Л ) \\N(v)\>y,

where the i)G F{ are points of phase space. This subset does not depend
on μ. It is invariant for the unperturbed system. It is also clear that the
conditions defining B(OL, β, у) are conditions on ait et, and by.

Let OL and β be arbitrary fixed vectors such that

(12.2) 0 < аг < βχ < α 2 < β2 < . . . < as < ββ.

Let us find the form of B(a, β, у) for various values of 7. It is empty if
7 is sufficiently large. It is not difficult to see that there is a largest value
of 7 for which B{a, /3, 7) is non-empty; we denote it by ym(ot, β). (To the
points of B{OL, β, ym{ot, β)) correspond motions of the planets in circular
orbits of radius ft lying in the same plane.) Another critical value of 7 is
the largest value for which the boundary (in the whole of the phase space)
of Β(α, β, у) contains points corresponding to collisions of the planets,
either with one another or with the centre of attraction O. We denote this
value by 70 (α, β)· Clearly, 0 < 7o(<*, β) < 7m(<*, β)·

12.2.A. DEFINITION. A set B(a, β, у) such that (12.1) holds and
70(α, β) < 7 < ут{а, β) is called a domain of planetary motions.

12.3. THEOREM. Let В be any domain of planetary motions. Then
there are positive constants Clt C2, C3, and μ, depending only on the
constants κ = κ1? . . ., κβ and on В, with the following property.

Let μ be an arbitrary point of (0, μ0). Let v(t) be any solution of the
perturbed system with this value of μ, such that u(0) G B. We put

л л
ι Λ η O\ m -I 1

where
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(12.4) M

Then the bodies in the system cannot collide during the time interval [О, Т]
Moreover, for all t G [0, Τ],

(12.5) | ui(v(t)) -aMO)) | < C#b (i = 1 *), where b = ±a,

\N(v(t)) -N(v(0)) |

that is, the lengths at of the semi-major axes of the orbits and the sum N
of the moments of momentum hardly change.

The rest of §12 is devoted to the proof of Theorem 12.3.
12.4. Poincare variables. In this subsection we prove that in certain

variables, the so-called Poincare variables, the equations of motion are
Hamilton's equations with a Hamiltonian of the same form as in Theorem
4.4.

12.3.A. LEMMA. Every domain of planetary motions is compact.
PROOF. Every domain В of planetary motions is bounded. On the

other hand, В is contained in the interior of Ve,for otherwise the boundary
of В would contain points corresponding to the collision of at least one
of the planets with the centre O. Hence, В is closed not only in Ve (see
(12.1)) but in the whole phase space, which is complete. This proves the
lemma.

In the Euclidean space E3 containing the bodies of the system we
introduce an arbitrary Cartesian coordinate system with origin at O. Let
Xj = xix, xi2, xi3 be the coordinates of the /th planet, and
xo = ·*οι> *02> *оз those of the sun. Then the kinetic energy Τ and
potential energy U of the perturbed system have the form

(i2.6) г=42»«4. u=- Σ
i=0

Since the centre of mass of the system is at 0 and we have taken the mass
m 0 of the sun to be 1,

8 ф 8

(12.7) XQ= — ^rriiXi, xo= — ^nriiXi.
i=l i=l

By using these equations we express the Lagrangian L = Τ — U in terms of
χ, χ = хг, . . . , xs, χ!, . . . , xs. Let Pt - Pn, Рй, Pi3 be the generalized
momenta corresponding to xt = x^, xi2, xi3:

8

(12.8) Pi = —7-

We express the total energy Ε = Τ + U of the system in terms of
Ρ, χ -Pi, . . · , Ps, Xi, . . . , xs, and represent E(P, x) in the form
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(12.9)

Let B' be any domain of planetary motions. By using the definition of
this domain, the fact that B' is compact, and (12.6)—(12.9), it is not
difficult to prove the following lemma.

12.4.B. LEMMA. We can complete the definition of R, where
Λ(μ, χ, χ)= Κμ(Ρ(μ, χ), χ), for such values of μ, χ, and χ that it is
analytic in the direct product of a neighbourhood of μ = 0 on the complex
line of the parameter μ, with a neighbourhood of B' in the complex space
of χ and x.

