Ligand-protected gold clusters: the structure, synthesis and applications

To cite this article: D A Pichugina et al 2015 Russ. Chem. Rev. 84 1114

View the article online for updates and enhancements.
Ligand-protected gold clusters: the structure, synthesis and applications

D A Pichugina, a N E Kuz’menko, a A F Shestakov b

a Department of Chemistry, Lomonosov Moscow State University
Leninskie Gory 1, str. 3, 119991 Moscow, Russian Federation
b Institute of Problems of Chemical Physics, Russian Academy of Sciences
Prosp. Akademika Semenova 1, 142400 Chernogolovka, Moscow Region, Russian Federation

Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the ‘divide and protect’ approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Au n with RS, RSe, PhC:C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β- and γ-cyclodextrin molecules (Au 15 and Au 25) and on anchorage to a support surface (Au 235/Fe2O3, Au 230/C, Au 20/FeO x) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR) n ‘staple’ units in the cluster shell is proposed. The structure and properties of bimetallic clusters M,Au,L m (M = Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the ‘staple’ units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR) x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites.

The bibliography includes 345 references.

Contents

I. Introduction 1114
II. The structure of [L,Au,X m] q clusters 1116
III. Methods of synthesis of atomic gold clusters 1117
IV. Methods for determination of the structure and properties of clusters 1120
V. Clusters with strong metal–ligand interaction 1122
VI. Gold clusters stabilized by phosphine ligands 1129
VII. Bimetallic clusters M,Au,L m (M = Pd, Pt, Cu, Ag) 1133
VIII. Properties and applications of [L,Au,X m] q clusters in nanoelectronics, nanooptics and catalysis 1135
IX. Conclusion 1139

I. Introduction

A key problem in nanotechnology is to design materials with specified properties.1–3 The quality of such materials is governed by the degree of dispersion of their components (nanoparticles). Nanoparticles prepared by modern chemical methods are characterized by the size distribution function, while their structure, morphology and exact atomic composition remain unknown.4, 5 As a result, it is impossible to relate the observed physicochemical proper-

D A Pichugina Candidate of Chemical Sciences, Assistant Professor at the Department of Chemistry, MSU. Telephone: +7(495)939–4765, e-mail: daria@phys.chem.msu.ru
N E Kuz’menko Doctor of Physical and Mathematical Sciences, Professor at the same Department. Telephone: +7(495)939–4765, e-mail: nek@edu.chem.msu.ru
Current research interests of authors: gold clusters, quantum chemistry, theoretical simulation of catalytic reactions, molecular spectroscopy.

A F Shestakov Doctor of Chemical Sciences, Leading Researcher at the IPCP RAS. Telephone: +7(496)522–5163, e-mail: a.s@icp.ac.ru
Current research interests: chemistry of metal complexes, reactivity, quantum chemical studies.

Received 30 August 2014
Uspekhi Khimii 84 (11) 1114–1144 (2015); translated by A M Raevskiy

DOI 10.1070/RCR4493
ties of a species to a particular composition or structure. Therefore, of crucial interest are atomic clusters whose compositions and structures are known with certainty.6, 7 Progress in physicochemical and synthetic methods made it possible to synthesize and study atomic clusters (i) in solutions where they are stabilized by organic ligands or macromolecules and (ii) on the surface of composite materials.8–11

Among atomic metal clusters, small gold clusters attract special attention. There is a long history of research into the properties of these systems. Ligand-protected gold clusters were synthesized and studied by X-ray diffraction long before the ‘nanotechnology era’,12–17 while theoretical interpretation of their structure in terms of molecular orbitals18 was done long before high-level quantum chemical calculations were practically implemented. Recently, the number of scientific publications devoted to gold clusters has continuously increased. According to the Scopus bibliographic database, more than 7000 studies containing key words ‘gold cluster’ were published only in 2014 (Fig. 1). To date, gold clusters protected by thiolate,19, 20 phosphine,12–17, 21 selenolate22–25 and acetylene26, 27 ligands were synthesized and investigated, and the mechanisms of formation of some clusters were studied.28, 29 Ligand-free gold clusters existing in the gas phase also attract the attention of researchers.30–32 Recently, atomic gold clusters Au10, Au20, Au25,33–35 and Au55 (in zeolite cavity)36 have been detected on the surface of heterogeneous catalysts.

Intensive progress in the chemistry of gold clusters is favoured by the advances in their synthesis, stabilization and structure determination. Among the studies that underlie modern methods of targeted synthesis, there are the synthesis of the Au55(PPh3)12Cl6 cluster (main component of commercially available reagent Nanogold37) by Schmid et al.38 and the development of a two-phase method of synthesis of thiol-derivatized gold nanoparticles by Brust, Schiffrin and co-workers.38 Further development of this method led to the synthesis of various stable clusters containing from 10 to 102 gold atoms. The structures of ten thiolate clusters including Au20(SC6H4Bu−4)439 [Au25(SCy)16]− (Cy is cyclohexyl),40 Au24(SAd)16 (Ad is l-adamantyl),41 Au24(SCH2C6H4Bu−4)42,43 [Au25(SCH2Bn)18]−,44 [Au50(SCH2Bu−4)20],45 Au50(SbBu−18),46 Au50(SCH2Bu−4)4,47 Au50(SCH2Bn)24,48 Au102(SCH2CO2H−4)44 (Ref. 51); twelve phosphine-containing clusters, viz. [Au5(dpdp)][Au4(dpdp)Cl2]2+ (Ref. 52); [Au6(dpdp)3]+ (Ref. 53), [Au6(dpdp)Cl3]2+ (dpdp is 1,3-bis(diphenylphosphino)propane),44 Au11(PPh3)3(SPy−4),45 (Py is pyridyl),55 [Au13(PMe2Ph)3Cl6]2+ (Ref. 56), [Au14(PPh3)6(NO3)4]−,57 [Au20(PPh2−Py−2)10Cl4]2+ (Ref. 58), [Au20(PPh)4]4+ (PP is tris[(diphenylphosphino)ethyl]-phosphine),59, 60 Au25(PPh3)6,61 [Au24(PPh3)10(SCH2Bn)5ClBr]+ (Ref. 62), [Au25(PPh3)10(SC6H4But−4)15]2+ (see Ref. 63),7 [Au39(PPh3)14Cl4]− (Ref. 17) and a selenium-containing compound Au38(SeC12H25)24 (Ref. 25) were determined by X-ray diffraction. Methods for the synthesis of ligand-protected gold clusters are available from the literature.10, 64

A breakthrough in research on gold clusters became possible due to progress in the theoretical methods based on the density functional theory (DFT). Calculations of the molecular structure and studies on the electronic properties of the clusters with known compositions were used to determine their structures and mechanism of formation, to predict the compositions of non-synthesized compounds and to formulate a number of theories and concepts. Using the fundamental ‘divide and protect’ approach,65 the ‘superatom’ theory,66 and the ‘structure rule’,67 one can determine the structure and properties of gold clusters with all types of ligand environment. For instance, the molecular geometry and optical properties of the Au58(SR)24 (R = C6H13, C12H25) clusters were predicted using these theoretical concepts before crystal structure determination.67, 68 Successful application of quantum chemical methods to investigation of the structure and properties of ligand-protected clusters gives an impetus to research into targeted isolation and crystallization of novel clusters of theoretically predicted composition. Gold clusters are used as ‘building blocks’ to design nanomaterials with controllable properties.69–71 Applications of gold clusters and nanoparticles in catalysis72 are at least equally promising. Professor Haruta discovered low-temperature catalytic activity of oxide-supported gold nanoparticles in CO oxidation.73 At present, the range of reactions catalyzed by gold nanoparticles is significantly extended; it includes various reactions used in organic chemistry and petrochemistry; many of them belong to ‘green’ chemistry.74–76 The reason for activity of heterogeneous catalysts containing gold nanoparticles remained unclear for long. A modern point of view is as follows: the major contribution to the activity of gold-containing composites comes from atomic clusters containing from 10 to 20 metal atoms and formed on the surface of heterogeneous catalysts along with larger particles.33 Also, it is assumed that atomic clusters are responsible for transformations in homogeneous catalytic reactions involving formation of subatomic gold clusters from corresponding organic salts.77 The optical,78, 79 magnetic80, 81 and biochemical82, 83 properties of gold clusters that are due to the ‘nano state’ (it is also inherent in other metal clusters) and to unique

![Figure 1](image-url) Figure 1. The number of scientific publications containing ‘gold cluster’ key words since 1990 (according to the data retrieved from the Scopus bibliographic database).

The fundamental studies in chemistry of atomic gold clusters are shown.

1 From this point on, the substituents C6H4−4 have normal structure unless otherwise specified.
electronic structure of this noble metal are no less important than their catalytic properties.

Recently, there has been a considerable increase in the number of original experimental and theoretical studies on the synthesis and separation of individual gold clusters, structure elucidation, diagnostics of optical and biochemical properties and on tests of catalysts based on gold clusters in various processes including photocatalysis.

A novel research trend is concerned with doping of gold clusters with atoms of other metals (copper, palladium, silver, platinum). The structure of [L \(n \), Au \(n \) \(X \) \(m \)] clusters is characteristic of the ligand-free clusters \(\text{Au}_{13} \) \((n = 1)\), \(\text{Au}_{155} \) \((n = 2)\), \(\text{Au}_{114} \) \((n = 3)\). The electron shell model predicts high stability for these clusters.

