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BOUNDARY THEORY OF MARKOV
PROCESSES

(THE DISCRETE CASE)

E.B. Dynkin

The paper contains a detailed account of the theory of Martin boundaries
for Markov processes with a countable number of states and discrete time. The
probabilistic method of Hunt is used as a basis. This method is modified so as
not to go outside the limits of the usual notion of a Markov process. The
generalization of this notion due to Hunt is discussed in the concluding section.
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Introduction

The boundary theory of Markov processes permits the investigation of
the "final" behaviour of the paths of such processes, that is, the
behaviour as the time t tends to infinity (or to the moment of cut-off).
Knowledge of the final behaviour is in its turn a prerequisite for the
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investigation of general boundary conditions (from the probabilistic point

of view this is reduced to the study of possible continuations of the

process after the moment of cut-off). Another important application of

boundary theory is the description of all harmonic and superharmonic

positive (excessive) functions connected with the process. This problem

motivated the creation of the theory of the Martin boundary in 1941 [4].

Martin investigated the set of positive solutions of Laplace' s equation

in an arbitrary domain of euclidean space.

The probability interpretation of Martin' s results was proposed by

Doob [l]: these results are directly related to the Wiener process, but

Doob proved that they can also be extended to discrete Markov chains.

A new approach to the theory of the Martin boundary was proposed by

Hunt fe] . In the Martin-Doob theory first an integral representation of

excessive functions is deduced by probability methods, and then from it a

theorem on the final behaviour of the paths is obtained. Hunt proved a

theorem on the final behaviour directly by means of probability arguments,

and then, applying this theorem to /i-processes, he obtained a simple

derivation of the integral representation of excessive functions.

The reading of Hunt' s important paper is made more difficult because

it is written in terms of a generalization, due to the author, of the idea

of a Markov process (approximate Markov chains).
1
 This may give the

impression that the success of the methods applied depends significantly

on this generalization. Actually this is not so, and in this paper Hunt's

method is modified so that we need not go outside the classes of usual

Markov chains.

Problems of boundary theory admit a natural dual formulation.

Instead of harmonic (excessive) functions we can investigate harmonic

(excessive) measures. In view of the self-adjointness of Laplace's

operator in the case considered by Martin, this dual problem does not

contain in itself anything really new. The situation changes in the general

case, and now, instead of one Martin boundary, two are constructed in

Doob' s theory: the exit boundary and the entrance boundary. The role

played by the exit boundary in the study of the final behaviour of the

paths must now be played by its dual, the entrance boundary, in

investigating the "initial " behaviour. However, to give this latter term

a meaning, we have to widen the usual interpretation of a Markov chain.

One of the possible extensions consists in considering stationary processes

defined for values of the time from - oo to + oo. For such processes the

"initial " behaviour means the behaviour as t •* -oo. Another possibility

is to consider the generalization of Markov processes proposed by Hunt:

Hunt processes begin at a random instant ξ ^ -co, and the "initial "

behaviour for these is the behaviour as t •* ξ . It is not necessary to

construct the dual boundary again, since it can be obtained from the

previously constructed one by inversion of the time in the process.

Chapter 10 of the recent book of Kemeny, Snell and Knapp [3] is written in
these terms. This chapter contains a well-considered and polished account of
Hunt' s paper.
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These questions are dealt with in the concluding sections of this

paper.

Thus, the reader can gain a first acquaintance with the idea of

inversion of time and its application to boundary theory from the simpler

and more usual material of stationary processes. At the same time it must

be emphasized that stationary processes are not exhausted by Hunt' s theory,

since they do not satisfy the Hunt requirement of finiteness of the mean

number of hits on each state. The actual problem remaining is the con-

struction of a theory including both stationary processes and Hunt

processes.

The present paper treats (as also the papers of Doob and Hunt) only

discrete Markov chains. It can serve as an introduction to boundary theory

for general Markov processes, to which the author intends to devote a

subsequent paper.

For an understanding of this paper only a knowledge of elementary

probability and measure theory is needed.

§1. Harmonic and excessive functions and measures

We take as starting point a transition function in a countable space

E. This is a non-negative function p(x, y), (x, y e E), satisfying the

condition

ΣΡ(Χ, V)<1 (x£E). (1)

Let / and μ be any functions on E. We denote by P/ and μΡ functions given

by the formulae
1

(2)

ν) ( £ E )
(

Since the right-hand sides contain infinite series, these formulae do not

have a meaning for all / and μ. However, they have a meaning if / and μ

are non-negative. (By a non-negative function we always mean are with

values in the extended number half-line [θ, + oo].)

The transition function p(x, y) can be interpreted as a matrix of

countable order. Here P/ is the product of this matrix by a countable

vector column /, and μΡ is the product of a vector row by P. Prom another

point of view, the first formula in (2) describes the effect of the kernel

p(x, y) on functions, and the second describes its effect on measures in

E.
2
 The integral of / with respect to the measure μ is denoted by the

scalar product

1
 If the domain of summation is not indicated, this means that it is E.

2
 We have to deal almost exclusively with non-negative / and μ. Note that in the

general case the first formula in (2) has a meaning if / is bounded, and the
second if Υ,| μ(

x
) \ < oo, that is, if the signed measure has bounded variation.
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If (/, μ) < οο, then we say that / is μ-iniegrooZe, and also that μ is f-

/inite.

A non-negative function / is called excessive if P/ < /, * and harmonic

if /(x) < co for all * and ?f = /. Similarly, a measure is called excessive

if μΡ ^ μ, and harmonic if μ(*) < co for all χ and μΡ = μ.

One of the central problems before us is the description of all

harmonic and excessive functions and measures connected with the transition

function p(x, y). It is expedient here to consider only γ-integrable

functions h and Z-finite measures V, where γ and Ζ are, respectively, a

previously selected measure and function on Ε (they are called standard).

On fundamental interest is the case when p(x, y) is transient (see the

definition in §3). In this case we are able to attach to each point y e Ε

a γ-integrable excessive function k
y
 and a Z-finite excessive measure Ky.

By means^ of the kernels k
y
(x) and K

y
(x) we construct two compact if icat ions

E* and Ε of E, such that k
y
(x) is extended for each χ e Ε continuously to

E*. and v.
y
(x) is extended continuously to E. Prom the sets E* \E and

Ε \ Ε we single out Borel sets Β and B, where k
y
 is a harmonic function

and (k
y
, γ) = 1, for y e B, and Y.

y
 is a harmonic measure and (I, K

y
) = 1

for y e B,

It can be proved that every γ-integrable excessive function h is

representable uniquely in the form

and any Z-finite excessive measure ν is expressible uniquely in the form

E\JB

Here μ/, and μ
ν
 are finite measures which are determined uniquely by h and

V, respectively. We call them spectral measures.

The set Β is called a space of exits, and the set Β a space of entries.
The origin of these terms becomes clear in the following section.

§2. Markov processes

Suppose that a particle moves in a space E, going through a sequence of
states a

0
, a

l f
 a

2
, ••· The path aQa^a^ ... may be terminate or may continue

unboundedly. The set of all (terminating or non-terminating) paths is
denoted by Ω. The set of all non-terminating paths is denoted by Q» ·

By / « g we mean that /(*) < g(x) for all χ e E.
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Among the subsets of Ω the so-called simple sets play a special role.

A simple set [α
ο
αια

2
 ... α

π
] is composed of all paths beginning with the

states a
0
, α± a

n
 and continuing in any manner after the moment n.

We denote by £F the σ-algebra in Ω generated by all simple sets.

We depend on the following theorem on measures in Ω.

T H E O R E M A. Suppose that for any η and any a
0
, a

it
 .... a

n
 6 Ε a

non-negative number p(a
0
, a

lt
 ..., a

n
) is given, where

S P K a
u
 . . ., a

n
) < ρ (α

0
, a

u
 ...,«„_,). (3)

η η

Then there exists a measure P, which is moreover unique, on the O-algebra

& such that

Ρ [α
ο
αι • · · aj — Ρ («ο, «ι, · · ·, α»)·

This theorem will be proved in the Appendix.
 1

From Theorem A it follows that for any measure ν on £ with v(x) < oo for

all x, there exists a measure P
v
 on Ω such that

P
v
 [α

α
α
χ
 . . . aj - ν (α

0
) ρ (a

o
,a

t
) . . . ρ (α,,_,, α

η
). (4)

An important role is played by the particular case when V is the unit

measure concentrated at the point χ (when V(y) = δ(χ, y), where δ(χ, y)=l

if χ = y, δ(χ, y) = 0 if χ φ y ) . The corresponding measure in Ω is denoted

by ?
x
, so that

P
x
 [α

ϋ
αι . . . aj -= δ {χ, α

0
) ρ (α

0
, α^) . . . ρ (a

n
-

U
 a

n
), (4')

Ρχ i s the probabi l i ty measure concentrated on the paths s t a r t i n g from x.
We note t h a t for any v.

and that Ρ
ν
(Ω) = v(E).

Each measure in the space of paths Ω determines a random process.
2

The process determined by the measure Pv is called the Markov process with

initial distribution V and transition function p(x, y). The process

corresponding to the measure ?
x
 is called the Markov process with initial

state χ and transition function p(x, y).

One of the basic results of boundary theory states that almost every

non-terminating path tends to some point of the exit space B. The measure

of the set of paths for which this limit belongs to the Borel set Γζ,Β is

The necessity of the condition (3) is obvious, since
[flo, <Ί, •··, a J C [a0, ait . . . . o n _J for any an, and since distinct
[a0, o l f . . . . an] do not intersect.
If ρ(Ω)= 1, then P(A ) can be interpreted as the probability that the trajec-
tories of motion belong to A. In the general case Ρ (A) may prove to be greater than 1
and even equal to co.
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where k
y
 is the harmonic function corresponding to the point y e B, and

μ! is the spectral measure of the excessive function 1.

To explain the role of the exit space, we have to introduce into the

discussion paths without beginning or end. These are functions a
t
 with

range in Ε defined for all integers t from - oo to +00. Jfoe set of such

paths is denoted by Ω. We use the term simple sets in Ω for the sets

[e*. a
m + 1

, ..., a
n
]m consisting of all paths passing at the moments

m, m + 1, ..., η through the points a
m
, a

m+1
, .... a

n
. (Before the moment

m and after the moment η they can behave arbitrarily). We denote by jf the

σ-algebra in Ω generated by all simple sets.

For the construction of measures in the space Ω we can use the

following modification of Theorem A.

T H E O R E M B. Suppose that for any integers m 4 η and any
a
m, a

m+1
, .... a

n
 ε Ε, non-negative numbers p%(a

n
, a

m+1
, .... a

n
) are

given, where

Zip(a
m
, a

m+1
, ..., a

n
) = p(a

m
, a

m+1
, ...,«„_)), (3'\

Σ i, . . ., a
n
) = ρ (a

m+
i, ...,a

n
). (3")

Then there exists a unique measure Ρ on the O-algebra JFsuch that

Ρ [<WWl · · · «n]m — Pm («m, d
m+u
 . . . , d

n
).

The necessity of the conditions (3*), (3") is evident. For the proof

of Theorem Β see the Appendix.

We suppose that the transition function p(x, y) satisfies (1) with

the equality sign and that ν is a harmonic measure. Then the function

P^ia-m, a-m+u · · ·, a
n
) -= ν(a

m
)Ρ{a

m
, «m+i) · • • p(«n-n

 a
n)

satisfies the conditions (3
(
) - (3"), and by Theorem Β there exists a

measure P
v
 on jFsuch that

p
v [a

m
a

m+l
 . . . a

n
]n = ν (a

m
) ρ (a

m
, a

m + i
) . . . ρ (a

n
.

u
 a

n
). (4")

A random process determined by P
v
 in fi is called α stationary Markov

process with stationary distribution V and transition function p(x, y).