Now we define the Poincare variables Y, where Υ = Α, £, ρ, Ι, η, q.
Each of the vectors Λ, £, ρ, Ι, η, and q is s-dimensional, for example,
Λ = Kx, . . . , As. First we define the Poincare variables for the unperturbed
system. For every / = 1, . . . , s, Ah (·,·, pt, /ζ·, fy, qt = Yt are functions
of xt, x\, and xt that are independent of μ and i:

(12.10) Yt = Φ(κ,, Xi, x\).

These functions are described in [9], 140 and 131 (English); we do not
repeat this description, but in what follows refer to it several times.

The Poincare variables for the perturbed system are denoted by Υμ, and
are defined by the following condition: the functions defining the
dependence of these variables on the momenta and coordinates of the
planets for both systems (perturbed and unperturbed) are the same for the
same values of μ. In the unperturbed system the momenta have the form
m ^ · . Hence and from (12.10) we find that the variables

^μ = ^μ ι > · · · ' ^us n a v e t n e

(12.11) Γ μ ί =

The relation (12.8) allows us to express them in terms of χ and x:

s

(12.12) Γ μ ί = Φ ( κ £ , xu Xi + μ Σ Vi) (i = i> · · · , * ) .
3 = 1

Note that when μ = 0, the formulae (12.12) define the Poincare variables
for the unperturbed system (see (12.10)).

Even for μ = 0 the Poincare variables are not defined on the whole of
Ve (the domain in the phase space corresponding to the elliptic orbits of
the planets in the unperturbed system). Below we consider certain subsets
of Ve on which these coordinates are defined.

Let ν be an arbitrary non-zero vector in E 3 , and δ > 0. We denote by
K{v, δ) the subset of the phase space in which to every point there
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correspond those positions and speeds of the planets such that the angle
between the moment of momentum Gt of the zth planet and the vector
v, is not greater than π — δ for all i = 1, . . . , s:

(12.13) K(y, δ) = {ν I Gt(v) Φ 0, Gt(v£\ < π - δ (i = 1, . . ., «)}.

Let ex, e2, and e3 be basis vectors for our Cartesian coordinate system
in E 3 . Let В' be an arbitrary domain of planetary motions. By definition,
В' С Ve. Hence and from the description of the Poincare coordinates (see
[9]) it follows that when μ = 0 these coordinates are defined and analytic
on Β' Π K(e3, δ) for every δ > 0. Moreover, the following lemma holds.

12.4.C. LEMMA. For every δ > 0 there is a neighbourhood Uxx of
Β' Π K(e3, δ) in the complex space of variables x, x, with the following
property: We can find a neighbourhood Uμ of μ ~ 0 on the complex line
of the parameter μ such that the Poincare variables Υ - YXi . . . , Ys as
functions of μ, χ and χ (see (12.12)), are analytic in ϋμ Χ Uxx. In
addition, Υμ(χ, χ) = Υ(μ, χ, χ) are coordinates on Uxx for every μ 6 £/μ.

The proof of the lemma follows from the form of the dependence of the
Poincare variables on μ (see (12.12)) and from the fact that B' C\K(e3, 8)
is compact. The latter is a consequence of the compactness of B' (Lemma

12.4.A), the inequalities min | — Gt\ > 0 (z = 1, . . . , s) for every domain
в' V

of planetary motions, and the form of the sets К (see (12.13)). Here — Gf

is the moment of momentum of the /th planet.
It follows from the description of the Poincare variables that

Λμ/ = Xjy/aj for μ = 0. The next lemma follows from this and Lemma
12.4.C.

12.4.D. LEMMA. For every δ > 0 there are numbers C4 > 0 and
μ1 > 0 such that for all μ G (0,

max |Λ μ ι (ι?) — xt

'ЛЖз, β)

where

Λμ ί(ν) = Λμ,(*(!;), χ (ν)).