The stability of the \([L, \text{Au}_{n}X_{m}]^{q}\) cluster is governed by not only the type of the polyhedron of the cluster core, but also the total number of valence electrons \((n_e) \). Unlike ligand-free gold clusters whose composition is described by the 'filled electron shell' theory, the superatom concept allows one to predict the stability of a cluster based on the total number of valence electrons, which is determined by the \(n \) and \(m \) values and by the charge of the cluster:

\[
n_e = n - m - q
\]

where \(v \) is the formal valence of gold atom equal to unity.

Approximation of the interaction between valence electrons and the cluster core by a spherically symmetric potential with allowance for the order of energy levels with different angular momentum (S, P, D, F, G, ...) in the potential well gives the following sequence of filling of delocalized superatomic orbitals of the cluster:

\[
1S^2, 1P^6, 1D^{10}, 2S^21F^{14}, 2P^61G^{18}, ...
\]

Most often, the cluster core represents a highly symmetric polyhedron, e.g., icosahedron. According to the shell model, the central atom of an icosahedron is surrounded by twelve metal atoms of the first coordination sphere; the second coordination sphere includes forty-two atoms. The number of atoms in the \(n \)th shell is \((10n^2 + 2)\). The structure of the \([L, \text{Au}_{n}X_{m}]^{q}\) cluster is characterized by the formal valence of gold atom equal to unity.

Approximation of the interaction between valence electrons and the cluster core by a spherically symmetric potential with allowance for the order of energy levels with different angular momentum (S, P, D, F, G, ...) in the potential well gives the following sequence of filling of delocalized superatomic orbitals of the cluster:

\[
1S^2, 1P^6, 1D^{10}, 2S^21F^{14}, 2P^61G^{18}, ...
\]

Stable closed-shell clusters are characterized by particular \(n_e \) values corresponding to fully filled levels: \(n_e = 2, 8, 18, 34 \) or 58. They are called 'magic', 'noble' or 'superatomic' clusters.

Using the superatom theory and the total number of valence electrons, one can explain the existence of the \(\text{Au}_{11} \) \((n_e = 8)\), \(\text{Au}_{155} \) \((n_e = 34)\) and \(\text{Au}_{114} \) \((n_e = 58)\) clusters, give a physically correct interpretation of the optical and EPR spectra of the \([L, \text{Au}_{n}X_{m}]^{q}\) clusters, predict the compositions of the doped clusters \(\text{MAu}_{n}X_{m} \). However, the compositions of some clusters do not obey the 'magic number' rule for valence electrons. For instance, cluster \(\text{Au}_{112}\) \((n_e = 34)\) has a total of fifteen valence electrons. Deviation from the superatom theory is characteristic of aspherical clusters. Their stability and structure can be explained and predicted within the framework of the ellipsoidal shell model, which treats the electron shell of the cluster as a set of ellipsoidal subshells. As a result, a number of clusters, e.g., \(\text{Au}_{20}\) \((n_e = 14)\), \(\text{Au}_{24}\) \((n_e = 20)\) and \(\text{Au}_{38}\) \((n_e = 34)\), have prolate structures.

The stability and structure of \([L, \text{Au}_{n}X_{m}]^{q}\) clusters are to a great extent determined by the nature of the ligands \(L \) and \(X \). For instance, unusual structure of the \(\text{Au}_{112}\) \((n_e = 34)\) cluster containing gold atoms in different coordination environment (a rare example of a crystallized cluster) is due to the polydentate nature of 4-sulfanylbenzoic acid. On the one hand, the ligand forms strong Au–S bonds. On the other hand, it forms a shell surrounding the metallic core owing to the coordination potential of carboxylate group. By and large, electron-withdrawing ligands influence the electronic state of the metal atoms in both the core and the shell and thus induce changes in the cluster structure. Changes in the cluster...
structure due to metal–ligand interactions can be explained using the 'divide and protect' (or 'stabilization through destruction') concept proposed by Häkkinen, postulated that ligands play a dual role. Namely, they (i) form a protective layer on the surface to prevent the cluster from growing and (ii) change the composition of the cluster core through transfer of some metal atoms to the ligand shell. The general formula of a cluster can be refined by specifying the number of gold atoms in the ligand shell. For instance, cluster \([Au_{13}(SC_6H_4Bn)_2]^{-}\) has an icosahedral core, \(Au_{13}\), and six \(SR(AuSR)\), \((R = C_6H_4BN)\) units in the ligand shell, \(43, 44\), therefore, the composition of the cluster is determined by balance between the energy of the Au–Au bonds and the energy of the Au–X covalent bonds being formed. The superatom theory predicts the total composition and the charge of the cluster, but the number of metal atoms in the cluster core and in the ligand shell, as well as the composition of 'staple' units remain unknown. To determine the composition of the ligand shell, Tsukuda and co-workers \(67\) proposed the 'structure rule', viz., the cluster core is a highly symmetric polyhedron and contains a corresponding number of atoms. Other metal atoms are constituents of monomeric, dimeric or polymeric 'staple' units \(SR(AuSR)\), in the ligand shell, each gold atom in the surface layer being bound to a terminal sulfur atom from the 'staple' unit. As the number of gold atoms in the cluster increases, the curvature of the core surface decreases, which leads to an increase in the number of monomeric motifs \(-SR-(Au-SR)-\). The structure of the \(Au_{13}(SR)_{24}\) cluster was predicted theoretically based on the structural principles discussed above \(67\) and then confirmed by X-ray diffraction.\(50\)

III. Methods of synthesis of atomic gold clusters

The history of synthesis of gold clusters goes hand-in-hand with the synthesis of nanoparticles in solution. The first colloidal solution of gold nanoparticles was prepared by Faraday in 1857. In 1985, Turkevich \(109\) proposed synthesizing gold particles \(7 – 100\) nm in diameter by reduction of gold from chloroauric acid with citrate anions. The chemistry of thiolate-protected gold clusters has been progressing widely owing to the studies by Brust et al.\(38\). In 1994, they proposed a two-phase method for the synthesis of gold \(2–8\) nm in size which involves transfer of the \([AuCl_4]^{-}\) ion and reducing agent, \(NaBH_4\), from aqueous solution to the organic phase by tetracyclammonium (TOMA\(+)\) cation in the presence of dodecanethiol \(HSC_{12}H_2S\). Using this method and controlled variation of the gold-to-thiol ratio, stable gold clusters of different composition were synthesized.

The synthesis of \([L,Au,X_m]^{\gamma}\) clusters became possible owing to high skills of experimentalists. The simplest scheme includes synthesis of clusters of different composition in solution and subsequent separation of the clusters. Thiolate clusters \(Au_{n}(SR)_{m}\) are synthesized following one of three routes (I – III, Scheme 1) using thiols soluble in water (glutathione, sulfanylbenzoic acid) or in organic solvents (alkylthiols, phenylethanethiols) as ligands.

![Scheme 1](image)

Scheme 1

1. **(I) \([Au^{III}Cl_4]^{-}\)**
 - \(RSH\) (Au\(^{I}\) – SR – Au\(^{I}\))
 - \(NaBH_4\)
 - \(RSH\)
 - \(NaBH_4\)

2. **(II) Au\(^{I}\)PR\(3\)**
 - \(NaBH_4\)
 - \(RSH\)

3. **(III) Au – PVP**
 - \(NaBH_4\)
 - \(RSH\)
 - \(NaBH_4\)
 - \(removal of excess RSH\)

PVP is poly(\(N\)-vinyl-2-pyrrolidone)

The Brust – Schiffrin method \(38\) involves reduction of the Au\(^{III}\) complex with organic thiols affording polymer chains of the composition \([AuSR]_{\gamma}\). Reduction with bulky thiols (e.g., benzenethiol) mainly leads to short oligomers \((x = 1–3)\) with a double-helix structure in the crystalline state.\(110\) In spite of advances in the structural studies of the polymeric fragment \([AuSR]_{\gamma}\), the mechanism of the reaction of \([AuCl_4]^{-}\) with thiol remains unclear. The addition of \(NaBH_4\) to a solution of \([AuSR]\), oligomers causes further reduction of Au\(^{I}\) to Au\(^{0}\) to give nanoclusters stabilized by thiols and oligomeric chains \([SR(AuSR)]_{\gamma}\). Selective formation of clusters occurs after removal of excess RSH. The composition of the cluster depends on the thiol-to-salt concentration ratio, solvent, the structure of the thiol, the temperature and pH.\(111\) For instance, low temperatures favours the formation of small clusters. Reactions using THF or acetone result in the \(Au_{12}(SR)_{18}\) cluster as major product, while processes in methanol or acetonitrile mainly lead to formation of larger clusters, e.g., \(Au_{14}(SR)_{40}\).\(112\) Reduction of an Au\(^{III}\) salt under the action of \(NaBH_4\) in the presence of glutathione (GSH) affords a mixture of clusters including \(Au_{14}(SG)_{10}\), \(Au_{14}(SG)_{13}\), \(Au_{14}(SG)_{14}\), \(Au_{22}(SG)_{16}\), \(Au_{25}(SG)_{18}\), \(Au_{29}(SG)_{20}\), \(Au_{33}(SG)_{22}\) and \(Au_{39}(SG)_{24}\).\(113\) When a softer reducing agent \((NaBH_3CN)\) is used, only the \(Au_{14}(SG)_{14}\) cluster is formed selectively. The use of another soft reducing agent, carbon monoxide, leads to selective formation of two clusters, \(Au_{23}(SR)_{18}\) (Ref. 114) and \(Au_{14}(SR)_{20}\).\(115\)

Owing the strong Au – S bond, the \(Au_{n}(SR)_{m}\) clusters can be formed from \(Au_{n}(PR)_{m}\) or Au – PVP by ligand exchange (see Scheme 1). The first step also involves reduction of gold and formation of the cluster core stabilized by phospine and halogen ligands. Subsequent introduction of thiol results in \(Au_{n}(SR)_{m}\) formation. A study on the ligand exchange mechanism revealed a multistep process.\(116\) The

\(\text{\textcopyright} \) From this point on, \(‘SR(AuSR)\) denotes the \(…S(R) – Au – S(R) – Au – S(R)…\) fragment containing \(x\) gold atoms.
first step involves replacement of Cl by the SR group followed by removal of PPh3 and formation of Au0.