In boundary theory it is proved that for such a process almost all

paths converge as ί -> - 00 to some point of the space of entrances B. The

measure of the set of paths for which this limit belongs to the Borel set

rc £ is
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\ (1, x
y
)

r

where x
y
 is the harmonic measure corresponding to the point y e Β and μ

ν

is the spectral measure for V.

This result can be further generalized in several directions.

Random variables connected with Markov processes are jF -measurable

functions defined on Ω or on some subset of this space (or <f -measurable

functions on Ω or a subset of Ω ) . The integral of such a function ξ on

its domain of definition with respect to the measure P
v
 is denoted by

Μ
ν
ξ, and with respect to P

x
 by Μ

χ
ς .

Here are some examples.

ς is the terminal moment of a path: if the last moment at which the

path ω is defined is n, then £(ω) = η; if the path does not terminate,

then ζ(ω) = + oo.

x
n
 is the position of a particle at the moment n. This function is

defined on the set | ω: ς(ω) ^ η \. In the case of a stationary process

p
v
 \χ

η
 = J/1 =

 v
 (y)

for any n. For a process with the initial distribution ν

ΡνΚ--=!/] = Σ Ρ ν [ ν ι - 2 ] ί ( 2 , y)· (5)

To prove this equation it suffices to note that

{ω: x
n
 = y) = U {

ω : x
n-i -

 z
,

 x
n = y},

 to
 decompose the sets occurring

here into simple sets, and to use (4).

We put

ρ (η, χ, y) = P
x
 {

Xn
 =

 y
y

Prom (5) it follows that

p(n, x, y) = Si5(«-l, x, z)p(z, y),

and in view of the obvious relation

we have ''

where Ρ is an operator given by the first formula in (2). (6) is valid

also for η = 0, if P° is taken as the unit operator.
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§3. The Green's function

We return to the problem raised in §1 of describing all excessive

functions corresponding to a transition function p(x, y). Prom (1) it

follows that the non-negative constants always belong to the set of

excessive functions. It may happen that no other excessive functions

exist.

For example, let Ε be the set of all integers and p(x, y) = -1 if

| χ - y | = l, and p(x, y) = 0 for remaining pairs x, y. (The corresponding

Markov processes are called simple random walks.) It is evident that

and the condition that / is an excessive function can be written

φ (χ + 1 ) < φ (χ),

where Φ(«) = f(x + 1) - f(x)· For any natural number k

f (x + k) = f (x) + φ (χ) + φ (χ + 1) + . . . + φ (χ + k - 1) <

</(*) + /ccp (χ),

f (χ) = / (χ - k) + φ (χ - k) + . . . + φ (χ - 1) > / (χ - k) + k<p (x).

Since / is non-negative, it follows from the first ineauality that

f(x) ^.-k<p(x) and from the second that f(x) > kq(x). Since k is arbitrary,

it follows that φ(χ) = 0, and therefore / is a constant.

Relying on the notion of a Green's function we derive a class of

processes for which sufficiently many excessive functions exist. The

Green's function is defined by the series

oo

g (*. y) -= Έ ρ (η, χ, y). (7)
n=0

The process is called transient if g(x, y) < oo for arbitrary χ and y.

We note that by (5) p(n, x, y) = P
x
\ x

n
 = y \ = M

x
b(x

n
, y). Hence

Ζ
g(x, y)=M

x
% δ(χ

η
, y). (8)

n=0

Under the sign of mathematical expectation there stands the number of
paths that go through the pointy. The condition of being transient implies
that this number is almost certainly finite. Thus, for a transient process
almost all paths go only a finite number of times through one and the
same state. Hence, if the states are enumerated in any order, for almost
all non-terminating paths the number of states tends to infinity.

The simple random walk considered above has the opposite property:
almost all paths go infinitely often through any point.

1
 Processes with

this property are called recurrent. It can be proved that every connected
Markov process is either transient or recurrent. (We say that a Markov

See, for example, [5]. Ch. XIII, §3.
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process is connected if for any two states χ and y there exists η such

that p(n, x, y) > 0; in other words, if g(x, y) > 0 for any χ and y.) For

any recurrent process, as for the simple random walk, there do not exist

non-constant excessive functions. Henceforth, without saying so each time,

we only discuss transient processes.

The Green's function corresponds to the operators

Gf{x)^Yig(x, y)f{y),
υ

μ^ (y) = Σ μ (χ) g (χ, y)-
χ

From (6) and (7) it is clear that

GO

G - Σ Ρ"- (9)

Hence, for non-negative / and μ

/ + PC/ - Gf, μ + μΰΡ = \iG. (10)

Therefore it is evident that Gf is an excessive function and μβ an

excessive measure.

We put b
y
(x) = δ(χ, y). It is obvious that

g (x, y) - (G6
a
) (χ) = (δ,Ο (y).

Hence g(x, y) is an excessive function of χ for fixed y and an excessive

measure with respect to y for fixed x. Thus, the Green's function permits

us to connect an excessive measure and an excessive function with each

point of E. It is this initial store of excessive functions and measures

from which subsequently all excessive functions and measures are obtained.

We derive one important property of the Green's function.

LEMMA 1. For any states χ and y

g(x, y)^n(x, y)g(y, y), (11)

where K(x, y) = Px{ xn = y for some n\ is the probability of reaching y
starting from x.

PROOF . We put

Am = {x0 Φ y, χιΦ y, . . ., xm-i Φ y, xm = y}-

We note that
P , {Am, xm + k = y} = Px (Am) ρ (A, y, y). (12)

To see this we have to decompose the set \Am, xm+k = y\ into simple sets
and use (4).

The sum on the right in (8) is evidently equal t o 1

XA denotes the indicator of A, that is, the function equal to 1 on A and to
0 outside A.
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t

Σ xAm Σ 6(*«. y)1)-
m=0 n—m

Hence
OO OO CO OO

£(*> V) - Σ Σ Λ ^ χ ^ δ ^ , y)= Σ Σ Ρχ{Λη, a:n + h-y}.
?n=0 n = m jn---0 /( = ()

Bearing (12) and (7) in mind we obtain (11).
REMARK. We put Bk = ί xn = ζ for some η e [m, m + fe] i . Decomposing

the set An f] β™ into simple sets, we can prove that

P*{A», Bt)-^Vx{Am)Vy(Bl). Letting fe-» oo, we obtain Ρ » μ η ΐ ! ΒΖ) =

^Px(Am)P,j(Bl). Hence

π(χ, ζ)>ΐχ{ U [ A n f l C ] } - Σ P-v (Λ,,) P;y (fi») = π (ι, y)n(y, r·)- (13)
m-—0 ??i=0

This remark will be used in §9.

§1. Supermartingales

The investigation of excessive functions and paths of Markov processes

is conducted most conveniently by means of the apparatus of supermartin-

gales. In this section we introduce the notion and present some properties

of supermartingales. The presentation will be in a most elementary form,

fully sufficient, however, for our purpose.

D E F I N I T I O N . Let Ρ be a measure on the σ-algebra F in the space

Ω. Suppose that in Qthere are given F-measurable functions y
0
, y

x
, .... y

x
 with

values belonging to a countable set Ε and numerical functions

z
0
, z

l t
 ..., z

N
. We say that z

0
, z

l f
 ..., z

N
 is a supermartingale with

respect to y
Q
, y,. y

N
 if for any η = 0, 1, ..., Ν,

1) z
n
 is a function of y

0
, y

u
 . . ., ̂ .

 Zn = u {
^
 yu

 _
 );

2 )
1
 for any a

0
, a

u
 . . ., a

n
^ H3 Ε

Σ Ρ{#o^ o-o, · · ·, l/n-i = dn-u Vn = a
n
) f

n
 (a

0
, a

u
 . . ., α

η
)<

an

< Ρ {^0 == «0. · • · , Vn-l - α,ι-ι} fn-1 («0> «1, · · · , «n-l)· (14)

Prom this definition the following two properties follow at once:

4.A. If d is a constant, then, together with ί ζ
η
\ the sequence

2

{z
n
 Λ ̂ } is also a supermartingale with respect to ί y

n
 I .

4.B. For any non-negative function φ

y
0
, .... y

n
_j) z

([
 < Μ φ (j/

Ol
 . . ., ι/,̂ ) z

n
_!.

In terms of conditional expectation condition 2) can be restated in the form
Μ (z

n
 11/

0
, i/j, . . ., y

n
-i)<^zn-i almost certainly.

We denote by a/\ b the smaller of the two numbers α and 6, and by a y b the larger.
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To deduce 4.Β from 2) it is sufficient to note that

φ (ί/ο, · · ·, y
n
-i) = Σ Φ Κ , · · -, α

η
_,) δ (α

0
, y

0
) . .. δ (α

η
^, y

n
_
t
).

α
0
, . . . , α,ι-ι

The most important property of supermartingales is stated in terms of

Markov moments. A random variable
1
 τ, taking the values 0, 1, 2 is

called a Markov moment (with respect to the sequence y
0
, y

lt
 y

2
, ...) if

for any η

δ (τ, η) ••= ψ
η
 (!/ο, · · ., y

n
) (15)

(φ
η
 is some function). Intuitively this definition means that observing

the values y
0
, yi, .... y

n
, ···, we can answer uniquely until the moment

η the question whether the equation τ = η is true. It is easy to verify

that along with τ the function τ \J m is also a Markov moment, where m

is a non-negative integer.

L E M M A 2. Let z
0
, z

it
 ..., z

N
 be a supermartingale with respect

to yo, yi yN and let two Markov moments ο ζ χ ^ Ν be given. Then

Mz
a
 < Mz

x
. (16)

PROOF. First we prove that if the Markov moment satisfies η ^ τ ̂ Ν,

then for any non-negative function Φ

Μψ (ί/ο, · · ·, l/n)
 z
x <

 M(
f> (2/0, · · ·, Un) Ζη· (Ι

7
)

This is obvious for η = N. Hence it is sufficient to verify that if it

holds for η = m, then it holds for η = m - 1. Thus, let m - 1 « τ ^ N.

We have

Μψ (ί/ο, · . ., y
m
-i) z

x
 = Μψ (y

0
, . . ., y

m
-i) δ (τ, τη — 1) z

m
_i +

+ Μψ (ί/
0)
 . . ., 2/

m
_
t
) tl - δ (τ, m - 1)] z

T V m
. (18)

By (15) we have δ(τ, m - 1) = $(y
0
 ym-i), and applying the

inductive hypothesis to the Markov moment χ \/ m^> m, we find that the

second term in (18) does not exceed

Μψ (ί/ο, . . ., y
m
..i) [1 - δ (τ, τη - 1)] z

m
.

By 4.Β the last expression is not diminished if z
m
 is replaced by z

m
_i.

Making this change and substituting the estimate so obtained in (18) we

see that (17) holds for η = m - 1.

To complete the proof of the lemma we note that by (17) and (18)

Μ δ (σ, ή) ζ
τ
 = Μ δ (σ, η) ζ

τ
γ

η
 <; Μ δ (σ, η) ζ

η
 = Μ δ (σ, η) ζ

σ
.

Summing this inequality for n = 0, 1, ..., Ν, we obtain (16).