By using (12.11) we express Ρ, χ in terms of the Poincare variables

Υ = Υμ. We denote Η = Ημ the function Ημ(Υμ) = 1 Εμ(Ρ(Υμ), χ(Υμ)),

and by ^ t h e function %μ(Υμ) = Κμ(Ρ(Υμ), χ(Υμ)) (see 12.9)). The next
lemma follows from the description of the Poincare variables (see [9]) and
the form (12.9) of the energy function Ε = Εμ(Ρ, χ).

12.4.E. LEMMA. In the domain where the Poincare variables Υ = Υμ

are defined, Η has the form
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Here !%μ(Υ) is 2n-periodic in I = / l s . . . , ls. The equations of motion in
the variables Υ have the form of Hamilton's equations with the
Hamiltonian H(Y).

The last assertion follows from the fact that, although the change of
variables Ρ, χ -> Υμ is not canonical, in the variables Υ = Υμ the 2-form

s.3

dP Д dx = Σ dPtj Д dxi} is
/./= l

s

μ . Σ (dAt Λ dlt + d£i Л di\t + dp, Д dgf).

Lemma 12.4.E shows that Я = #(У) has the same form as in the main
theorem, with Л and / playing the role of the action variables and the
angle.

We put

12.4.F. LEMMA. The functions giving the dependence of the Poincare
variables Υ on μ, χ, and χ do not depend on the choice of the coordinate
system in E3 with origin O. For any fixed B' and b, the form of
Β' Π K(e3, δ) in the coordinates χ, χ is also independent of the choice of
this system. Moreover, Ho and M^ do not depend on this choice.

The first assertion follows from the definition of the Poincare variables
(see [9]) and from (12.12). The second follows from the definitions of
B' and K. The third follows from the first and the fact that the form of
all three terms on the right-hand side of (12.9) is independent of the choice
of the coordinate system in E3 with origin 0.

12.5. An application of the main theorem. In the main theorem the
domain of the Hamiltonian has the form of a certain direct product. Here
we consider subsets of the phase space of a special form; for each of these
we can construct Poincare variables whose range has the form of this direct
product, and whose domain contains this subset. We prove that the
conclusions of the main theorem hold in these subsets.

The next lemma is easily proved by using Definition 12.2.A.
12.5.A. LEMMA. Let В be an arbitrary domain of planetary motions.

Then there is another domain of planetary motions B' whose interior

B' contains В: В' Э B.
L e t a = « j , . . . , <xs b e an s - d i m e n s i o n a l , a n d c ^ O a 3 - d i m e n s i o n a l

vector . Let V d e n o t e t h e set
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(12.14) W(a, ν) = {ν 6 Ve\ at(v) = α, (i = 1, . . ., *),. Ν(ν) = ν}.

Note that if W is contained in some domain of planetary motions, then it
is compact (since this domain is compact (see Lemma 12.4.A)).

By the distance in the phase space we mean that defined by the
Euclidean metric induced by the Euclidean metric in E 3 : the distance
between two points is the square root of the squares of the differences of
the coordinates xt and speeds xt of the planets. By X + δ, where X is a
subset of the phase space, we mean a δ-neighbourhood of X.

Let В and B' be arbitrary domains of planetary motions such that

B' D B.
12.5.B. LEMMA. There are positive constants bx and b2 such that for

every set W С В,

W + bxciB'[\ K(v, δ2),

where ν is the vector such that W = W(OL, V).
The lemma follows from the definitions of a domain of planetary motions

and of the sets W and К (see (12.14)), and from the compactness of
В and B'.

Let W = W(a, v) be an arbitrary set of the form (12.14). We define in
E3 a Cartesian coordinate system with origin О by taking e3 to be the

vector — ν and choosing the other two basis vectors arbitrarily. Just as in
\v\

§12.4 we introduce the Poincare variables corresponding to this system in
E3 and denote them by Υμ^/. Suppose that W is contained in some
domain of planetary motions. It follows from Lemmas 12.4.C, 12.5.B, and
12.5.A that the ΥμΜ/ are defined in some neighbourhood of W for all μ in
some neighbourhood of μ = 0.

The YoW denote the variables ΥμΜ/ for μ = 0. The next lemma follows
from the description of the Poincare variables in [9] (we need to use, in
particular, the relation ΛΟί· = χζ·\/α/ (''• ~ 1» · · . , -s) in §12.4).