All these methods for the synthesis of AuSRm clusters are characterized by low yields. The reaction yield can be increased on going to the two-step method which was used to obtain a Au55(PPh3)12Cl6 cluster. The first step involved the synthesis of Au13(SG)n (38 ≤ n ≤ 100). Ligand exchange, namely, replacement of BrCH2SH by SG groups of the cluster causes transformation of clusters of different composition to Au55(SCH2Bn)24. Analogously, following the ligand exchange procedure, the Au38(SCH2Bn)24 cluster was synthesized from [Au35(SCH2Bn)18]− in 90% yield and the Au38(SCH2Bn)24 cluster was synthesized from Au58(SCH2Bn)24 in 92% yield. In the two-step method, the acidity of the medium also influences the composition of the cluster being formed, namely, Au13(SG)n can be obtained at pH 2, while Au18(SG)14 at pH 2.7.

To increase the efficiency of transfer of particles from the aqueous to organic phase, the ‘protection – deprotection’ method is used. To a solution containing [AuISR]X, a surfactant [e.g., cetyltrimethyl ammonium bromide (CTAB)] is added. The surfactant stabilizes the particle through electrostatic interaction with ligands and forms a protective layer. Also, the surfactant shell imparts hydrophobic properties to the particle. Under the action of NaBH4, Au0 is reduced to Au6 and the particles thus form to the organic phase in the presence of tetramethylammonium decanoate. The final step involves removal of the surfactant protective layer as a result of formation of the ligand exchange procedure, the Au13(dppm)6(NO3)4 cluster was obtained in 51% yield. The Au13 cluster is precluded by the lack of reliable methods of investigation of intermediates. Presumably, the process involves dissociation of the starting gold salt, reduction of Au6 to Au0, and the atomic composition of the cluster changes due to aggregation. Using the labile behaviour of the PPh3 ligands, one can carry out ligand exchange and thus obtain pentane- or water-soluble clusters (Scheme 2). Establishment of the mechanism of the process leading from Au55(PPh3)12Cl6 to the Au55 cluster is precluded by the lack of reliable methods of investigation of intermediates. Presumably, the process involves dissociation of the starting gold salt, reduction with the formation of Au0L particles, subsequent increase in nuclearity, ligand exchange, cluster growth and formation of a colloidal solution.

The [Au(dppp)4]3+ cluster was obtained in 51% yield by adding silver ions to a solution of [Au35(dppp)4]2+ in methanol. The reaction mechanism is still to be clarified; it was assumed that the role of silver cations consists in the formation of important intermediates. The addition of Au(PPh3)ClO3 to a solution of [Au35(dppp)4]2+ followed by reduction under the action of NaBH4 results in the [Au35(dppp)4]2+ cluster in 59% yield.

Monodispersity of a cluster is a necessary condition for its crystallization and subsequent investigation of proper-

For instance, a cluster with the icosahedral Au13 core was obtained in 26% yield (conditions: ethanol, 50 °C).

\[
\text{Au55(dppm)(NO3)4} + \text{NaBH4} \rightarrow \text{Au55(dppm)(NO3)4}
\]

Six chelating ligands, dppm, protect the Au13 cluster from aggregation. The mechanism of increasing the number of Au atoms in the cluster core from 2 to 13 is unknown.

The Au55(PPh3)3Cl6 cluster was synthesized in 30% yield by dissolution of Au(PPh3)Cl in benzene followed by treatment with gaseous diborane B2H6 at 60 °C.

\[
\text{Au(PPh3)Cl + B2H6 \rightarrow Au55(PPh3)3Cl6 + Ph3PBH3}
\]

An important role of B2H6 consists in (i) reduction of Au55 ions to Au6 and (ii) transformation of PPh3 to a tightly bound adduct Ph3PBH3 (a Lewis acid–Lewis base complex). The Au55(PPh3)3Cl6 cluster can be dissolved only in CH2Cl2. In aqueous solution, some weakly bound PPh3 ligands are eliminated and the atomic composition of the cluster thus changes due to aggregation. Using the labile behaviour of the PPh3 ligands, one can carry out ligand exchange and thus obtain pentane- or water-soluble clusters 1–3 with the Au55 core (Scheme 2).

\[
\text{Au55(PPh3)3Cl6 + NaBH4 \rightarrow Au55(PPh3)3Cl6 + Ph3PBH3}
\]

The [Au35(dppp)4]2+ cluster was obtained in 51% yield by adding silver ions to a solution of [Au35(dppp)4]2+ in methanol. The reaction mechanism is still to be clarified; it was assumed that the role of silver cations consists in the formation of important intermediates. The addition of Au(PPh3)ClO3 to a solution of [Au35(dppp)4]2+ followed by reduction under the action of NaBH4 results in the [Au35(dppp)4]2+ cluster in 59% yield.

Monodispersity of a cluster is a necessary condition for its crystallization and subsequent investigation of proper-

\[
\text{Au55(dppm)(NO3)4} + \text{NaBH4} \rightarrow \text{Au55(dppm)(NO3)4}
\]

Six chelating ligands, dppm, protect the Au13 cluster from aggregation. The mechanism of increasing the number of Au atoms in the cluster core from 2 to 13 is unknown.

The Au55(PPh3)3Cl6 cluster was synthesized in 30% yield by dissolution of Au(PPh3)Cl in benzene followed by treatment with gaseous diborane B2H6 at 60 °C.

\[
\text{Au(PPh3)Cl + B2H6 \rightarrow Au55(PPh3)3Cl6 + Ph3PBH3}
\]

An important role of B2H6 consists in (i) reduction of Au55 ions to Au6 and (ii) transformation of PPh3 to a tightly bound adduct Ph3PBH3 (a Lewis acid–Lewis base complex). The Au55(PPh3)3Cl6 cluster can be dissolved only in CH2Cl2. In aqueous solution, some weakly bound PPh3 ligands are eliminated and the atomic composition of the cluster thus changes due to aggregation. Using the labile behaviour of the PPh3 ligands, one can carry out ligand exchange and thus obtain pentane- or water-soluble clusters 1–3 with the Au55 core (Scheme 2).

Establishment of the mechanism of the process leading from Au55(PPh3)3Cl6 to the Au55 cluster is precluded by the lack of reliable methods of investigation of intermediates. Presumably, the process involves dissociation of the starting gold salt, reduction with the formation of Au0L particles, subsequent increase in nuclearity, ligand exchange, cluster growth and formation of a colloidal solution.

The [Au35(dppp)4]2+ cluster was obtained in 51% yield by adding silver ions to a solution of [Au35(dppp)4]2+ in methanol. The reaction mechanism is still to be clarified; it was assumed that the role of silver cations consists in the formation of important intermediates. The addition of Au(PPh3)ClO3 to a solution of [Au35(dppp)4]2+ followed by reduction under the action of NaBH4 results in the [Au35(dppp)4]2+ cluster in 59% yield.

Monodispersity of a cluster is a necessary condition for its crystallization and subsequent investigation of proper-

\[
\text{Au55(dppm)(NO3)4} + \text{NaBH4} \rightarrow \text{Au55(dppm)(NO3)4}
\]
ties. Most methods for the synthesis of \([L, \text{Au}_nX_m]^{\delta}\) clusters result in crude mixtures of clusters of different composition which should be separated by deposition,\(^{127}\) gel electrophoresis or liquid chromatography. By varying the solvent polarity one can separate various compounds including \([\text{Au}_{n_1}(\text{PPPh}_3)_3\text{Cl}]^+\), \([\text{Au}_{11} (\text{BINAP})_{4}X_2]\)\(^{112}\) [BINAP is 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl; \(X = \text{Cl, Br}\)],\(^{128}\) \([\text{Au}_{25}(\text{PPPh}_3)_{10}(\text{SCCH}_2\text{Bn})_{10}\text{Cl}]^+\)\(^{129}\) and \([\text{Au}_{45}(\text{PPPh}_3)_{30}(\text{SCH}_2\text{Bn})_{30}\text{Cl}]^+\).\(^{129}\) The ‘host–guest’ approach, as applied to the synthesis of gold clusters, is practically implemented using \(\alpha\), \(\beta\), and \(\gamma\)-cyclodexirins (CD).\(^{130, 131}\) The cavity of the cyclodextrin molecule has the shape of a truncated cone and only small clusters can accommodate within.

\[
\text{Au}_n(\text{SO})_m + \text{CD} \rightarrow \text{Au}_{n-k}\text{CD(SO)}_{m-k} + \text{Au}_k(\text{SO})_k
\]

Besides, cyclodextrin forms a shell which precludes further growth of the cluster. This method was used to synthesize the \(\text{Au}_{15}\)@CD\(^{130}\) and \(\text{Au}_{25}\)@CD clusters.\(^{131}\) Organic molecules of complex structure, e.g., dendrimers\(^{132}\) containing RS groups (R = Bn, etc.) can stabilize the \(\text{Au}_{25}\)\(^{133}\), \(\text{Au}_{35}\) (Ref. 134) and \(\text{Au}_{44}\) (Ref. 135) clusters through \(\text{Au}–\text{S}\) interaction.