Relying on Lemma 2 we now prove a fundamental lemma about the number

of crossings of a fixed interval [c, d] for a positive supermartingale.

1
 In certain cases it is useful also to allow the value + oo for τ. Here, as

before, it is required that (15) be satisfied for all finite n.
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The number of down-crossings of [c, d] in the sequence z
0
, z

it
 ..., z

N

is the largest number k for which numbers

0 < h < tz < · · · < t2h-i < hk < Λ'
 c a n b e cn

°sen so that

z
fl
 > d, z

i2
 < c, Z(

3
 > d, z

tl
^.c, . . ., z^^j > -d, z

t2h
 < c.

L E M M A 3. Suppose that the non-negative random variables

Zo.
 z
i. ···. ZN form a supermartingale with respect to y

0
, y

lt
 .... y^.

Then the number of down-cross ings of [c, d] in the sequence z
0
, z

l t
 .... z

N

satisfies the inequality

-^-Mzo. (19)

P R O O F . We put τ
0
 = 0 and define x

n
(

n
 = 1, 2, ...) inductively as

follows: τ
η
 for odd η is the smallest value k » x

n
-i for which zk > d, or,

if there are no such values of k, then τ
η
 = iV; t

n
 for even η is the

smallest value k > τ
η
-ι for which zk £ c, or, if there are no such values

of k, then τ
η
 = ,V. It is easily verified that τ

0
, T

l t
 ..., x

n
, ... are

Markov moments and τ
η
 = Ν for η > 2ν + 2 .

According to 4.A. ~z
n
 = z

n
 [\ d is a supermartingale. We choose m

so that 2m » /V, and put

5 = ( Z T 1 _ ΐ τ 2 ) + ( ϊ Τ ϊ _ ZXi) + . . . + ( 2 x 2 v l - Z t 2 v ) •+-

We note that

τ2ν+1 ^ r2v+2 τ2ν+3 " ' ' * !m·

Therefore

S^v(d-c). (20)

On the other hand,

V 7 I (m » \J \{Z 7 \ J"
u — ώ Τ ι ~T~ \*>%3 • *>j2j Γ · · · T~ \ώΤ2τη—ι t2m—2/ ώΤ2τη"

By Lemma 2,

Noting that ZT
2 B I
 > 0, we find

^^ < M«
tJ
 < Mi^ < Mz

0
. (21)

Now (19) follows from (20) and (21).

§5. Excessive functions and supermartingaies

Let / be a non-negative function in the space Ε and let

x
o
, x

lt
 x

2
, ... be a path of a Markov process with initial state χ and

transition function p(x, y). We add to Ε one further point, which we denote

by ·, and we take x
n
 = * if η > ζ. We put /(•) = 0. With these conventions,
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the functions χ
η
(ω) and f(x

n
(u)) are defined for all η and ω. We show

that if / is excessive, then the sequence f(x
0
), /(*i). ···. f(x

N
) is a

supermartingale with respect to x
0
, x

lt
 .... x

N
. For if at least one of

the points a
0
, o

t
 a

n
 is ·, then all subsequent ones also are *. In

this case f(a
n
) = 0. Hence the left-hand side of (14) is zero, while the

right is non-negative. If all the points a
0>
 a

l F
 ..., a

n
 e E, then by (4)

we can write (14) in the form

2δ(χ, α
ο
)ρ(α

ο
, α,) ... p(a

n
-i, a

n
)f(a

n
)-<

an

< δ (χ, a
0
) ρ (a

0
, a,) ... ρ (a

n
_

2
, a

n
_i) / (a

n
_i).

For η = 1 these inequalities coincide with the condition that / is

excessive, and from their validity for η = 1 the validity for all η

follows.

Let v# be the number of down-crossings of [c, d) in the sequence

f(x
0
). /(*i) f(x

N
)·

 B
^

 L e m m a 3 o f § 4

( 2 2 >

Now let V be the number of down-crossings of [c, d] in the infinite

sequence f(x
0
), /(«i), ... Evidently, v.\ f v, and hence it follows from

(22) that

d — c

We assume that f(x) < oo. Then M
x
v < co and consequently V < co(P

x
.a.e.).

However, it is easy to see that the following elementary proposition
is true.

If a numerical sequence makes only a finite number of down-crossings
of any interval [c, d] with rational ends, then this sequence tends to a
finite or infinite limit.

By what has been proved this theorem is applicable to
f(.xo)· /(*i)· ···. along almost all paths x

0
, x

lt
 ... Thus, almost

certainly there exists the limit

I --= Hm/(*„)·

By Fatou' s lemma, from the inequality

MJ (x
n
) = P

n
/ (x) < / (x)

it follows that

M
x
l < / (x).

Hence ξ is almost surely finite.

Evidently ξ = 0 if ζ < oo. Hence there is interest only in the value
of ξ on the set Ωα> of all non-terminating paths.

So we have proved the following theorem.
T H E O R E M . 1. If f is an excessive function and if f(x)< oo, then
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the finite limit

l im/ (a;n)
n-voo

exists P
x
.a.e. on Ωχ>·

We leave it to the reader to show that if f(x) = oo, then P
x
.a.e. on

Ω,,, one of two possibilities holds: either f(x
n
) = •

Ko
 for all n, or f(x

n
)

tends to a finite limit.

In the following sections analogous properties will be established for

the densities of excessive measures.

§6. Position of a particle before the moment of leaving a set D

Let D Q E. We define the moment of leaving the set D as

τ — sap {t : x
t
 ζ D}.

The random variable τ takes the values 0, 1, 2, ... and the value +oo. It

is taken to be undefined it xt i D for all t.

We put

L
D
 (x) = V

x
 {

τ
 = 0} = P

x
 {χ

0
 ς Z>, x

t
 ζ D for t > 0}

We note that

oo

Ρ* {χ
τ
 = y) •= Σ Ρ

α
{τ = ηζ, a;

m
 =«/} =

m = 0

It is clear that

= 2 p{m, x, y)LD(y) = g(x, y)Ln(y). (23)
m=0

il)£i(|f) = 5 lP I { i , = y}<l . (24)

Let η be a non-negative integer. We investigate the distribution of the
point Xr-n· This point is not defined if τ < η or τ = + oo or if τ is not
defined. In al l three cases we put χ = *. Let a0, ax an e E. We
have

Px {xx = a0, χτ-ι -=au . . ., xx_n =; an} =
oo

= Σ P * {τ == ™> ^m = «0» ^m-i = «1, · · · , ^m^ = «n} =

--= 2 P(m — n, x, an)p(an, an_j) . . . p ( a 1 ? flo)Li,

= g(x, an)p(an, an_t) . . .

Multiplying t h i s equation by γ(χ) and summing over χ we obtain
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P Y {xx = a0, xT_i = au . . ., xx_n = α η } =

= η (an) Ρ Κ , an_i) . . . /> (a l7 a0) LD (a0), (25)

where
η = yG. (26)

In particular,

P
V
 {*t = */} = η (*/) ̂

D
 ω · (

27
)

§7. Densities of excessive measures and supermartingales

Let τ be the moment of leaving the set D and let / be a non-negative

function in E. We put /(*) = 0. We ask the question: when is

f(xr), f(x
T
-i) f(xr-

N
)
 a
 supermartingale with respect to

*T, *T_I x
T
-

N
 (for measure Py)?

By (25) we can write (14) as follows:

Ση(α«)Ρ(
α
*.

 α
"-ι) ••• -Ρ(

α
" a

0
) L (a

0
) f {a

n
) <

<η(αη_ι)ρ(α,»-ι, ««-:) · · · Ρ(αΐ ' α ο ) ^ («ο) / (α»-ι)·

Obviously i t is sufficient that

Σ η (αη) / Κ)/> Κ, αη-0 < η (α,^) / («„_!).

that is, that the measure fr\ is excessive.

Let v# be the number of down-crossings of [c, d] in the sequence

f(xr), f(xr-i), ···. f(xr-N> or, what is equivalent, the number of up-

crossings of [c, d] in the sequence /(x
T
-.v). ···. f(xr). By Lemma 3 of §4

We denote by vo the number of up-crossings in the sequence

f(xo). f(xi) f(xr). If D is finite, then almost certainly τ < oo

and v
N
 \v

D
 as iV-» oo. Hence 7W

v
v

D
<-

i
 M.J (x

x
 ). Now we consider an

O, — C D

expanding sequence of finite sets D
n
 whose sum is the whole of E. Then

v
D
 \ v, where ν is the number of up-crossings of [c, d] in the infinite

sequence f(x
0
), /(*i), ... It is evident that

1A
'v

v
<j SUO M

v
f (x

x
 ). (OQ.\

We say that / belongs to the class Ky if

Q == sup M
y
f (X

XD
) < oo. (29)
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From (28) it is clear that it f e Κγ, then ν < co(P
y
.a.e.). Hence, as in

§5, there follows the existence P
y
.a.e. of the finite or infinite limit

ξ = lim/(*„).
11 —»-CO

Let v(c) be the number of up-crossings of [c, 2c] in the infinite
sequence f(x0), / ( * i ) , . . . and let lim v(c) = ν . Evidently

C-»+ 00

{ £ = ο ο ( ς { ν » 1 { . Hence

P v {I = oo } < P v {ΛΓ> 1} < M..v.

By Fatou' s lemma and (28)

P v{I = oo}< limM yv(c)<lim-2- = 0.
C

c—voo

So we have proved the following theorem:
T H E O R E M 2. If the density f of the excessive measure μ with

respect to the measure η = yG belongs to the class Κγ, then Py.a.e. on
Ω,η there exists the finite limit

lim f(x
n
)·

§8. Excessive measures with density classes Κγ.
The Martin kernel

Let γ be a finite measure, that is, (1, γ) < oo. Then, by Lemma 1, for
any y e Ε

η(») = Σ γ(*)£(*. y)< Σ ν(*)g(ΣΛ y) = (i. v)g(y> y)<°°-
X

We put Ε
γ
 = {y: t](y) > 0 I . It is easily seen that Ε contains the set

I y'· Yiy) > 0 f and consists of all points that a particle of this set hits
with positive probability. The probability of going out of Εγ is zero.
Hence the Markov process may be considered only on the set Εγ. The most
interesting case is when E

y
 = E. In this case we say that the measure γ is

standard.
Henceforth we assume that γ is α standard measure.
According to §3 the measure μ£ is excessive if μ. » 0. The density of

this measure with respect to η = yG is given by
1

*»(«) = (*».μ). (30)

If γ Is not standard, then the measure UG has a density with respect to YG if
and only if Ε

μ
 C Εγ. Formula (30) remains valid if k

y
(x) is defined by (31)

for y e Εγ and k
y
(x) is given arbitrarily for y ψ Εγ.
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where

The kernel k(x, y) = k
y
(x) is called the Martin kernel.

When does the density (30) belong to K
v
"> By (27)

M
y
f (χ

τ
) = 2 /(y) P

y
{χ

τ
 = y} = Σ f (y)η(tf)£(y) = (μβ, £)=Σμ(*)ί («, y)L(y),

y υ x,y

and by (24)

Thus, if μ is a finite measure, then the measure |JG has with respect to

η a density of class Ky. The following proposition follows from Theorem 3.

T H E O R E M 3. For any finite measure |i there exists Py.a.e. on Q
m

the finite limit

lim (k
Xn
, μ).

71-+ΟΟ

In particular, for any y there exists Py.a.e. on Ώα, the finite limit

limk
Xn
(y).