12.5.C. LEMMA. Let W be an arbitrary set of the form (12.14),
contained in some domain of planetary motions. Then in the variables
YoW = Λ, ξ, ρ, Ι, η, q, this set has the form

W = {z; | A(v) = const, (ξ, ρ, η, q)(v) 6 Dlvm),

where D^priq is a certain subset in the As-dimensional space of the variables

ξ, Ρ, % Я-
The next lemma allows us to apply the main theorem to a neighbourhood

of W.
12.5.D. LEMMA. Let В be an arbitrary domain of planetary motions.

Then there are positive constants Cit Cs, μ 2 , δ 3 , δ 4 , and ρ such that for
every set W of the form (12.14) contained in В we can find open sets DA
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and D^pnq in the s-dimensional and As-dimensional spaces of variables A
and £, ρ, η, q, respectively, with the following properties:

a) The closure of DA is compact and does not intersect the coordinate
hyperplanes Ai = 0 (i = 1, . . . , s).

b) Let F be a complex set of the same form as in the main theorem:

F = {Y = Λ, ξ, ρ, Ι, η, q I Re Λ 6 DA, Re ξ, ρ, η, q £ Dlpr]q, | Im Υ | < ρ } .

Then #o яяб? 5?μ {defined before Lemmas 12.4.Ε arcd 12.4.F) are analytic
on this set, and

sup supд А 2 Y£F, μ£ (Ο, μ2)

с) For every μ G (Ο, μ 2 ) the set

{ν I A(v) £DA— δ 3, (ξ, ρ, η, q)(v) 6 ^ | Ρ η 9 — δ3},

where Λ, ^ ρ, Ι, η, q = Уц ,̂ contains W + δ 4 . Яеге Ζ>Λ - δ 3 г'5 ^ β set
of points of the s-dimensional Euclidean space of variables
Λ = Al, . . . , Л у that are contained in DA together with their
δ ̂ neighbourhoods. The set D^pr]q _ δ 3 is defined similarly. Q

PROOF. Let B' be a domain of planetary motions such that B' D B.
Let W be an arbitrary set of the form (12.14) such that W С В. It follows
from Lemmas 12.5.В and 12.4.F that there are constants δ 2 > 0 and
δ > 0, depending only on B, such that the δ-neighbourhood of W in the
complex space of variables χ, χ is contained in the neighbourhood of
Β' Π K(e3, δ 2 ) whose existence is proved in Lemma 12.4.С It follows
from Lemmas 12.4.C and 12.4.F that there is a complex neighbourhood
U' of μ = 0 depending on B, such that the Poincare variables Υμ·^ are
defined in a complex δ/2-neighbourhood of W for all μ £ £/μ\ The metrics
in this δ/2-neighbourhood induced by the Euclidean metric in the space of
variables Υ by means of the mapping Y'^,: Υ -> χ, χ, are equivalent for
all μ G ϋμ' and W G B.

It follows from Lemmas 12.5.С and 12.4.F that there are a constant
δ 4 = ЬЛ{В) > 0 and open sets DA and L)^pnq such that for μ = 0 the
set

{v | A(v) 6#л, (ξ, ρ, η, q)(v) eDlpm},

where Λ, £, ρ, Ι, η, q = Υμ^, is contained in W + — and contains W + 2 δ 4 .

Hence assertion c) follows. The second estimate in b) follows from Lemmas
12.4.В and 12.4.F. The first estimate and assertion a) follow from Lemma
12.4.D and the definition of a domain of planetary motions. This proves
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Lemma 12.5.D.
The function Ho = # α ( Λ ) is quasiconvex outside the coordinate hyper-

planes Λζ· = 0 (ζ = 1, . . . , s) (see §1.11 for the definition of a quasiconvex
function). Hence, any compact set lying outside the coordinate hyperplanes
has a neighbourhood in which Ho is steep with every steepness index equal
to 1 (see §1.11). The next lemma follows from this, Lemmas 12.4.E,
12.5.D and 12.4.D, and from Theorem 4.4.