Proteins can also be used to protect gold clusters.\(^{85}\) On the one hand, protein molecules contain groups which play the role of reducing agents under particular conditions. On the other hand, proteins provide conditions for the synthesis of clusters of particular size owing to spatial protection and electronic stabilization through \(\text{Au}–\text{S}\) interaction. The composition of a gold cluster formed in the presence of a protein is determined by the structure of the protein molecule and by the reaction conditions. The higher the molecular mass, the larger the size of the cluster to be stabilized. The \(\text{Au}_{55}\) cluster was synthesized in a solution of bovine serum albumin,\(^{136}\) while smaller clusters (\(\text{Au}_{10}, \text{Au}_{11}, \text{Au}_{12}\)) were obtained using lysocyme (LYZ).\(^{137}\) However, a MALDI-MS\(^{8}\) study\(^{138}\) of a solution containing \(\text{Au}_n\)-LYZ clusters also revealed larger clusters, namely, \(\text{Au}_{45}, \text{Au}_{53}\) and \(\text{Au}_{102}\). Since lysocyme is a small protein and cannot stabilize large clusters, their large size may be a result of laser irradiation under conditions of the MALDI experiment.

The influence of reaction conditions on the compositions of clusters formed in proteins can be monitored taking the synthesis of gold clusters in pepsin as an example.\(^{85}\) The process shown in Scheme 3 results in \(\text{Au}_{25}\) in the basic medium and in smaller clusters (\(\text{Au}_{13}, \text{Au}_{8}, \text{Au}_{5}\)) in the acidic medium due to autolysis of pepsin.

Thus, the formation of \([L, \text{Au}_nX_m]^{\delta}\) clusters is due to strong interaction of gold atoms with SR groups, Hal atoms or other functional groups of protein molecules, which precludes cluster growth. Clusters comprising a few gold atoms can be formed on the surface of inorganic materials; in this case, the small clusters are stabilized through the interaction with the surface groups or defects of the support.\(^{72, 139, 140}\) The reaction of \(\text{Au}_n(\text{SO})_m\) with trimethoxysulanyltripropylsilane at room temperature followed by base hydrolysis at 65 °C gave an \(\text{Au}_{25}\) cluster immobilized on SiO\(_2\).\(^{85}\) The \(\text{Au}_{20}\) cluster was synthesized by deposition onto carbon surface using magnetron sputtering.\(^{34}\) According to transmission electron aberration-corrected microscopy data (Fig. 3), the cluster has a tetrahedral structure, as was predicted earlier by quantum chemical calculations.\(^{141, 142}\) A dynamic structure of the \(\text{Au}_{20}\) cluster on carbon surface was reported.\(^{34}\) The \(\text{Au}_{12}\) cluster also has a dynamic structure both in the gas phase and on a regular MgO(111) surface.\(^{143}\) Probably, it is the dynamic properties of gold clusters that are responsible for the high catalytic activity of these species. Indeed, they can vary the structure on activation of the reactant molecule or on the formation of an intermediate. For instance, the reaction of acetylene with \(\text{Au}_{12}\) affords a bridging complex \(\text{Au}_{12}: \text{C}_2\text{H}_2\) due to the

\(\delta\) Matrix-activated laser desorption – ionization mass spectrometry; LDI is laser desorption – ionization.

Figure 3. Individual frames from a time-lapse series of HAADF STEM images of \(\text{Au}_{20}/\text{C} (2.8 \times 2.8 \text{ nm})\).\(^{34}\) The inset on the right: model image (simulation) of \(\text{Au}_{20}\) tetrahedral cluster with orientation shown in the inset on the left.
dynamic structure of the cluster.144 Considerable activation of the hydrocarbon in the complex favours efficient hydrogenation of acetylene.145

Supported gold nanoparticles are widely used in heterogeneous catalysis. These catalysts are prepared by traditional chemical methods, e.g., impregnation of support with Au11 or Au13 salts and subsequent reduction and calcination.72 It was shown that the surface of the Au(2.9%)/FeO\textsubscript{x} composite kept in a chromatograph for 16 h at 120 °C is covered with not only particles 1 – 7 nm in size, but also Au\textsubscript{11} atomic clusters with a bilayer structure.33 The catalytic activity of Au/FeO\textsubscript{x} in CO oxidation is just due to the presence of Au\textsubscript{11} clusters on the surface. Recently,146, 147 we used the Au\textsubscript{10} cluster with the bilayer structure as model in the quantum chemical studies of the adsorption and catalytic properties of gold clusters. The catalytic activity of atomic gold clusters Au\textsubscript{n} (n = 2, 6 – 9, 12, 18, 20) supported on MgO in CO oxidation was studied.148 The clusters were obtained with a supersonic nozzle and then separated by mass. The catalytic properties of the samples studied were shown to depend on the cluster size and on the support nature; the smallest cluster exhibiting catalytic properties in CO oxidation is Au\textsubscript{7}. The catalytic activity of the zeolite-supported Au\textsubscript{55} cluster in CO oxidation was studied by a number of physical methods.36 However, zeolites are not the best materials for stabilization of gold clusters for catalytic applications because metal clusters may be confined within the zeolite cavities, thus being inaccessible to reactant molecules.149

IV. Methods for determination of the structure and properties of clusters

The key characteristics of clusters include the general chemical formula, the structural type, thermal stability, laser radiation resistance, as well as the electronic, optical and magnetic properties. They can be determined using a number of physicochemical and quantum chemical methods. The atomic composition of \([L\textsubscript{m}Au\textsubscript{n}X\textsubscript{m}]\)q clusters is established by MALDI/LDI-MS and transmission electron microscopy (TEM). Structure elucidation is performed by X-ray diffraction and computational methods based on DFT using different functionals. A comparison of the calculated absorption spectrum in the visible region for the tentative structure with the experimentally measured spectrum allows the cluster structure to be assessed indirectly. The charge of a newly forming cluster is determined by X-ray photoelectron spectroscopy (XPS).150 The thermal stability is studied by thermogravimetric analysis (TGA) and absorption IR spectroscopy. In the text below we present examples of application of the methods listed above in studies on the structure and properties of \([L\textsubscript{m}Au\textsubscript{n}X\textsubscript{m}]\)q clusters; the potential and limitations of these methods will also be discussed.

As mentioned above, monodispersity is an important property of clusters. On the one hand, it deserves further investigation; on the other hand, it may be utilized in some way. If a system under study contains clusters of different composition, it is impossible to relate a measured property to a particular composition. Mass spectrometry belongs to the most popular methods for the determination of the degree of dispersion and the general formula of clusters. Earlier, the cluster compositions were studied using two ionization methods, LDI and MALDI.11 Since in both cases one deals with dissociation of chemical bonds (e.g., Au – S and S – C) in the clusters, attempts to detect a peak of undamaged cluster failed. At present, electrospray ionization (ESI) mass spectrometry has been widely used to investigate the composition of atomic clusters; this method is softer and non-destructive.151 FT-IR spectroscopy is also used to verify the monodispersity of clusters.152

The charge of a newly forming cluster is determined by UV-Vis absorption spectroscopy.11, 153 – 155 For instance, the spectrum of \([Au\textsubscript{25}(SR)\textsubscript{18}]\) anionic cluster exhibits three well-defined peaks at 400, 450 and 670 nm and one diffuse peak at 800 nm (Fig. 4a). For the neutral cluster \([Au\textsubscript{25}(SR)\textsubscript{18}]\), absorption in the region of 400 nm increases and absorption at 450 nm decreases. The spectrum of a cationic cluster exhibits diffuse peaks at 400 and 450 nm and an absorption line shifted from 800 nm to 660 nm. Not only the charge, but also the electronic properties of clusters can be predicted from their absorption spectra. It should be noted that the molecular type of absorption spectrum

\[
\begin{align*}
E & \text{ eV} \\
-3 & \\
-4 & a_1 \text{ (1)} \\
-4 & a_2 \text{ (3)} \\
-6 & a_3 \text{ (3)} \\
-7 & a_4 \text{ (2)} \\
-7 & a_5 \text{ (3)} \\
-8 & a_6 \text{ (3)} \\
\end{align*}
\]

\[
\begin{align*}
\text{LUMO + 2} & \\
\text{LUMO + 1} & \\
\text{LUMO} & \\
\text{HOMO} & \\
\text{HOMO} - 1 & \\
\text{HOMO} - 2 & \\
\text{HOMO} - 3 & \\
\text{HOMO} - 4 & \\
\text{HOMO} - 5 & \\
\end{align*}
\]

Figure 4. UV-Vis spectrum of \([Au\textsubscript{25}(SCH\textsubscript{2}Bn)\textsubscript{18}]\) cluster (a)11 and its interpretation based on the Kohn – Sham orbitals (b).11 \(\lambda\) is the absorbance.
characteristic of atomic gold clusters is a consequence of one-electron transitions between energy levels. This behaviour significantly distinguishes atomic clusters from nanoparticles whose spectrum is determined by the intense transition upon co-operative excitation of conduction electrons.