Tl-VOO

§9. Martin compactification

As already stated in §3, the Green's function g(x, y) determines for

each point y e Ε an excessive function g(x, y). The function k
y
(x) differs

from it only by a factor not depending on χ and satisfies the normalizing

relation

(ft». 7) = 1- (32)

By Lemma 1

(because g(y. y) >. p(0, y, y) = 1). According to (13)

K(z, y) > K(z, χ) π(χ, y). Hence for all y

where

a (x) =-- 2 γ (2) η (ζ, χ)
Ζ

(since γ is a standard measure, a(x) > 0 for all x).
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We enumerate the points of Ε in arbitrary order by the integers and

let N(x) be the number of the point x. We put

This defines a metric in E, and the distance between any two points does

not exceed 3. Forming the completion of Ε with respect to this metric we

obtain the compactum E*. The set Ε is open in £*, so that the boundary dE

of Ε in E* is E* \E. The compact if icat ion so constructed is called the

Martin compact ification and the boundary dE the Martin boundary.

It should be noted that the metric p(y, z) can be chosen with a certain

degree of arbitrariness. It is essential only that y
n
 is a Cauchy sequence

if and only if:

a) the functions k
yn
(x) converge at any point χ and

b) N(y
n
) •* o> or y

n
 remains constant from some number n

0
 on.

For each χ e E, k
y
(x) as a function of y can be extended continuously

to E*. Suppose that the sequence y
n
 e Ε converges to y e dE. Then

ky
n
(x) -» ky(x) for any x. Hence it follows that for y e dE, k

y
 is excessive

and satisfies the condition

(ft», y) < 1 (34)

(equality in (32) need not hold).

The topology in E* constructed on the metric p(x, y) is called Λ/
+
 (or

the A/
+
-topology).

The fundamental role of Martin boundaries in the theory of Markov
processes is determined by the following theorem.

T H E O R E M 4. With any initial state x, for almost all non-terminat-
ing paths there exists in the topology Λ/

+
 the limit

lim x
n
 = χ*, £ dE.

n-voo

PROOF. For a process with initial distribution γ this statement

follows at once from Theorem 3 and the Remark in §3, according to which

for a transient chain N(x
n
) -» oo almost certainly.

We denote by A the set of all non-terminating paths for which the

theorem does not hold and put h(x) = P
X
(A). It will be proved later (see

Corollary to Theorem 8), that h is harmonic. By what has been proved,

(h, γ) = Ργ(Α) = 0. Hence Theorem 4 follows from the following lemma.

L E M M A 4. If Υ is a standard measure and h an excessive function,

then from (h, γ) = 0 it follows that h = 0 everywhere.

P R O O F OF L E M M A 4. For any η we have P
n
h <./i and therefore

0 < (γΡ
η
, ft) = (γ, P"ft) < (γ, ft) = 0.

Thus, (γΡ
η
, h) = 0. Summing over η we have (η, h) = 0, where η = yG. By

definition of a standard measure η is everywhere positive, hence h is
zero everywhere.
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§10. Distribution of χζ

If ζ < co, then χζ is a point of Ε at which a path terminates. If ζ = oo,

then χζ = Χη is defined in Theorem 4 and belongs to dE.

Let τ be the moment of leaving D. Comparing (23), (27) and (31) we

have

P.x {χ* = y} = Κ (*) Ρν {
χ
τ = y}·

Hence for any function

M
x
f(x

x
)=M

x
% δ (χ

τ
, y)f{y) = ̂ 1 (y) Ρ* {*τ = W = Σ / (y) k

y
 (χ) Ρ

ν
 {χ

τ
 - y} -

y y y

= ^ v Σ / (V) k
y
 (χ) δ (x

t
, y) = Myf (x

x
) k (χ, χ

τ
) (35)

ν

(we recall that k(x, y) = k
y
(x)). We consider now a sequence of finite

moments D
n
\E and denote by τ

η
 the moment leaving D

n
· On the set Ω» we have

Tn -» oo, and hence x
Tn
 - *<» and k(x, x

Tn
) -» k(x, X&) = k(x, χζ) almost

certainly. On the set [ζ < co| , we have x
n
 = ζ beginning with some η

ο
(ω);

hence k(x, x
Tn
) - k(x, χζ). Suppose that

1
 / e C(E*). Then f(x

Tn
) •* /(χζ).

Bearing (33) in mind, we can take the limit in (35). Thus,

A/*/(*
t
) = M

v
/(:c

t
) A (*,*;). (36)

On the Borel se t s of the compactum E* we consider the measure μι
defined by

(37)

By (36)

j (38)
E*

The formula (38), which has been proved for continuous functions /,
extends in an obvious way to a l l Borel non-negative functions. Putting
/ = Xr, we get

( 3 9 )

Thus, ky(x) (x e E, y e E*) can be interpreted as the density of the
distribution for the point χζ (with respect to μ!) for the in i t ia l state
x.

We note that by (4')

Px{xn = V, ζ = η} = ρ ( η , χ, y ) [ l —PI] (y).

1 C(E*) is the space of a l l continuous functions on the compactum E*.
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Hence
οο

P x { x z = y } = ^ p ( n , x , y ) ( l — P i ) (y) = g ( z , y ) [ i - P i ] (y). (40)

Prom (37) and (40)

(ye Ε). (4ΐ)
Next, if / e C(E*), then

Mxf (xx) = lim Mxf (xn) = lim P n / (*)
n->co n->oo

and by (37) and (41)

I f (V) μι (dy) = Myf (χζ) = (1 - P I , /η) + lim 2 V (*) Ρ («, «, if) / (if)· (42)
E * n-*oo _^ ^

We note that by (38) and (41)

Mxf (*;) χζ<οο = MK/ (ac) χΕ(χζ) = J λν (a:) / (y) μ, (dy) = G [f (1 - P I ) ] (z) (43)
Ε

and by (38)

Mxf {xx) = Msf (χζ) χδΕ (χζ) =^ky (χ) f (y) μ, (d t f). (44)

§11. /i-processes. Martin representation of excessive functions

Let γ be a standard measure and h a γ-integrable excessive function.
We prove that h is everywhere finite. For each y e Ε we can find η and χ
such that Y(x)p(n, x, y) > 0. Since ?

n
h 4 h, we have

γ (χ) ρ (η, χ, y) h (y) < (Ρ»Λ, γ) < (h, y) < 00.

Hence h(y) < 00. We put E
h
 = \ x: 0 < h(x) I and define on E

h
 the transition

function

^ (45)

A Markov process answering to the transition function p
h
(x, y) is called

an h-process. 411 characteristics of this process are denoted by the same
letters as for the initial process but with the upper suffix
h: Pjj>, g

h
(x, y), etc. For the Green's function the following relation

holds:

The measure yh is standard for an h-process. Here (yh)G
h
 = η/ι and the
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Martin kernel corresponding to γ/ι is given by

jh
M
 _ g

h
(*, y) _ M * >

Prom this it is evident that the Martin topology for an h-process
coincides with the Martin topology of the initial process, and the Martin
compactification E

h
* for the /i-process leads to the closure of E

h
 in the

space E*. The Martin boundary dE
h
 is simply the boundary of E

h
 in E*.

We put

" {*ς€Γ}. (47)

Evidently for any Borel function / > 0

= M\hf{x%)· (48)
E*

Hence

M
h

yh
f («„) = M

h

yh
 (f

XdE
) (χ

ζ
) = J / (y) μ

Λ
 {dy). (49)

ΘΕ

Applying to the /i-process the formulae (38), (44), (41) and (42) we

have

h 1 Ρ

Ε*

{x)f{y)\i
h
(dy), (51)

as

(52)

(53)

„-» ̂
 Ε

*
} )
·
 ( 5 4 )

(In (50) - (51) we enlarge the domain of integration by taking

\i
h
(E* \E

h
*) = 0).

In (50) putting / = 1 and noting (46), we observe that for any χ e E
h

(55)

E*

Outside the set E
h
 both sides of this equation are zero, (if χ ς E

h
, y 6 E

h
,

then p(n, x, y) = 0 for all n; hence, g(x, y) = 0 and k
y
(x) = 0. Thus,

fe
y
(*) = 0 also for y in the set E

h
* on which the measure μ/j is

concentrated). Thus, the representation (55) holds for all χ e E. It is
called the Martin representation of the excessive function h. The measure
\lh is called the spectral measure of the function h.
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By (53)

Ε

Hence the Martin decomposition can be put in the form

h(x) = G(h- PA) (x) + I k
y
 (χ) μη (dy). (56)

dE

§12. The spectral measure of k
z
. The space of exits

First let ζ e E. Then

and according t o (54)

V-hz (y) = η (if) Ik ζ (y) - Pkz (y)] = 6 Z (y), (58)

where 6
z
(y) = 6(y, 2) is the unit measure concentrated at z. Thus,

V-k
z
 = §2 for all ζ e E.

The set of all ζ e dE for which
 :
Ak

z
 = δ

ζ
 is called, by convention,

the space of exits and is denoted by B.
T H E O R E M 5. The space of exits Β is a Borel subset of dE. For any

y-integrable excessive function h we have '^h(dE \ B) = 0. If ζ e B, then
k
z
 is a harmonic function and (k

z
, γ) = 1.

PROOF. If 2 e B, then evidently

μ,
ζ
 {ζ} = 1. (59)

On the other hand, for any 2 e dE by (47) and (34)

μη
ζ
(Ε*) = {^ γ)<1. (60)

Hence, if (59) is satisfied, then μ&
2
 = δ

ζ
 and ζ e Β. Thus, β is given by

(59). By (54), for ζ e <?£,

\ih-_{z} "= I™ \ e-mp<-x-z)Phz(dx)--= lim lim ^y(x)p(n, x, y) kz (y) e~mP(x< W>.
η~*°° Ε* "t~*°C n " > ° ° X, y

Hence i t i s evident that Β i s a Borel se t .

We write k = kz, omitting the subscript ζ when no confusion can a r i s e .
Let ζ e dE and φ, ψ e C(E*). For any η > 0, m > 0

Mhyy (xn) ψ (xn+m) -- Σ Υ ( Λ ) w (^) Ρ'' («ι >̂ ί/) Φ (ί/) Ph {m, y, ζ) ψ (ζ) =
χ, y, ζ

= Σ γ (^) ρ («, a:, y) fe (y) φ (y) Λί{;·ψ (a;m).
χ, υ

Taking the l imit as m -• oo and using (51) we have
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Mhytp (xn) ψ (roc) = 2 ϊ ( ΐ ) Ρ («, x, y) h (y) φ (y) ^ kh

z (y) ψ (ζ) μή (dz) =
χ, υ ΘΕ

= ^ 2 V (Χ) ̂  ( ^ J°ft ("' ^' ^) λ" (^) Φ (^) Ψ (Ζ) ̂ ^ (dz) = \ ^ ^ ϊ Φ (^η) Ψ ( 2) μ^ ( r f z ) ·
ΘΕ χ, ν dE

Now l e t t i n g η -> οο and noting (48) we have

\ φ (ζ) ψ (ζ) \ih (dz) --= \\ \ y (u) \iik (du)~) ψ (ζ) μ̂  (dz).
V «J L ς) J

ΘΕ ΘΕ ΘΕ

Since φ i s an a r b i t r a r y continuous function, i t follows that μ/j - a.e.

φ(ζ) =

It is clear that for μ^-almost a l l ζ this equation holds simultaneously
for the sequence of functions

<Pm (y) = e-mP(v-V (m = 1, 2, . . .)

and hence in the limit as η -* οο the resulting equation (59) is satisfied.
Hence

μΛ (dE \ B) = 0.