12.5.E. LEMMA. Let В be an arbitrary domain of planetary motions.
Then there are positive constants Cu C2, μ3, and 5 4 with the following
property: Let W be an arbitrary set of the form (12.14) such that W С В;
μ any point of (0, μ 3 ) ; v(t), 0 < t < τ, any solution of the perturbed
system with this value of μ whose trajectory lies entirely in W + δ4;
τ > 0 arbitrary. Then

| aMt)) - β|(ΐ7(0)) | < C > b (i = 1 s)

for all i G [ 0 , min [τ, Τ]], where b and T = T{C, μ) are given by
(12.3), (12.4), and (12.5).

12.6. Stability of the lengths of the semi-major axes, and of the sum of
the moments of momentum of the planets during an exponentially large
interval of time.

12.6.A. LEMMA. Let В be a domain of planetary motions. Then there
are positive constants δ 5 and C3 with the following property: Let μ > 0
be an arbitrary number, let v(t), 0 < t < τ, any solution of the perturbed
system with this value of μ whose trajectory lies entirely in Β + δ 3 ; г > 0
can also take the value oq Tben on this solution the difference between the
sum N of the moments of momentum of the planets at the time t and its
initial value is bounded by a quantity of order μ:

sup lN(v(t)) -N(v(0)) | < C > .
t e to, τ)

PROOF. Let B' be another domain of planetary motions such that
о

B' D B. Since В and B' are compact, we have р{ЪВ\ В) > 0. We take
this distance for δ 5 ; then, by hypothesis, the trajectories of the solutions
v(t) in question lie in B'.

Let G be the moment of momentum vector of the perturbed system
s

relative to O, G = Σ G,·, where G,- for i > 0 is the moment of momentum
/=o

of the /th planet, and Go that of the sun. B' is compact, and so it follows
from (12.7) that we can find a constant C 3 > 0 such that

(12.15) | ( ) | v

We recall that the moment of momentum GH of the unperturbed system
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s

is connected with the Gt and N by GH = μΝ = Σ Gf. From (12.15) we
obtain / = J

max | G-GH\<-^- μ2.

But G is a first integral of the perturbed system. Hence we obtain the
assertion of the lemma.

Let W = W(a, v) be a set of the form (12.14), В a domain of planetary
motions, and O^B the neighbourhood of W given by

(12.16) 0^Β = {ν: \ai(v)-ai\<C&b (i = l, . . . , * ) , | J v » - - v | < i » ,

where b, C2 = C2(B), and C 3 = C3(B) are as in Lemmas 12.5.Ε and
12.6. A.

12.6.B. LEMMA. Let В be a domain of planetary motions. Then for
every δ > 0 we can find a constant μ4 = μ 4 (δ) > 0 such that
°μΐνΒ С W + δ for every μ Ε (0, μ 4 ) and W С В.

12.6.C. PROOF OF THEOREM 12.3. This follows from Lemmas 12.5.E,
12.6.A, and 12.6.B.

Let В be a domain of planetary motions. We take for Clt C2, and C 3

the constant whose existence is proved in Lemmas 12.5.Ε and 12.6.A. We
take μ0

 = m i n [Дз, μ ^ δ ) ] , where δ = \ min [ δ 4 , δ 5 ] ; here
Мз> Μ4(δ)> δ 4 , and δ5 are the quantities whose existence is proved in
Lemmas 12.5.E, 12.6.A, and 12.6.B.

We prove Theorem 12.3 by contradiction. Assume that it is not true.
Then there exists a solution v(t) of the perturbed system with μ equal to
some μ, μ Ε (0, μ 0 ), such that υ(0) Ε Β, and with the following property:
Let W be a set of the form (12.14) such that W = W(a, v), where
a = α(υ(0)) and ν = Ν(υ(0)). Then we can find a r E [0, T] such that
v(t) Ε ΟρύΒ for all t Ε [0, r) and v(t) Ε ЪО^В, where ЪО^в ls *h e

boundary of the set O^B defined by (12.15). But this contradicts Lemmas
12.5.Ε and 12.6.A, and so Theorem 12.3 is proved.
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