The structures of ligand-protected clusters are determined by X-ray diffraction analysis. Earlier, this method was used to establish the crystal structures of small phosphine-containing clusters \(\text{Au}_{11}(\text{PPh}_{3})_{7}^{\text{SCN}} \),\(^{16} \) \(\text{Au}_{13}(\text{dppm})_{6}^{\text{NO}_{3}} \),\(^{56} \) and \(\text{Au}_{30}(\text{PPh}_{3})_{14}^{\text{Cl}_{2}} \).\(^{17} \) The structures of thiolate-protected gold clusters were determined by this method more recently because of difficulties in crystallization from solutions. Two independent research groups simultaneously reported the crystal structures of \(\text{Au}_{25}(\text{SCH}_{2}\text{Bn})_{18} \) (see Refs 43 and 44) and then \(\text{Au}_{102}(\text{SC}_{6}\text{H}_{4}\text{CO}_{2}\text{H}-4) \).\(^{51} \) The crystal structures of the following mono- and bimetallic clusters are also available: \(\text{Au}_{n}(\text{SR})_{m} \),\(^{30, 31, 39 – 42, 46 – 51} \) \(\text{Au}_{n}(\text{PR}_{3})_{m} \),\(^{16, 17, 52 – 63} \) \(\text{Au}_{38}(\text{SeR})_{24} \),\(^{25} \) \(\text{AgAu}_{n}(\text{L})_{m} \),\(^{103, 104} \) and \(\text{CuAu}_{n}(\text{L})_{m} \).\(^{105, 106} \) Traditionally, the structure of nanomaterials is investigated by TEM; however, this method seems to be inefficient in the cluster structure studies because the cluster size is too small for standard-resolution TEM and electronic radiation causes structural rearrangements in the clusters or their aggregation.

Considerable progress in understanding the structure of ligand-protected gold clusters was made using theoretical methods. Pioneering molecular dynamics studies were aimed to determine the structure of large \(\text{Au}_{n}(\text{SR})_{m} \) clusters with \(n = 140, 201, 459 \) and \(586 \).\(^{127, 156} \) This method was also used to predict changes in the structure of a gold cluster upon adsorption of a MeSH molecule\(^ {157} \) [‘herringbone reconstruction’ called by analogy with the structural changes on the Au(111) surface upon adsorption of thiols].\(^ {158} \)

At present, the most popular methods for structural studies of gold clusters are based on the DFT, which was used to predict the structure of the following clusters: \(\text{Au}_{10}(\text{SC}_{6}\text{H}_{4}\text{Bu}^{-4})_{10} \),\(^{159} \) \(\text{Au}_{12}(\text{SMe})_{9}^{+} \),\(^{160} \) \(\text{Au}_{15}(\text{SR})_{13} \) (R = Me, G),\(^ {161, 162} \) \(\text{Au}_{16}(\text{SMe})_{14}^{+} \),\(^ {163} \) \(\text{Au}_{20}(\text{SCH}_{2}\text{Bn})_{24} \),\(^ {164} \) \(\text{Au}_{44}(\text{SMe})_{28}^{2-} \),\(^ {165} \) \(\text{Au}_{67}(\text{SR})_{35}^{2-} \) (R = CH_{2}Bn, C_{6}H_{13})\(^ {166} \) and \(\text{Au}_{130}(\text{SC}_{12}\text{H}_{25})_{50} \).\(^ {167} \) It should be noted that calculations of the structure of ligand-protected gold clusters are complicated by the need to take into account relativistic effects in order to correctly describe the Au–Au, Au–X and Au–L interactions and eventually to correctly predict the structures of the cluster core and shell.\(^ {84, 168} \) Calculations with no relativistic corrections applied give incorrect geometry of the gold clusters, as is the case of, e.g., \(\text{Au}_{8} \) (MP2/cc-pVTZ)\(^ {169} \) and \(\text{Au}_{6} \) (CASSCF/CI).\(^ {170} \) The best way to take into account relativistic effects is to use relativistic Hamiltonians,\(^ {143, 171} \) but the computational cost...
bond energy can be correctly included using the PBE-PBE-

The contribution of spin–orbit coupling to the Au

When determining the most stable structure of isomeric clusters, one should unavoidably consider different configurations of the cluster core and various types of ligand coordination. This complicates the problem and increases the time needed for geometry optimization because of a large number of isomers, especially if clusters contain more than twenty gold atoms. Traditionally, the stabilities of isomeric clusters are assessed using their relative energies and the HOMO–LUMO gap value (for a stable cluster, it should be \(\geq 0.5 \) eV). The calculated cluster energies depend on the exchange-correlation functional. Therefore, it is of great importance to test the DFT methods for, e.g., correct description of experimental parameters of clusters, such as the interatomic distances, the HOMO–LUMO gap, peak positions in the optical spectrum or in the X-ray powder diffraction pattern.

Recently, different functionals were tested in the context of structure description of the clusters Au\(_n\)(PR\(_3\))\(_n\) (X = Cl, SPy-4) and [Au\(_{24}\)(PPh\(_3\))\(_{10}\)(SCH\(_2\)Bn)(ClBr)]\(^+\). The interatomic distances calculated using the LANL2dz pseudopotential for the gold atoms and the 6-311G(d,p) basis set for other atoms were compared with the X-ray data. Figure 5 presents how the difference between the theoretical and experimental values (\(\Delta/\Lambda \)) depends on the functional chosen. All functionals overestimate the interatomic distances in the cluster compared to the X-ray data. This is not surprising because the optimized cluster structure obtained from DFT calculations corresponds to the gas phase. Among the tested functionals, the largest error in calculations of interatomic distances was found for B3LYP; geometry optimization within the framework of the DFT/B3LYP method led to a slightly distorted structure. The B-PBE, PBE and TPSS functionals provide a qualitatively correct reproduction of the cluster geometry with a mean error of less than 0.1 \(\Lambda \) for the interatomic distances and 0.1 eV for the HOMO–LUMO gap. The Au–Au distances in Au\(_n\), obtained from DFT/PBE/cc-pVQZ calculations differ from those calculated using a more exact and time-consuming CCSD(T)–F12 method by merely 0.03 \(\Lambda \). The differences between the Au–P interatomic distances in AuPPh\(_3\), Au\(_3\)PPh\(_3\), AuPH\(_3\)\(^+\) and Au\(_2\)PH\(_3\)\(^+\) calculated at the DFT and CCSD(T) levels of theory are even smaller, namely, 0.01 \(\Lambda \).

The post-corrected PBE-D3, TPSS-D3 functionals are recommended for calculations of bond energies in the Au\(_n\) clusters (\(n \leq 20 \)) with an accuracy of 4 kJ mol\(^{-1}\). The contribution of spin–orbit coupling to the Au–Au bond energy can be correctly included using the PBE-PBE-2c functional. It seems appropriate to carry out theoretical studies of clusters containing PR\(_3\) ligands using dispersion-corrected functionals, e.g., PBE-D3. A reasonable balance between the accuracy of calculations and the time needed for calculations of the adsorption energies of the test molecules on gold clusters can be achieved using the HSE06 and HISSb functionals.

Although being run on powerful modern computers, energy calculations and geometry optimization of ligand-protected gold clusters remain time-consuming. To reduce the computing time, the number of atoms in the cluster is decreased, bulky substituents R in Au\(_n\)(SR)\(_n\), are replaced by Me groups, while PPH\(_3\) groups in Au\(_n\)(PR\(_3\))\(_n\) are replaced by PH\(_3\) or PMe\(_3\) ligands. Using the Au\(_n\)(PR\(_3\))\(_n\) clusters (R = H, Me, Ph) as examples, it was shown that replacement of PPH\(_3\) by PH\(_3\) has no effect on the cluster geometry, but taking into account the PPH\(_3\) ligand in explicit form is necessary to describe the experimental excitation spectra.

In addition to the DFT-based methods, the structure of gold clusters is studied by molecular dynamics methods. For instance, a version of the Monte Carlo method was proposed for structure calculations of the Au\(_{24}\) cluster with an accuracy comparable to that of CCSDT in reasonable time. The computing time can be shortened using the reactive force field method. However, the structure of the \(-\text{SR}-(\text{Au}–\text{SR})_n-\) ‘staple’ unit predicted by this method is significantly different from that obtained from DFT calculations. A new potential parameterized using the DFT data made it possible to solve the problem and correctly describe the structure of the fragment in question. Thus, molecular dynamics methods combined with DFT data (QM/MM) can be successively used in structure elucidation of the Au\(_n\)(SR)\(_m\) clusters. In particular, the accuracy of the QM/MM calculations of interatomic distances in the Au\(_{25}\)(SR)\(_{18}\) and Au\(_{38}\)(SR)\(_{24}\) clusters is \(\sim 3\% \).