For ζ e β it follows from (58) that k
z
 is harmonic, and from (60) that

(k
z
, γ) = 1.

R E M A R K . Prom (50) it is clear that if ζ e Ε \J B, then

P
x

z
{ χζ = ζ Ι = ι, so that for any initial state χ almost all paths of a

fez-process terminate at z.

§13. The Uniqueness Theorem

T H E O R E M 6. Every y-integrable excessive function h has a unique

representation of the form

h(x) = $Λ
ζ
(*)μ(ίζ), (61)

E[)B

where μ is ο measure on the Borel subsets of Ε (j β. The measure μ is
finite.

For any finite measure μ (61) defines a γ-integrable excessive
function. This function is harmonic if and only if \i(E) = 0.

Prom Theorem 6 i t follows, in particular, that if h has a represen-
tation of the form (61), then μ coincides with the spectral measure μ/,,
and (61) coincides with the Martin representation.

PROOF. From Theorem 5, the Martin representation (55) of the
γ-integrable excessive function h can be rewritten in the form (61), where
μ = μ̂ . Since Pkz 4 kz for z e Ε and Pkz = kz for ζ e B, every function h
obtained by (61) is excessive, and if μ(£)= 0, i t is harmonic. Since
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(k
z
, Υ) = 1 for all ζ e Ε \J Β, we see that (ft, γ) = μ(Ε \J B) < co.

We show now that if ft is given by (61), then μ coincides with the

spectral measure μ/,. Let / e C(E). Applying (54) to ft and to k
z
 we note

that

EUB E*

But μ^
ζ
 = δ

ζ
 for ζ e Ε [j Β. Therefore

Since μ/j is concentrated on Ε \J Β, it follows that μ/, = μ.

We observe finally that if Pft = ft, then by (53) \ih(y) = 0 for all
y e E.

§14. Minimal excessive functions

A non-zero excessive function h is called minimal if from h=h
1
+h

2
,

where /ι ι and h
2
 are excessive functions, it follows that

hi = Cih, /12 = cjn (c% and c% are constants). It is easily proved that a

harmonic function h is minimal if and only if every harmonic function /i
±

satisfying 0 ^ hj. < h, is proportional to h.

T H E O R E M 7. The general form of γ-integrable minimal excessive

functions is ck
z
, where ζ £ Ε (j Β and c is a positive constant.

P R O O F . Prom (54) it is clear that μ/,
1+
/,

2
 = μ/^ + μ/ι

2
. Let

ζ e Ε \J Β and k
z
 = /ι

χ
 + h

2
, where /i! and h

2
 are excessive. Then

Wi! + μ/ι
2
 = !-ife

z
 = δ

ζ
. Hence 0 = δ(Ε* \ ζ) = μ/,

±
(£* \ ζ) + μ/,

2
(£* \ ζ) and

\x
hi
(E* \ z) = 0. Prom (55)

Ε*

Thus, k
z
 is minimal.

Next, let ft be any γ-integrable minimal excessive function and μ/, its
spectral measure. Then \ih(E (j B)= (ft, γ). By Lemma 5 this quantity is
positive if ft ̂  0. Hence there exists a point ζ e Ε \J B, any neighbour-
hood of which has positive measure μ/,. We put U

n
 = \ y. p(y, z) < 1/n I,

Un

It is obvious that h
n
 and h - h

n
 are excessive. Since /i

n
 is minimal, we

have h
n
 = c

n
h. Since (/ι

η
, γ) = μ/,(ί/

η
) and (ft, γ) = μ/,(£ U ^ ) = (Ί. Y>.

we have ch = μ/ι(ί<'η) / Wi(E (J β ) and consequently

Taking the limit as η -> oo we have ft = (ft, Y)fe
z
.
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§15. The Operator Θ. Final random variables

We consider in the space of paths fi the mapping θ that is defined on

the set Qj = {ω: ζ (ω) ̂  1} and carries the path α
ο
αχα

2
 ... into

α^α^ο-α ... For any function <f((d) we put

The random variable <̂  is called final if θξ = ξ. We note that final

random variables are different from zero only on &„, and do not change

their value if arbitrarily many initial intervals of the paths are changed.

We denote by A the set of non-terminating paths for which the limit

*oo = lim x
n
 does not exist or does not belong to dE. An example of a

n->oo

final random variable is the function that is equal to some constant 6 on

A, to /(*a>) on Ω,,οΧΛ (/ is an arbitrary Borel function on dE), and to 0

outside Ω,,,. In particular, the random variable χ
Α
 is final.

LEMMA 5. For any non-negative random variable ζ

M
x
 {δ (*„, a

0
) δ (*„

 O l
) · · · δ (X

n
, a

n
) 0" 1} =

= δ (a:, a
0
) ρ (β

0>
 β

(
) • · • Ρ Κ - ι , «η) Ma

n
l- (o3)

PROOF. We denote by V-i(A) and μ2(/1) the values of the right- and
left-hand sides of (63) for ξ = χΑ. Obviously i t is sufficient to prove
that iii(A ) = μ2(Α) for any A f !f. The functions j ^ and μ2

 a r e measures.
By (63) for the simple set A = laoa± . . . an]

μι (A) = μ2 (A) = δ (x, a0) ρ (a0, at) . . .
. . . ρ (αη_!, αη) δ (αη, 60) Ρ (bo, ^ ) · · · Ρ (Κ-ι, Κ)-

In accordance with Theorem A, from the fact that two measures coincide on

simple sets it follows that they coincide on the σ-algebra £F.

T H E O R E M 8. If ς ^ 0 is a final random variable and h(x) = Μ
Χ
ξ is

finite for each x, then h(x) is a harmonic function, and measures

corresponding to an h-process are given by the formula

I I dVx

^'M-^wr {xeEh)- ( 6 4 >
PROOF. By (62) and (63)

Hence h is harmonic.
To prove the second statement i t is sufficient to note that (64)

defines a measure on the σ-algebra β?, where the measure on the simple set
[α0αχα2 ... an] i s

J L Μχδ (x0, a) ... δ (xn, an) ξ = ^ MJ> (x0, a) ... δ (χη, α) θβξ =

= ^ δ ( * - αο)ρ(αο, αι) ... p(an-u an)h(an),
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that is, coincides with P&.

C O R O L L A R Y . If Μ
χ
ς = M

X
T\ for any two final random variables ξ and

η, then ξ = η (Ρχ.α.β.).

P R O O F . Prom (64), for any Α ζ JF

A A

T H E O R E M 9. Let h be a bounded harmonic function. Then

y
(x)<p (y) μι (dy), (65)

where φ is a bounded Borel function. Also P
x
.a.e. on Ωα,,

lim h (χη) = φ (Xoc) /ggx

and

Mxq> (x*>) =h (x). (67)

PROOF. Let 0 4 h 4 a, where α is a constant. The functions h and
f - a - h are excessive. By Lemma 4 and Theorem 7

α = ̂  k
y
 (χ) μ

α
 (dy) = § &j, (a;) (μ

Η
 + μ

;
) (dy).

Β Β

We assume that α > 0. Dividing the equation by α we find by Theorem 7 that

μ! = (l/a)(\Xh + \if). Hence \Lh has a bounded density with respect to

V-i'· V-h(dy) = cp(y) \ii(dy). Therefore (61) can be written in the form (65).

By (44) and (65) Μ
χ
φ(χ

α>
)= h(x). On the other hand, by Theorem 1 there

exists ?
x
.a.e. the limit

ξ = l\mh(x
n
).

By (6)

Mxl = limM
x
h (x

n
) = lim P"/i (a;) = h(x).

Thus, Λ/χΦ(χοο) = Λ/χί· But φ(χ
αι
) and .* are final random variables, and by

the Corollary to Theorem 8 φ(χα,) = ξ P*.a.e. (we must take φ(χ«>) = 0
outside Ωπ,).

C O R O L L A R Y . Every final random variable ξ coincides almost
certainly with <i>(x

a)
), where φ is some Borel function on B.

P R O O F . Let ξ be bounded. Then h(x) = Μ
χ
ξ is a bounded harmonic

function, and by Theorem 9 P*.a.e. on Qoowe have lim h(x
n
) = cp(*co) and

ΜχΦ(*ω) = h(x) = Μ
χ
ξ. By the Corollary to Theorem 8, ?

x
.a.e. ξ= ΦίΛ;,»). If

ξ is arbitrary, then ξ /\ α is bounded, α being a constant. By what has
been proved, ξ f\ a = φ

α
 (a;») Ρχ.α.β. Obviously it follows from this' that

£ Ρχ.α.β., where Φ(*) = lim φ
α
(*)·
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THEOREM 10. Let φ be a non-negative Borel ^-integrable function
on dE. Then

(68)
Β

defines a harmonic function h such that Px.a.e. on ί ϊ ω ,

lim h (χη) = φ (xj).
n->oo

P R O O F . The function h(x) is finite everywhere by (33). We select a

positive constant c and put

(p(i) if <f(x)<c, I 0 if q>(a:)<c,

Ο if „(*)>,, *
{χ) =

 [
Ψ
(ζ) if „<*)>*,

Prom (44)

Μχψ (xoc) = h (χ), Mxyt (χ*,) = Λ; (ζ), (69)

and by Theorem 8 h
lt
 h

2
, h are harmonic functions, hi is bounded, and by

Theorem 9 P
x
.a.e.

By Theorem 1 Pxa.e. there exist also the limits

£ = limM*:n), H2 = lim/i2(^)· (70)

By Fatou' s lemma

Mxl2<\imMxh2 {xn) = limPn/i2(a;) = Λ2 (χ).
η—νοο

Hence by (69) and (70) we find

M
x
 | I - φ (ι.) | = M

x
 | ξ

2
 - φ

2
 (a;») | < Μ

χ
ζ
2
 + Λ/

Χ
φ

2
 (

Χχ
) < 2fe

2
 (x).

The left-hand side does not depend on c and the right-hand side tends to

zero as c -* co. Hence ξ = Φ(χ
ω
). ?

x
.a.e..

R E M A R K 1. According to Theorem 10, (68) gives a generalized

solution of Dirichlet's problem with boundary function φ(χ); the boundary

values are taken along almost all non-terminating paths.

R E M A R K 2. Theorems 9 and 10 can be "relativized " in an obvious

way; selecting any harmonic function Η we can replace the measure μι by

M#, the condition of boundedness of h by h £ Η and the measure P
x
 by P

x
.
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§16. The Space of entries. Decomposition of excessive measures.

We say that a non-negative function l(x) is standard if s = Gl is

everywhere positive and finite. We put

y-vW—
 s(y)

 ·

We note that x
y
 is an excessive measure and (I, K

y
) = 1. According to

Lemma 1 g(y, *) = n(y, x)g(x, x). By (13) we have g (y, ζ) = π (y, z) g (z, z) >

> π (y, χ) π (χ, ζ) g (ζ, ζ) = π (iy, χ) g (χ, ζ). Hence s(y)>n (y, χ) s (x)

and Y.
y
(x) 4 l/c(x), where c(x) = s(*)/g(*. x) > 0.

We consider in Ε the metric

ρ (y, z) = | 2-
w
<« - 2"

w
« | + Σ I *,(*>-*, (*) I e (*) 2

X

where Λί(χ) has the same meaning as in §9. Forming the completion
Λ
θί Ε with

respect to this metric we obtain a compact™ Ε . The topology of Ε

determined by the metric ρ is called M. The boundary of Ε in the topology

Μ is E\E. Repeating the arguments of §9 we extend Y.y(x) continuously to

y e E\E.
We now prove the following theorem.