V. Clusters with strong metal–ligand interaction

V.1. The structure of thioloated clusters

Compounds [Au\(_n\)(SR)\(_m\)]\(^+\) (\(R = \text{C}_n\text{H}_{2n+1}, n = 2, 6, 10, 12, \) Ph, CH\(_2\)Bn, C\(_6\)H\(_4\)CO\(_2\)H-4, G). Clusters stabilized by sulfur-containing ligands (SR) provide good examples of the [L\(_n\)Au\(_n\)X\(_m\)]\(^\pm\) systems where ligands form strong bonds with gold atoms. Many of them were structurally characterized by X-ray diffraction or their structures were predicted by DFT calculations. In the text below we will discuss specific features of the cluster structures in the order of increasing number of gold atoms in the context of the superatom theory, the structure of the cluster core, the nature of the Au–S bond and the mechanism of formation of the \(-\text{SR}–\text{Au}–\text{SR}–\) ‘staple’ units. Particular attention will be given to analysis of the applicability of DFT calculations to structure elucidation and to prediction of properties of the [Au\(_n\)(SR)\(_m\)]\(^+\) clusters.

Au\(_{15}\)(SR)\(_{13}\) (\(R = G; n_1 = 2 \)). The synthesis of the cluster was accompanied by elaboration of structural models using the DFT/PBE method. One model includes a tetrahedral Au\(_4\) core surrounded by two ‘staple’ units, SR(AuSR)\(_3\) and SR(AuSR)\(_4\). In the other model the tetrahedral Au\(_4\) core is surrounded by the cyclic (AuSR)\(_3\) pentamer and two SR(AuSR)\(_3\) trimers (Fig. 6, a). Yet another possible cluster core composition is Au\(_6\), as in [Au\(_{13}\)(SMe)\(_2\)]\(^+\). Yet another possible cluster core composition is Au\(_6\), as in [Au\(_{13}\)(SMe)\(_2\)]\(^+\). It seems reasonable to assume that the cluster contains long SR(AuSR)\(_n\) units formed from Au\(_6\)SR during the synthesis.

Au\(_{18}\)(SR)\(_{14}\) (\(R = G, \) CH\(_2\)Bn; \(n_1 = 4 \)). Cluster Au\(_{18}\)(SG)\(_{14}\) was isolated upon separation of a crude mixture containing nine small clusters with different gold:ligand ratios (10:10, 15:13, 18:14, 22:16, 22:17, 25:18, 29:20, 33:22, 39:24). The mixture of Au\(_{18}\)(SCH\(_2\)Bn)\(_{14}\) clusters was enriched with Au\(_{18}\)(SCH\(_2\)Bn)\(_{14}\) using SCH\(_2\)Bn as ligand. According to DFT calculations, the cluster has a bietrahedral core of the formula Au\(_{18}\), while the shell comprises two
The [Au25(SR)18]− anion is triply degenerate, which corresponds to superatomic p-orbitals delocalized over the Au13 core; the LUMO is doubly degenerate, which corresponds to superatomic p-orbitals delocalized over the Au13 core. The transformation was shown to be irreversible. The anionic cluster HOMO responsible for the electron-donating properties includes a large contribution from the orbitals of the core gold atoms rather than the orbitals localized on the Au−S bonds. Therefore, oxidation of the [Au25(SR)18]− cluster leads to the loss of the negative charge localized on the Au13 core. This mechanism differs from the oxidation mechanism of thiol monolayers adsorbed on gold surface which begins with the oxidation of the adsorbed thiol.

We believe this difference to be due to different electronic structures of metallic gold having a conduction band and the molecular cluster having a discrete set of electronic energy levels.

The [Au25(SR)18]− cluster exhibits strong two-photon absorption, while its oxidized form, [Au25(SR)18]+, exhibits...
paramagnetism arising from ‘itinerant’ electrons. According to femtosecond dynamics data, internal conversion between the excited electronic states of the Au$_{13}$ core takes only 200 fs and the core-to-shell relaxation occurs within merely 1.2 ps.

Au$_{28}$(SR)$_{20}$ ($R = C_{6}H_{4}Bu'-4$; $n_{e} = 8$). A compound of the general formula Au$_{20}$(Au$_{2}$(SR)$_{3}$)$_{4}$(SR)$_{8}$ crystallizes in the space group $P1$. The kernel-type Au$_{20}$ core is formed by two interpenetrating slightly distorted Au$_{13}$ cuboctahedra sharing six common atoms (see Fig. 8b). It can be treated as fragment of the fcc lattice of metallic gold. Four SR(AuSR)$_{2}$ dimers are coordinated to the cluster core, while the other eight RS groups bridge on the core edges.

Au$_{30}$S(SR)$_{18}$ ($R = Bu'$; $n_{e} = 10$). According to X-ray data and DFT calculations, the kernel-type Au$_{22}$ core is surrounded by two SR(AuSR)$_{3}$ trimers and two SR(AuSR) units, the other six RS groups being coordinated to the surface atoms of the core (see Fig. 8c). The central fragment of the Au$_{20}$ core comprises two nested distorted Au$_{13}$ cuboctahedra, as in the Au$_{28}$(SC$_{6}$H$_{4}$Bu'-4)$_{20}$ cluster.
This is the only cluster with μ-coordination of the $S^2^−$ anion. It follows that the core of the $Au_n(SR)_{12}$ clusters can be stabilized by not only SR(AuSR)$_2$ "staple" units, but also involving the μ-$S^2^−$ group.

$Au_{36}(SR)_{24}$ ($R = C_6H_4Bu^−$4t; $n_e = 12$). The Au_{28} core represents a truncated fcc tetrahedron stabilized by four SR(AuSR)$_2$ dimers, the remaining twelve RS groups being coordinated to the gold atoms on the core surface (Fig. 8d).

The HOMO–LUMO gap obtained from DFT calculations is 1.7 eV, thus indicating high electronic stability of the cluster.

$Au_{38}(SR)_{24}$ [$R = CH_2Bn, C_6H_{2n+1}$ ($n = 6, 10, 12$); $n_e = 14$]. As mentioned above, isolation of an individual cluster from a crude mixture and determination of its composition is a complicated task which has no unambiguous solution. An example is provided by checkered history of the synthesis of the $Au_{38}(SR)_{24}$ cluster. In 2004, Murray and co-workers reported the synthesis of a new cluster of the general formula $Au_{38}(SC_6H_{2n+1})_{24}$. Later on, it was found that the cluster composition is $[Au_{25}(SC_6H_{2n+1})_{18}]^−$. Consequently, a question arose regarding the existence of $Au_{38}(SR)_{24}$ clusters. In 2008, $Au_{38}(SC_6H_{2n+1})_{24}$ was based on the "divide and protect" concept, which postulates that gold atoms may be constituents of the cluster shell. In the new structural model, the cluster was described by the revised formula $Au_{44}(AuSR)_{28}$ and comprised the Au_{14} core with O_6 symmetry and six plain ring tetramers (AuSR)$_4$. A drawback of the formula $Au_{44}(AuSR)_{28}$ consists in low energy of the bond between the (AuSR)$_4$ unit and the Au_{14} core, which suggests the existence of yet another structure with stronger interaction between the core and shell atoms.

The next model proposed for $Au_{38}(SR)_{24}$ was based on the gold : sulfur atomic ratio. In this case, the Au_{24} core is surrounded by a shell comprising monomeric and dimeric units SR(AuSR) and SR(AuSR)$_2$, respectively. Although the structure described by the formula $Au_{24}[Au(SR)_{2}]_{6}[Au_2(SR)_{3}]_{4}$ was characterized by the lowest total energy among the models proposed earlier, it also appeared to be incorrect. The actual structure of the $Au_{38}(SR)_{24}$ cluster was theoretically predicted on the basis of structure similarity rules. A total of five possible formulas with different core composition and ‘staple’ unit lengths were proposed for the cluster structure, namely, $Au_{24}[Au(SR)_{2}]_{12}, Au_{32}[Au_2(SR)_{2}]_{6}[Au_2(SR)_{3}]_{2}, Au_{40}[Au_2(SR)_{2}]_{2}[Au_2(SR)_{3}]_{4}, Au_{48}[Au_2(SR)_{2}]_{4}[Au_2(SR)_{3}]_{6}$, and $Au_{56}[Au_2(SR)_{2}]_{6}$. Based on the results of total energy calculations, the $Au_{38}(SR)_{24}$ cluster with

![Figure 9](image-url)
$R = \text{Me}$ was chosen to be the most plausible model for the structure of the $\text{Au}_{38} (\text{SR})_{24}$ system.57 Here, one deals with a protolate Au_{23} cluster core formed by two Au_{13} icosahedra fused together via sharing a common Au_{3} face (Fig. 9a). Six $\text{Au}_{9}(\text{SMee})_{3}$ units are coordinated to the icosahedra, while three $\text{Au}_{11}(\text{SMee})_{3}$ units are bonded to the central atoms of its core. Large HOMO–LUMO gap value (0.9 eV) obtained for this structure points to high stability of the model.

An X-ray diffraction study50 of the $\text{Au}_{38}(\text{SCH}_{3}\text{BN})_{24}$ cluster indeed revealed fused Au_{23} icosahedra stabilized by six dimeric and three monomeric ‘staple’ units in excellent agreement with the theoretically predicted structure.57 The chirality of the $\text{Au}_{38}(\text{SCH}_{3}\text{BN})_{24}$ cluster arises from different arrangement of the ‘double propeller’ staple units and corresponding formation of two enantiomers. The energy barrier to interconversion of the enantiomers is low, so the cluster loses optical activity at 40 °C.202 This makes the cluster of limited use in asymmetric catalysis and as component of chiral sensors at temperatures above 40 °C. The problem can be solved by introducing one or two 1,1'-binaphthyl-2,2’-dithiol substituents into the cluster.203 In this case, the energy barrier to interconversion of enantiomers increases and the optical properties of the cluster are retained in a wide temperature range.