T H E O R E M 11. With each l-finite excessive ̂measure ot we can asso-

ciate a finite measure μ
α
 on the Borel subsets of Ε such that for f € C*(E)

f (y) μ α
 (dy) = (/„ a - oP) + lim Σ / (y) α (ν) Ρ («, x, V) I (*). (72)

η—>-οο

Ε χ, υ

The space of entries Β is the set of all ζ e Ε \E ^or which the spectral

measure of the excessive measure K
z
 is δ

ζ
. For ζ € Β the measure Y.

z
 is

harmonic and (I, Y.
z
) = 1.

Every l-finite excessive measure a has a unique representation in the

form

a{x)= I *
y
{x)v(dy). (73)

ΕΠΒ

Here μ coincides with the spectral measure μα. For a to be harmonic it is
necessary and sufficient that μ α ( £ ) = Ο.

Let V bean l-finite excessive measure1 and 0 < v(x) < oo for all x. The
formula

1 If the standard measure γ and the standard function I are chosen so that

2 e (*. v) y (
χ
)

ι
 (y) < °°-

then the measure V = yG satisfies the necessary conditions.
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defines in Ε a transition function. The measure γ = Ζν is standard for it,

and the corresponding Martin kernel is Y.
y
(x)/v(x). The Martin

compactification corresponding to this kernel coincides with E, and the

space of exits coincides with B. h is excessive (harmonic) with respect

to pv(x, y) if and only if the measureJX = /iv is excessive (harmonic) with

respect to p(x, y). Here (I, a) = (h, γ), so that <X is l-finite if and

only if h is γ-integrable. The spectral measure of the excessive function

h = Ά /ν with respect to p
v
(x, y) coincides with μ

α
.

P R O O F . The statements about the Martin kernel for the transition

function p
v
(x, y) and the corresponding compactification are verified

directly. It is also evident that if α = h\i, then (I, a) = (h, γ) and

Ph 4 h (Ph = h) if and only if dP
v
 < a (aP

v
 = a). We define the spectral

measure of the excessive measure (X as that of the excessive function

h = α / ν (with respect to the transition function p
v
(x, y)). (72) follows

from (42). Prom the definition of β it is clear that Β is the space of

exits for p
v
(x, y), and from (72) that μ

α
 and Β do not depend on the

choice of v. The representation (73) follows from the Martin representation

for the pv-excessive function h = α/ν . The remaining parts of the theorem

are verified without difficulty.

R E M A R K . If v(x) becomes zero or infinite at some points, then (74)

defines a transition function on E
v
 - { x: 0 < v(x) < + oo| . in this case

the Martin compactification for p
v
(x, y) coincides with the closure of

E
v
 in 1

§17. The behaviour of the stationary process as t -» - oo

We consider a stationary Markov process with transition function

p(x, y) and stationary distribution V. The formula a
t
 = a-t(t = 0 , 1, ...)

defines a mapping r of Ω into £l
m
 . The complete inverse image of A under

r is denoted by A
r
. We define in fi^the measure

Ρ (A) = P
v
 (A

r
) (A € F).

If Λ = [α
ο
α
ί
 ... a

n
], then A

r
 = [α,,α,,-! ... a

Q
]2

n
 and by (4")

Ρ (A) = P
v
 (A

r
) = ν (α») ρ Κ , a

n
_

t
) . . . ρ (a

lf
 a

0
).

On the other hand, let p
v
(x, y) be a transition function defined by (74).

We denote by
 v
P
a
 the measure in Ω corresponding to the Markov process

with transition function pv(x, y) and initial distribution a. (Since

Σ p
v
(x, y) = 1, the measure

 v
P
a
 is concentrated on Ωα,.) We note that

y
V
P

V
 [0*0.1 . . . a

n
\ = ν (a

n
) ρ (a

n
, a

n
_0 . . . ρ (a

u
 a

0
).

Therefore P(A ) =
 V
P
V
(A) for all simple sets A. By Theorem A this equation

is satisfied on all .Α ζ jf': Thus,



30 Ε.Β. Dynkin

Ρ
ν
 (A

r
) = νρ

ν {Α) {Α e F) (
75)

We denote by A the set of all paths { a
n
 j in Ωοο for which lim a

n
 does not

n-KD

exist, or exists but is not in B, and by λ the set of all paths I a
t
 I in

β for which lim at does not exist, or exists but is not in B. It is easy
t-»-co

to see that A
r
 = -i, and by (75)

By Theorems 4 and 5 and (39) we have
 V
P
X
(A) = 0 for any χ e E. Hence

ΡνΟΪ ) =
 v
Pv04 ) = 0.

Next, from (44) and Theorem 5

(76)

where μ is the spectral measure of the function 1 with respect to
Pv(x, y). By Theorem 11 it coincides with the measure \i

v
. Prom (75) and

(76)

M
v
f (x_

x
) =

 v
M
v
f (x

x
) =l(l,K

y
)f(y) μν (dy). (77)

Β

Putting / -= %r, where Γ ς Β, we have

So we have proved the following theorem.

T H E O R E M 12. For a stationary process with l-finite stationary
measure ν the limit

(79)

in the topology M_ exists almost certainly and belongs to the space of
entries B. The distribution X-& is given by (78). In particular, if
V = Ky, where y e B, then almost certainly x-& = y.

Applying Theorem 12 to an ft-process we can obtain a more general
statement in which the function 1 ceases to play an exceptional role.

T H E O R E M 13. Let V be an l-finite harmonic measure, h a y-integrable
harmonic function. Then for the stationary process with transition
function p

h
(x, y) = (/I(JC))"1 p(x, y)h(y) and stationary measure hv, the

limit (79) in theJopology M- exists almost certainly and belongs to the
space of entries B. The measure of the set of paths for which
*-co e Γ C Β is
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Γ

R E M A R K . Prom Theorems 4 and 5 and (51) it follows that almost all

paths of the process considered in Theorem 13 have in the topology M
+
 the

limit

lim Χί = χ
+οο
ζΒ,

i-H-oo

where the measure of the set of paths for which *
+00
 e Γ C Β has the value

(81)

r

(Μ·/ι is the spectral measure of the excessive function h).

§18. Stationary processes with random moments of birth and cut-off

We attempt to extend the results of the previous section to the case

where the measure ν and the function h are excessive, but not neces-

sarily harmonic. The transition from h - 1 to an arbitrary excessive

function h does not cause serious difficulties. Therefore we first take

h = 1.

We construct in some countable space £ 3 £ a transition function_and

harmonic measure coinciding on Ε with p(x, y) and ν and defining in Ε a

stationary process. Almost all paths of this process remain in Ε from the

moment ς of first hitting Ε to the moment (of leaving E. In Ε there arises

a random process with random moments of birth and cut-off. We call this a

stationary process with transition function p(x, y) and stationary measure

v.

Let Ζ be the set of all integers. We define in the space Ε = Ζ χ Ε

the transition function ρ for which

x,0xy) = p(x, y),

ρ(0χχ, 1χϊ).= 1-^ρ (ζ, y),
υ

p(mxx,(m+i)xx) = i if m^O,

and the remaining values are zero. It is clear that (1) is satisfied for

ρ with equality. Next, let ν be an excessive measure for p(x, y). The

formulae

ν (0 χ x) ,= ν (χ), ν (m X x) = ν (x) - 2 ν (y) ρ (y, x) for m > 0,

y

v(mxx)=-0 for m < 0,
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define in E a harmonic measure with respect to p. Identifying 0 χ χ with
χ we may assume that Ε C E. In this case ρ coincides with ρ and ν with ν
on E. Obviously it maybe assumed that the points m χ χ lie above χ if
m > 0 and below if m <0. We consider in Ε the process xt with transition function
ρ and stationary measure V. Subtract ing from Ω a set of measure zero we may
assume that the paths behave as follows. After unit time a particle not
lying in Ε moves one unit upwards; a particle lying in Ε moves in Ε in
correspondence with the transition probability p(x, y); if the process in
Ε guided by this law must terminate, then instead of this there is a move
in Ε of one unit upwards. Let ξ be the moment of first reaching Ε and ζ
the moment of leaving E. Rejecting on each path the part not belonging to
Ε we obtain in £ a random process xt with moment of birth ξ and moment of
cut-off ζ. For this process the measure of the set 1 x

m
 = a

m
 x

n
 = a

n
\

is

ν (a
m
) ρ (a

m
, a

m + 1
) ... ρ (a

n
_i, a

n
). (82)

We have the same expression as in (4*). It is natural therefore to call
the process so constructed stationary with transition function p(x, y) and
stationary measure V.

The paths of this process are functions with values in Ε defined on
all possible intervals of the form [m, n], (- oo, n], [m, +a>) and
(- 03 , +oo). The set of all paths is denoted by Ω', and the σ-algebra
generated by all simple sets [a

m
 ... a

n
]S by^". We have constructed on

£F' a measure ?
v
 that is equal to (82) on the simple set [a

m
 ... a

n
)m· The

measure P
v
 is defined uniquely by this condition, as follows from the

following lemma, which we prove in the Appendix.
L E M M A A. If two measures on the o-algebra IF' in Ω' coincide and

are finite on all simple sets, then they coincide everywhere.
From

ν ( o
m
) h (a

m
) p

h
 {a

m
, a

m + l
) . . - p

h
 K - i , a

n
) = .,,.__

= ν (a
m
) ρ (a

m
, a

m+
i) • • • Ρ K-i.

 a
n)

 h
 (

a
n) -

= h (a
n
) ν (a

n
) p

v
 (a

n
, a

n
-i) . · · Ρ K + i .

 a
m)

it follows that if x
t
 is a stationary process with transition function p

h

and stationary measure hv, then x
t
 = x-t is a stationary process with

transition function pv and stationary measure hv. Using these remarks it
is easy to prove the following theorem, a generalization of Theorem 13.

T H E O R E M 14. Let V bean I-finite excessive function, and h α γ-
integrable excessive function. Then for the stationary process with
transition function p^(x, y) and stationary measure hv almost all non-
terminating paths have in the topology M

+
 α limit χ

+ ω
 e B. The measure of

the set of paths for which χζ e Γ C Ε \J Β is

(83)
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Hence all paths without a beginning have in M- a limit * - ω e B. The
measure of the sets j χξ e Γ Ι , where Γ C Ε \J &, is

(84)

P R O O F . We consider only the case h = 1. (The passage to the general

case is effected just as in the derivation of Theorem 13 from Theorem 12.)

Apart from the_transition function ρ in £ we consider the transition

function ρ in E, where all mappings constructed from it are distinguished

by a bar on top. We introduce in Ε the standard measure γ, putting

Y(m χ x) = 0 of m < 0 and selecting the value of y(m, x) for m %. 0 so that

2 γ (m X x) = y(x).
m

It is easy to calculate that

Kxy (m X x) = ky (x) for η > 0. (85)

We denote by E* the set of all points η χ y, where n ^ O , By (85) the

"divergent to infinity " sequence n
r
 χ y

r
 e E* converges in the M*-

topology corresponding to p(x, y) if and only if y
r
 converges in the M*-

topology connected with p(x, y), or n
r
 -> oo and y

r
 = y beginning with some

r. Hence the Martin boundary dE* is contained in dE and ΘΕ+ = dE \J Ε',

where E' JLs in natural correspondence with E.

Let h be a p-harmonic function and μ its spectral measure. By (54)

\ f (¥) Η M-f (x
n
) h(x

n
) {f£C (E*)).