Cluster $\text{Au}_{38}(\text{SCH}_{3}\text{BN})_{24}$ was isolated recently.164, 199 Its theoretically predicted structure has not been confirmed by X-ray diffraction as yet. The stabilities of the available structural models were studied by DFT.204 The lowest-energy structure obtained from DFT calculations is shown in Fig. 9b. The cluster core, Au_{26}, is formed by two Au_{13} icosahedra having an edge–edge contact, rotated by 90° to each other. The cluster shell comprises six $\text{SR}(\text{AuSR})_{2}$ monomers and four $\text{SR}(\text{AuSR})_{3}$ dimers. Good reproduction of the experimental optical spectrum of the cluster164 obtained using this model holds out a hope of correct structure determination. It is noteworthy that, similarly to $\text{Au}_{38}(\text{SCH}_{3}\text{BN})_{24}$, the $\text{Au}_{40}(\text{SR})_{24}$ cluster does not belong to the ‘magic’ clusters, being comprised of two subunits, each obeying the electron count rule for stable systems.

$[\text{Au}_{44}(\text{SR})_{2}]^{2-}$ ($R = \text{Ph}$; $n_{e} = 18$). The $[\text{Au}_{44}(\text{Ph})_{2}]^{2-}$ cluster was synthesized and isolated,205 but its structure was not determined by X-ray diffraction. Based on the structure principles, two model structures were proposed for $[\text{Au}_{44}(\text{SMee})_{2}]^{2-}$.165 In the first model, the cluster composition is $\text{Au}_{28}[\text{SR}(\text{AuSR})]_{2}[\text{SR}(\text{AuSR})]_{4}$, the Au_{28} core is surrounded by eight monomeric and four dimeric ‘staple’ units; the second model assumes the existence of a polymeric sulfur $\text{SR}(\text{AuSR})$, and the core composition Au_{16}. According to DFT calculations of the energies of two isomeric clusters, the former model is 2 eV more stable than the latter. The theoretical diffraction pattern of the dimeric-monomeric model better agrees with experimental data.206 However, an analysis of the electronic structure of the $\text{Au}_{32}[\text{SR}(\text{AuSR})]_{2}[\text{SR}(\text{AuSR})]_{4}$ cluster revealed an open-shell structure; therefore, the structure may appear to be unstable. The calculated optical spectra of both model structures are in poor agreement with the measured spectrum.206 We believe these facts suggest that a more correct model for the $[\text{Au}_{44}(\text{SR})_{2}]^{2-}$ cluster can be proposed. Yet another predicted structure206 is similar to those of $\text{Au}_{28}(\text{SC}_{6}\text{H}_{4}\text{Bu}_{2})_{8}$ (Ref. 46) and $\text{Au}_{28}(\text{SC}_{6}\text{H}_{4}\text{Bu}_{2})_{16}$.49 The binuclear core of the Au_{26} cluster is stabilized by eight $\text{SR}(\text{AuSR})_{2}$ and two $\text{SR}(\text{AuSR})$ groups (see Fig. 9c). The energy of the $\text{Au}_{26}[\text{SR}(\text{AuSR})]_{2}[\text{SR}(\text{AuSR})]_{8}$ cluster obtained from PBE/TZP calculations is 1.02 eV lower than that of the $\text{Au}_{32}[\text{SR}(\text{AuSR})]_{2}[\text{SR}(\text{AuSR})]_{4}$ structure.165

$[\text{Au}_{67}(\text{SR})_{35}]^{2-}$ ($R = \text{CH}_{2}\text{BN}$; $n_{e} = 34$). Very recently, the cluster containing 67 gold atoms was synthesized and its composition was determined.166 As was shown theoretically, the inner part of the Au_{39} core comprises two pentagonal ‘caps’ surrounded by the outer layer containing seventeen gold atoms that form a distorted pentagonal prism (see Fig. 9d). The cluster core is stabilized by ten monomeric and five dimeric ‘staple’ units. The cluster bears a charge of 2− which corresponds to two valence electrons. This is sufficient to form a stable state within the framework of the superatom model. The calculated HOMO–LUMO gap is 0.75 eV, thus indicating high stability of the cluster. Nevertheless, the optical spectrum and the differential pulse voltammogram of the $[\text{Au}_{67}(\text{SR})_{35}]^{2-}$ cluster correspond to simultaneous presence of molecular clusters and particles a few micrometres in size in the sample. Therefore, one can assume that $[\text{Au}_{67}(\text{SR})_{35}]^{2-}$ occupies an intermediate position between molecular clusters and clusters with metallic properties.

$\text{Au}_{102}(\text{SR})_{44}$ ($R = \text{C}_{6}\text{H}_{4}\text{CO}_{2}\text{H}-4$; $n_{e} = 58$). The determination of the crystal structure of $\text{Au}_{102}(\text{SC}_{6}\text{H}_{4}\text{CO}_{2}\text{H}-4)_{44}$ (Ref. 51) contributed largely to the development of a unified theory of the structure of clusters stabilized by sulfur-containing ligands. The crystal lattice of $\text{Au}_{102}(\text{SC}_{6}\text{H}_{4}\text{CO}_{2}\text{H}-4)_{44}$ is formed by pairs of enantiomeric clusters. The arrangement of gold atoms in the each cluster core corresponds to an Au_{103} dodecahedron with a radius of 5.3 Å, which is surrounded by two twenty-atom ‘caps’ of radius 6.1 – 6.4 Å (Fig. 10a). The cluster structure can be described by the formula $\text{Au}_{79}[\text{SR}(\text{AuSR})]_{10}[\text{SR}(\text{AuSR})]_{2}$, which corresponds to the shell comprising nineteen $\text{SR}(\text{AuSR})$ monomeric units and two $\text{SR}(\text{AuSR})_{2}$ dimeric units. The chirality of the cluster originates from the peculiar arrangement of the ‘staple’ ligands.

Stability of the $\text{Au}_{102}(\text{SC}_{6}\text{H}_{4}\text{CO}_{2}\text{H}-4)_{44}$ cluster was explained using the superatom theory.66 Later on, DFT calculations of the geometry and electronic properties of the $\text{Au}_{102}(\text{SC}_{6}\text{H}_{4}\text{CO}_{2}\text{H}-4)_{44}$ cluster revealed three reasons for its stability, viz., large HOMO–LUMO gap (0.5 eV),207, 208 optimum distribution of the ‘staple’ units on the core and high thermodynamic stability against disintegration into smaller clusters.209 An analysis of the radial electron density distribution in the $\text{Au}_{102}(\text{SC}_{6}\text{H}_{4}\text{CO}_{2}\text{H}-4)_{44}$ cluster ($q = 0$, ±1)209 showed that the Au_{79} core is almost electrically neutral and can be treated as individual ‘magic’ cluster with closed electron shell. As to the charged clusters, main changes in the radial electron density distribution occur in the $\text{Au}_{23}(\text{SC}_{6}\text{H}_{4}\text{CO}_{2}\text{H}-4)_{44}$ shell and only 10% of changes fall on the region between the cluster core and shell. Similarly to the electronic structure of ligand-free small atomic clusters Au_{n},210 that of the Au_{79} core is characterized by a delocalized electron shell. The $\text{Au}_{102}(\text{SC}_{6}\text{H}_{4}\text{Br}-4)_{44}$ cluster obtained by ligand exchange is structurally similar to the $\text{Au}_{102}(\text{SC}_{6}\text{H}_{4}\text{CO}_{2}\text{H}-4)_{44}$ cluster.211 Ligand exchange is assumed to proceed by the associative mechanism because the $\text{SC}_{6}\text{H}_{4}\text{Br}-4$ ligands are coordinated to neighbouring gold atoms. $\text{Au}_{103}(\text{SR})_{50}$ ($R = \text{C}_{12}\text{H}_{25}$; $n_{e} = 80$). The structure of this recently synthesized cluster212, 213 was predicted in the PBE/DZ density functional calculations for $R = \text{H}$.167 The
cluster core represents an Au$_{75}$ Marks decahedron capped by two Au$_{15}$ hemispheres and stabilized by twenty-five SHAuSH units (see Fig. 10b). Structurally, the cluster differs from other known Au$_n$(SR)$_m$ clusters in that gold atoms on the core surface form no bonds with RS groups.

$$\text{Au}_{144}(\text{SR})_{60} \quad (R = C_nH_{2n+1}, \quad n = 6, \quad 10, \quad 12)$$

The cluster composition, initially determined to be Au$_{144}$(SR)$_{59}$ (R = C$_n$H$_{2n+1}$)$_{67}$ was then refined and changed to Au$_{144}$(SR)$_{60}$ (R = CH$_2$Bn)$_{214}$. A recently published$_{215}$ method for the synthesis of monodisperse Au$_{144}$(SR)$_{60}$ cluster holds out a hope of crystallization and structure determination in the near future. Tentatively, the Au$_{114}$ cluster core is stabilized by thirty monomeric 'staple' units.216 It was also reported217 that the cluster is in the pseudocrystalline state, namely, four cluster cores are arranged periodically, while the stabilizing ligands form an amorphous structure. Note that DFT quantum chemical studies of the properties and structure of this large cluster using known functionals are labour-consuming.218 The Au$_{144}$(SR)$_{60}$ cluster is a popular model for simulating the interaction between functionalized thiols and gold particles using molecular dynamics.219

V.2. The nature of Au–SR interaction and the mechanism of formation of [Au$_n$(SR)$_m$] clusters