Ε*

We put f(y) = p(y, E*). Then the right-hand side is evidently zero. Hence

μ_ is concentrated on E* (J dE*. On the other hand, μ is concentrated on
h η

dE. This means that it is concentrated on dE*. Hence it is easy to deduce

that the space of exits Β is Β \J Ε' and may be naturally identified with

Β U E. We apply to the process xt the remark at the end of §17. It is

obvious that { x
m
 = y ! = 1

 Χ
ζ = y | . Hence the first part of Theorem 14

follows.

To prove the second part it is sufficient to apply the part just

proved to the inverted process xt = x-t•

§19. Hunt processes

Hunt noticed that boundary theory is applicable to a class of processes
wider than Markov processes. Roughly speaking, these are processes which
behave like Markov processes with transition function p(x, y) after the
moment of first reaching any finite set D.

We denote (as in §18) by Ω' the set of all functions at with values in
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Ε, defined on all possible intervals (-00, n], [m, n], [m, + 00) and

(-00, + co). The left end of an interval is called the moment of birth

and the right the moment of cut-off. In the space Ω' we consider the τ-

algebra F' generated by all simple sets. Important examples of im-

measurable functions are: a) the moment of birth ξ; b) the moment of cut-

off ζ; c) the position xt of the path at the moment t (the domain of

definition of %t is the set \ξ 4 t < r\\ ; d) the moment ση of first

hitting Dand the moment ID of leaving D (the domain of definition is the set

Ω# of paths hitting D); e) H(x), the number of hits in the point χ (the

domain of definition is - Ω ' ) .

Let Ρ be a measure on the τ-algebra F'. The process determined by Ρ

is called a Hunt process with transition function p(x, y) and

characteristic measure (3 if:

19.A. For any finite D, any η = 0, 1, .... and any a
Q
, a

lt
 .... a

n
 e Ε

Ρ { X a D = a 0 , X a D + l = « 1 . · · · >

== v
D
 (a

0
) ρ (o

0
, a

t
) . . . ρ (α

η
_ι, a,,).

19.B. MH(x) = β(χ) < co for any χ e E.

For η = 0 from 19. A we have v
D
 (a

0
) = Ρ {x

aD
 = a

0
}. Condition 19. A

means that y
t
 = i,

 + (
 is a Markov process with transition function

p(x, y) and initial distribution vn.

We note that by 19.Β for almost all paths ti(x) is finite, hence *
σ β

and x
TD
 are defined

1
 on Ω'η. we denote by HD(X) the number of hits of a

path in the state x, starting with the moment ση. By 19.A, MHD(X) is the

mean number of hits in the point χ for a path of the Markov process with

transition function p(x, y) and initial distribution Vfl. Hence from (3)

it follows that

MN
D
 (x) = (v

D
G) (x). (86)

Evidently N
D
 (χ) \ Ν (χ) for D \ Ε. Hence

(v
D
G) (χ) \ β (χ) (87)

for D \ Ε. From (87) it is clear that β is an excessive measure (with
respect to p(x, y)). We note that

β (χ) = 2 P {x
t
 = χ}.

Since g(x, χ) > 1,

v
D
 (Χ) < (v^G) (a:) < β (ζ)< 00.

If any state is attained only by a set of paths of measure zero, such

a state may, without difficulty, be removed from E. Hence, without

restricting significantly the generality, it may be assumed that the

Here, as in the wbole of §19, D is taken as a finite set.
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following additional condition is satisfied:

19. C. (3(x) > 0 for any χ e E.

E X A M P L E 1. The Markov process with transition function p(x, y)

and starting distribution ν can be regarded as a process with moment of

birth £ = 0 and moment of cut-off ζ. Condition 19. A is always satisfied.
 5

Condition 19.Β is satisfied if the process is transient.

E X A M P L E 2. The stationary process with transition function

p(x, y) and stationary distribution ν satisfies condition 19.A, but not

19.Β (if ν ̂  0).

E X A M P L E 3. Let xt be a Hunt process and ν(ω) any integer-valued

random variable. Then xt = x
v
+t is a Hunt process with the same transition

function and characteristic measure. We call this transformation a random

translation in time.

For the process xt the inverted process is defined by the formula

xt = χ-t· Its moment of birth is -ζ, and moment of cut-off -ξ.

T H E O R E M 15. By inverting a Hunt process with transition function

p(x, y) and characteristic measure β a Hunt process is obtained with the

same characteristic measure and the transition function

p, (x, y) - —
 W )

 .

PROOF. Let σ' be the moment of first hitting the finite set D' for

the process x
t
. Then τ = - σ' is the moment of leaving D' for the process

xt• We have

Ρ \ x a " — fl0i 2"o '- f- l — Ο,ΐι · · · ! Χα'-Ί η = a n ) = Ρ \%x — β 0 > Χ τ - \ = = α ΐ ι · · · > x x — η = α π } ·
(88)

Let Oj) be the moment of first hitting D for the process xt. By 19.A

yt = Za
D
-~t i

s a
 Markov process with transition function p(x, y) and initial

distribution vo. Let τ be the moment of leaving D' for the process y
t
.

According to (25)

(a
n
)ρ(α

η
, α

η
_ι) . . . p(a

u
 a

0
) L

n
 (a

0
). (89)

Obviously outside the set AD = { Q> > τ I we have yr = xr, .... yr-
n
= xr-n-

Hence the left-hand side of (89) differs by not more than Ρ(Αβ) from the

probability (88). But as D \ Ε Ρ (A
D
) \ 0 and v

D
G j β by (87). Hence,

taking the limit in (89), we have

Ρ {χ
τ
 = a

0
, x

x
-i = fli, . . ., x

x
-

n
 •= a

n
} =

= β Κ ) Ρ Κ , fln-ι) · · · Ρ («ι. «ο) ̂
β
 («ο)· (90)

The right-hand side is equal to LD (a0) β (a0) p$ (a0, a^ . . . p& (an, an-i)

It is left to the reader to verify this.
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and by (88) the process i t satisfies 19.A. That 19.Β is satisfied for
this process is obvious.

COROLLARY. Let p P x be the measure corresponding to the Markov
process with transition function ρβ(χ, y) and initial state x. Let

L% (χ) = βΡ χ {x0 = χ, xt ς D for t> 0}.

Then for the Hunt process with transition function p(x, y) and charac-

teristic function β

vD (χ) = β (X) L% (χ). ( 9 1 )

PROOF. Putting η = 0 in (91), (88) and (90), we have

Ρ {Χΰ, = α0} = Ρ {χχ = α0) = β (ο0) LD (α0). (92)

Considering now xt as an initial process and xt as an inverted one, on

applying (92) we get (91).

(91) shows that the distribution Vfl can be uniquely reconstructed

from the transition function p(x, y) and the characteristic measure (3.

L E M M A 6. For D\E there exist the limits

{ky, vD) f Μ* (»), (y e E*),

(LD, x y ) f S (y), (y 6 E).

Here for y e Ε

(Outside Ε $β$ and S may tend to +00. S depends only on the transition

function p(x, y), and 36$ depends only on p(x, y) and β.)

PROOF. By (31) and (71) for y e Ε

π. .. \._ (
V
DG) (y) /r „ \^ GL

D
{y)

By (87) it follows from this that

(^,v
D
)flM- for y£E.

By (24), Gt-o(y) is the probability that the path of the Markov process
with i n i t i a l state y and transition function p(x, y) h i t s 1 D. Hence i t is
clear that GLD (y) f 1 and(LD, κυ) \l/s(y). I t remains to note that

{kv, vD) = 2 vD{x)ky{x)

is a continuous function of y on E* and hence that for D \ Ε this

function does not diminish for y e dE. similar arguments are applicable

to (LD, K
y
).

1
 We recall that being transient almost all paths hitting D leave D.



Boundary Theory of Markov Processes (The Discrete Cage) 37

T H E O R E M 16. For the Hunt process with transition function p(x, y)

and characteristic measure (3 almost all non-terminating paths have in the

topology itf
+
 a limit z

+ 0 0
 e B. Almost all paths not having a beginning have

in the topology M- a limit x-
m
 e B. Here

(94)
r

(μι is the spectral measure of the excessive function I, and μ^ is the

spectral measure of the excessive measure β).

P R O O F . By 19.A yt = x
0D+t
 is a Markov process with transition

function p(x, y) and initial distribution VD. By Theorems 4 and 5 for

almost all non-terminating paths the limit of this process y
+ 0 0
 exists and

is in B. By (83) the probability that y- e Γ is

„, v
D
) μ

Λ
 (dy) (95)

(ζ is the moment of cut-off of yt). We denote by Co the set of paths of

the process xt not meeting D. Evidently outside D y- = xr. Hence (95)

differs from Ρ} χζ e Γ! by not more than P(Cfl). But for D \ Ε we have

Ρ (C
D
) \ 0, and hence the limit (95) is equal to Ρ { χζ e Γι . This proves

(93).

The remaining statements of the theorem are obtained by applying the

part already proved to the inverse process. Here we have to use Theorem 11

and the Corollary to Theorem 15.

So far the question of the existence and uniqueness of a Hunt process

with given transition function p(x, y) and characteristic measure β has

remained open. First we prove the uniqueness theorem.

T H E O R E M 17. The transition function and characteristic measure

determine a Hunt process uniquely to within a random translation of time.

P R O O F . As in §9, let N(x) denote the number of the state x. For

each path i at ! we consider the smallest of the numbers N(at) and call the

first moment for which this smallest number is attained canonical. The

canonical moment υ is a function of the path that can be defined by the

conditions

N(x
t
)>N(x

0
) for all t,

N(x
t
)>N(x») for ί<υ.

By means of a random translation of time we can make sure that ν = 0. We
assume that this condition is satisfied and put
Dh = {x : Ν (~) •<k), ah = aDh, vft = vDft. We note that Ok 4 ν = 0 for any

k. Next, Ν (xt) > TV (xOh) for t < σ*. Hence
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{ah = —m) = {ok + m = 0} - {N (xuh+t) > Ν (xak+m) for f = 0, 1, . . .,

. . ., m - 1, Ν (x<,h + t) >N(xak+m) for t > m) = {υ' = m},

where v' i s the canonical moment for the process yt = *o-fe+t ( t » 0). By

19.A

Ρ {σΛ = — m, xaf t = a;, #„ --- an, xn + l = an + i, . . ., xr - ar) =

= Ρ {y0 = x, yn + m = «„, . . ., i / r + m = αΓ, υ' = m). (96)

Let an e flfe. Then the left-hand side of (96) i s zero for η < -m. Hence,
summing over a l l χ e Dfe and over a l l m ^ 0 \/ (—ri), we get

Ρ {^n = am xn + l = a n + l> • · · •> xr = ar} =

= Ρ
ν Λ
 {υ' + re > 0, ir

n + U
' = e

n i
 . . ., y

r
+»' = flr}· (97)

Thus, the measures of simple sets in Ω' can be reconstructed from the

transition function p(x, y) and the measures Vfe. By the Corollary to

Theorem 15 the latter is defined uniquely by p(x, y) and the measure β.

It remains to use Lemma A of §18.

The following existence theorem holds.

T H E O R E M 18. Let β be an excessive measure for the transition

function p(x, y), where β(χ) < oo for all χ e E. Then there exists a Hunt

process corresponding to p(x, y) and β.

To prove this theorem measures VD can be defined by (92) and then the

measures of simple sets can be given by (97). The detailed execution of

this plan is somewhat unwieldy (it is carried through in [3], Chapter 10,

§12).

If β = oiG, the required Hunt process is obtained by considering a

Markov process with initial distribution a.

The general case can be treated as follows: It is easy to verify that

if D
h
\ Ε and Vfe = vz)

fe
 are defined by (92), then v

h
G f β. We construct

the Hunt process with characteristic measures β& = vfeG, produce in each of

them arbitrary displacements of time, making the canonical moment zero,

and then take the limit as k -* 00.

Appendix

Measures in spaces of paths

We prove Theorems A and Β stated in §2 and Lemma A of §18. First we

prove the propositions on the uniqueness of a measure. Here we depend on

a simple lemma from set theory.

A system % of subsets of a set Ώ is called a π-system if the inter-

section of two sets of is also belongs to 'β. The system £β is called a

λ-system if: λχ) the sum of two disjoint sets of 3β also belongs to <M\

λ
2
) if Α, Βζ^αηά A D Β, then Α \ΒζτΜ; λ

3
) if A

u
 . . ., A

n
, . . . ζ Si

and A
n
\ A, then Α ζ S£; Κ) Ω 6 $£-.
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L E M M A B. If the λ-system SB contains the K-system ί?, then SB

contains the O-algebra σ ('*§), generated by %>.

This lemma is proved in the first few pages of [2] (see Lemma 1.1).

C O R O L L A R Y . Suppose that two measures given on a O-algebra S' in

a space Ω coincide and are finite on a K-system % generated by JF, If Ω

can be partitioned into the sum of a countable number of pairwise disjoint

sets Ω
η
ξίρ, then the two measures coincide everywhere on jF.

PROOF. We denote by SB the family of all sets Α ζ & on which the

measures coincide and are finite. We put Α ζ SB
n
 if Α ζ SB and

A £ Ω
η
; A 6 %

n
 if A £ % and A C Ω

η
. Let tf

n
 be the σ-algebra in the

space Ωπ generated by ίί
η
. Evidently ^β

η
 is a π-system, SBnis a λ-system in

Ω
η
 and <g

n
 <=, SB

n
^ By Lemma Β cf

n
 s SB

n
.

We put A £JF if A
n
(] Ω

η
 ζ <f „ for all n. Evidently & contains % and

is a σ-algebfa. Hence J? ̂  J^
7
. Thus, if A 6 ̂ , then for all n,

4 Π Ω
η
 6 efη ̂  SB

n
 <=z SB. But if two measures coincide on Λ Π Ω

η
 for all

n, they coincide on A.

It is now quite simple to prove the uniqueness of the measure in

Theorems A and B. It is sufficient to apply the Corollary just proved to

the π-system of all simple sets and to note that the simple sets

[a
0
] (a

0
 e E) are pairwise disjoint and that their sum is the entire space

of paths.

To prove Lemma A of §18 we denote by % the family of sets of the form

{I = s, x
mi
 = a

m
, x

m2
 = a

m2
, . . ., x

mh
 = a

mh
, ζ — t}, (0.1)

w h e r e - 0 0 < ; s < ; rrii < m 2 < . · · < m n < ί t •< + ° ° ; k = 1 , 2 , . . . we
note that the sets

{l=s, x,=x,t, = t) (— 00 < s < t < + 00, χ 6 #),

{S = - oo, β, = a:, ζ = i} (-00 < t < + 00, χ 6 £)·.

{| = -00, χ0 = χ, ζ= +oo} (* 6 S)

belong to %, are pairwise disjoint, and that their sum is the whole space

of paths. It remains to verify that the given measures are finite and

coincide on 'β. For the sets

[a
m
 . . . ajl, = {ξ < m, x

m
 = a

m
, . . ., x

n
 = a

n
, > ζ η} (0.2)

this is true by the conditions of the Lemma. Hence this is true also for

the sets

{ξ < s, x
mi
 = a

mi
, x

m2
 = a

m2
, . . ., x

mh
 = a

mfe
, ξ > t) (0.3)

(—00 < s < rrii < m
2
 < ... < TO

A
 < t < + 00),

which can be expressed as a countable sum of pairwise disjoint sets (0.2).

Letting s \ — 00 or ί | + o° we conclude that the measures coincide

on the sets (0.3) also for s = - 00 and for t = + 00. Hence it is clear that

the measures coincide on all sets (0.1).

The proof of the existence of the measures described in Theorems A and
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Β is based on the following general theorem from measure theory.

T H E O R E M B. Let A be an algebra of sets in the space Ω (that is,
a family of sets containing together with any two sets their sum and
together with any set its complement). Let P(A) be a non-negative
function on A, satisfying the conditions:

a. If A
1 (
 A

2
 belong to A and are disjoint, then

Ρ(Αι[)Α
2
) = Ρ (A,) + P(i

2
).

β. The space Ω can be partitioned into a countable union of disjoint

subsets Ω
η
 ζ A such that Ρ(Ώη) < °°.

γ. If Αι 3 A
2
 D ... 3 A

n
 J ... are sets in A and lim P(A

n
) > 0,

then f| Λ
η
 is non-void,

η

Then, on the σ-algebra JF generated by A there exists a measure
coinciding with Ρ on A>.

The sequence of sets A
n
 ζ A is called a nest, if

A
o
 =2 i4i= . . . Ξ A

n
 Ξ . . ., lim Ρ (A

n
) > 0 and Ρ (Α

{
) < oo. By

virtue of β it is easy to prove that the condition γ is equivalent to the

following:

γ ' . Every nest has a non-void intersection.
Theorem A wi l l be deduced from the following theorem:
THEOREM D. Let ^F be a σ-algebra in the space Ω,χ,ο/ non-

terminating paths generated by the simple sets [a0 ... an]. For any η and
any a0 ... an e Ε suppose that a non-negative number p(a0, a 1 ( . . . . an)
is given, where

«ι, . · . , an)--=p(a0, au ..., a ^ j ) . (0.4)

Then there exists a measure Ρ on the σ-algebra JF for which

Ρ [a0, % . . . an] -= p(a0, au . . ., an). (0.5)

PROOF. We call a simple set in Ω
ω
ο ί the form [a

0
, a

±
 a

n
] a

simple η-set. A set that can be represented as the sum of simple η-sets is
called a cylinder n-set.

1

We note that for m > η :

a) If a simple m-set A intersects a simple η-set B, then A C B.
(Hence it follows that for m = η A = B.)

b) If a simple m-set intersects a cylindrical η-set, then it is
contained in it.

c) A simple η-set is a cylindrical m-set.

d) A cylindrical η-set is a cylindrical m-set.

e) The sum and the complement of a cylindrical η-set is also a
cylindrical n-set.

Theorem D, as the Theorem Ε deduced below, is a particular case of a well
known theorem of Kolmogorov on measures in products. In this particular case
the general proof is simplified significantly. In this account of a
simplified proof we follow the book of Kemeny, Snell and Knapp [3].
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Properties a), c), e), are evident, b) follows from a), and d) from

c). By d) and e) the family A of all cylindrical sets is an algebra. We

define on this algebra a measure, relating to each cylindrical η-set A

the sum of the values p(a
0
 a

n
) over all simple sets [a

0
, .... a

n
]

contained in A. Although every cylindrical η-set A is at the same time an

(n + i)-set, by (0.4) the number associated with A does not depend on

whether it is regarded as an η-set or as an (n + l)-set. It is easily seen

that the function on A introduced in this way satisfies α and β. If we

prove that it satisfies also condition γ', then Theorem D follows from

Theorem C.

We require the following:

L E M M A C. If the sets C
n
 form a nest, then for each m there exists

a simple m-set Β such that Β f] C
n
 also forms a nest.

We note that

0 < lira Ρ (C
n
) -- lim Σ V(B Π C

n
) - 2 HmP (fl f] C

n
) (0.6)

(the sum is taken over all simple m-sets B; the signs of summation and

limit can be interchanged, since P(B ft C
n
) 4 P(B f] Co) for all η and

ΣΡ(β Π
 c
o) = P(C

0
) < oo. Prom (0.6) it follows that for some Β

lim ?(B Π C
n
) > 0 and hence Β f] C

n
 is a nest.

We come to the proof of γ'. Let A
n
 be a nest. By d) we may regard

A
n
 as a cylindrical η-set. By Lemma C a simple 0-set B

0
 can be chosen so

that Ah = A
n
 η B

o
 form a nest. Next, a simple 1-set Bi can be chosen so

that AH = Ah f] B
t
 = A

n
 (] B

o
 fj Si form a nest. Continuing this

construction, for each m we construct the nest

An = A™~
x
 Π B

m
 = A

n
 Π Β

ο
 Π Bi f!. . . Π B

m
. Obviously

Ρμ,,η^οΠ^ιΠ- · ·Γ\Β
η
) Φ 0. Hence A

n
 [}Β

ϋ
 ftB, |~|. . . f] B

n
 is non-

void. In view of a) B
Q
 2 Bi 2 ...2 B

n
, and in view of b) B

n
 C A

n
.

Obviously there exists a path ω = 6
0
6ι ... 6

n
 ... such that

B
n
 = [6o^i ··· b

n
). It is clear that ω e B

n
 C A

n
, and hence the

intersection of A
n
 is non-void.

P R O O F OP T H E O R E M A. We extend the space Ε to Ε adding to Ε

one more point ·. We put

p(a
0
, a

u
 ..., a

n
)=-

p (<z
0
, «i, . . ., a

n
), when a

0
, a

u
 . .., α

η
 ζ Ε,

ρ (a 0, au . . ., am), when a0, au ..., α,ηζΕ, a m f l =...=an ----- *,

0 , otherwise.

It i s easily seen that ρ satisfies (0.4). Let fiobe a space of non-
terminating paths and #".a σ-algebra in this space generated by
cylindrical sets. We reject from each path in Ώ^ containing the element
* the part of i t beginning with the first asterisk £paths not containing
* are left unchanged). So we obtain a magping α of Q» into Ω.

By Theorem D there exists a measure Ρ on the σ-algebra & such that

Ρ [oooj . . . an\=p (a0, au . . ., an). The formula

P ( i ) = P [a"1 (A)], (A
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d e f i n e s a m e a s u r e on &, w h e r e Ρ [a0 . . . an] = ρ ( α 0 , a j , . . ., an) =

= ρ (a0, au . . ., an) for a0, au . . ., an ζ Ε.

PROOF OP THEOREM B. The formula

( an if η = 0,

«2η-ι if « > 0 ,

a_2n if « < 0

defines a mapping of firointo Ω. (Under this mapping the path
αοαια2α3α4 . . . . goes into ... αΑ,αζ

αοαίαα · · · )· We put
p' (a0, di, a2, • • ·, a2h) = P-k [«2ft. «2ft-2> · · ·> a2> a 0) 1̂> · · ·> a2h-lh

p' (a0, fflt, a 2 l · · -ι a2A-l) = P~h+l l^2ft-2t · · -ι β2> αθι «1, · · · τ «2ft-ll·

By (3
1
) - (3") the function ρ' satisfies (0.4). By Theorem D a measure

P' can be constructed in Ωυ, such that P ' [ao«i · · · a J = Ρ' (αο> αι> · · ·> an)·
We define in Ω the measure

Ρ (Α) = Ρ' [α-1 (A)}.

I t is easy to see that for i t

Ρ [α_Α, . . ., a0, . . ., ah]_k = p_k (a_ft, . . ., a0, . . ., a f t).

Using the addit ivity of ρ and the properties (3') - (3") of pg, i t i s
easy to prove that for any m 4 η

Ρ [am . . . anlm = pi, (a m , . . ., an).
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