The stability and variety of Au$_n$(SR)$_m$ clusters are due to formation of strong bonds between gold and sulfur atoms. High chalcophilicity of gold underlies the existence and properties of the ligand-protected clusters considered above, homoleptic and cyclic thiolate complexes of gold,$^{220, 221}$ and influences the structure of self-assembled monolayers formed upon adsorption of sulfur-containing organic molecules on gold surface (Fig. 11). Self-assembled monolayers are of great practical value and their structure, electronic properties and mechanism of formation on the Au(111) face have been intensively studied.$^{222, 223}$ Adsorption of thiol molecules, HSR, on the Au(111) surface is accompanied by dissociation of the H–S bond and formation of thiolates RS$^-$.$_{224}$ The coordination fashion of the RS groups to the gold surface remained unclear for long. Pioneering studies by DFT$_{224}$ and scanning tunneling microscopy225 suggested three equivalent Au–SR covalent bonds for a thiolate group adsorbed on Au(111). Later on, it was found that the strongest bonding to the Au(111) face occurs in the case of bidentate bridging coordination, Au–S(R)–Au.$^{226–229}$ The Au(111) surface is modified through the interaction with RSH; this is the so-called ‘herringbone reconstruction’ accompanied by migration of gold atoms from the surface layer to the —RS–Au–SR—‘staple’ unit (see Fig. 11).$^{230–236}$ These ‘staple’ bonds are also present in the cyclic complexes (Au$_2$SR)$_n$ (Ref. 237) and clusters Au$_n$(SR)$_m$. Thus, in spite of differences in the properties of the surface and the cluster, self-assembled monolayers and Au$_n$(SR)$_m$ exhibit the formation of similar ‘staple’ units.
The formation of the \(-\text{RS} - \text{Au} - \text{SR} - \) unit is preceded by the reaction of HSR with metal atoms of the cluster or surface. At low pressures, thiol is molecularly adsorbed on Au(111) with retention of the S–H bond.\(^{229}\) If gold atoms have a small coordination number, one deals with dissociation of the S–H bond and formation of surface thiolates and molecular hydrogen. To clear the mechanism of formation of \(\text{Au}_n(\text{SR})_m \) clusters, which specifies the composition of the cluster being formed, one should know how hydrogen is eliminated from the thiol molecule. Our quantum chemical simulation of the process on the \(\text{Au}_{20} \) cluster showed that oxidative addition of thiol with dissociation of thiol and in subsequent formation of the shell cannot be ruled out. \(^{229}\) The energy barrier to the formation of the \(-\text{SR} - \text{Au} - - \text{SR} - \) ‘ staple’ bonds can be reduced in the case of co-adsorption of two MeSH molecules on the same site (vertex of the cluster).

\[
\text{MeSH} + \text{Au}_{20} \rightarrow \text{MeSH–Au}_{20} \rightarrow \text{MeS–Au}_{20} - \text{H}
\]

A reaction following this new pathway proceeds by the push-pull mechanism and involves transfer of \(\text{H}^+ \) from one adsorbed MeSH molecule to the second MeSH molecule adsorbed on the same active site in the cluster. As a result, the gold atom no longer belongs to the cluster and a primary HSR – Au – SR – Au unit, precursor of the ‘staple’ bond, is formed (see Fig. 11a). This mechanism was confirmed theoretically taking clusters \(\text{Au}_n^+ (n = 2–8, 12, 13, 20; q = 0, \pm 1) \) as examples.\(^{238}\) This suggests that the shell of the \(\text{Au}_n(\text{SR})_m \) cluster is formed by a similar mechanism through migration of gold atoms from the surface of the \(\text{Au}_n \) cluster to the \(-\text{SR} - \text{Au} - - \text{SR} - \) units in the shell. However, the involvement of oxygen in the initial oxidation of thiol and in subsequent formation of the shell cannot be ruled out.

Besides, the \(-\text{SR} - \text{Au} - - \text{SR} - \) ‘ staple’ units can form during the reaction between the starting complex \([\text{AuCl}_4^-] \) and thiol RSH prior to the formation of the cluster core (see Scheme 1). Homoleptic thiolate complexes \([\text{Au}^3\text{SR}]^- \) associate through formation of the metallic bond between the emerging \(\text{Au}^0 \) sites or small clusters constituting the core. As the cluster size increases, the core composition changes from \(\text{Au}_4 \) (a tetrahedron) to \(\text{Au}_{13} \) (an icosahedron) and then to \(\text{Au}_{20} \) (a dodecahedron). The presence of long ‘ staples’, \(\text{SR}(\text{AuSR})_5 \), in small clusters can be explained using the ‘structure rule’, according to which the smaller the gold : ligand ratio the longer the \(\text{SR}(\text{AuSR})_5 \) units in the cluster. Larger \(\text{Au}_n(\text{SR})_m \) clusters can be stabilized by not only ‘staple’ bonds, but also RS and \(\text{S}^2- \) groups.

V.3. Selenolate-protected clusters

As mentioned above, the \(\text{Au}_n(\text{SR})_m \) clusters are difficult to crystallize because they are unstable in water. For instance, the characteristic peaks in the optical absorption spectrum of a solution containing \([\text{Au}_{25}(\text{SC}_8\text{H}_{17})_{18}]^- \) disappear after 48 h.\(^{22}\) Degradation of the cluster in solution is a result of solvolysis upon dissociation of the \(\text{Au}(\text{core}) - \text{SR} - \) bonds. Also, the \(\text{Au}_n(\text{SR})_m \) clusters are characterized by low thermal stability and laser radiation resistance. For instance, the \([\text{Au}_{25}(\text{SC}_8\text{H}_{17})_{18}]^- \) anion loses the alkyl group at 165 °C, while laser radiation causes detachment of \(\text{Au}_4(\text{SC}_4\text{H}_{17})_4 \) cyclic unit from the cluster shell.\(^{22}\)

\[
[\text{Au}_{25}(\text{SC}_4\text{H}_{17})_4]^- \rightarrow [\text{Au}_{23}(\text{SC}_4\text{H}_{23})_4]^- + \text{Au}(\text{SR})_4
\]

If the ligand strongly interacts with the gold atoms on the core, ligand-protected clusters should be sufficiently stable. Stabilization of gold clusters using selenolate ligands seems to be promising because the Au – Se bond is characterized by a higher degree of covalency, being stronger than the Au – S bond.

Recently, clusters described by the general formula \([\text{Au}_{25}(\text{SeR})_{18}]^- \) (\(\text{R} = \text{C}_12\text{H}_{25}, \text{Ph} \)) were synthesized and studied.\(^{23, 24}\) The clusters are structurally similar to \([\text{Au}_{25}(\text{SR})_{18}]^- \). The \([\text{Au}_{25}(\text{SeR})_{18}]^- \) cluster appeared to be more stable than the thiolate analogue, namely, the optical absorption spectrum of the solution containing \([\text{Au}_{25}(\text{SeR})_{18}]^- \) showed no visible changes within 48 h.\(^{22}\) But since the energy of the \(\text{Se} - \text{CH}_2 \) bond is lower than that of the \(\text{S} - \text{CH}_2 \) bond, elimination of the alkyl fragment from...
Stabilization of Au(C2Ph)m clusters through Au—C covalent bonds

Clusters can also be stabilized using organic ligands which form Au—C covalent bonds. Recently, gold clusters containing C≡CPh groups in the shell were synthesized.\(^{26}\) Clusters \(\text{Au}_{m}\text{(C}_2\text{Ph})_m\) were obtained from PVP-protected gold nanoparticles by ligand exchange with \(\text{HC}_n\text{CPh}\) in toluene.\(^{26}\) According to mass spectrometry data, the reaction results in a mixture containing a total of ten \(\text{Au}_{m}\text{(C}_2\text{Ph})_m\) clusters with the following gold to ligand atom ratio \(n : m\): 43, 46, 24, 52, 26, 54, 26, 59, 27, 71, 32, 90, 36, 94, 38, 101, 38 and 110, 40. To determine possible structures of these compounds, it is interesting to compare their compositions with those of the \(\text{Au}_{m}\text{(SCH}_2\text{Bn})_m\) clusters (Fig. 12). In both cases, the number of ligands in the shell increases with the number of gold atoms in the cluster. However, the \(m : n\) ratio for the \(\text{Au}_{m}\text{(C}_2\text{Ph})_m\) clusters is smaller; therefore, the surface of the core of the \(\text{Au}_{m}\) cluster can coordinate a smaller number of \(\text{C}_\equiv\text{CPh}\) groups compared with the \(\text{SCH}_2\text{Bn}\) groups.

By varying the synthesis conditions one can obtain a monodisperse fraction of \(\text{Au}_{m}\text{(C}_2\text{Ph})_m\) in high yield. For instance, the synthesis of the \(\text{Au}_{39}\text{(C}_2\text{Ph})_3\) cluster requires the use of \(\text{Au}_n\) hydrosol in PVP with a narrow nanoparticle size distribution (average particle size of 1.2 nm).\(^{27}\) The \(\text{Au}_{54}\text{(C}_2\text{Ph})_{26}\) cluster was synthesized by adding the hydrosol to PhC2H dissolved in chloroform; the yield was 90%. The use of toluene instead of CHCl3 leads to a mixture of clusters and the yield decreases to 60%. The effect of solvent on the selectivity of the process can be explained by the fact that the simultaneously formed metastable clusters \(\text{Au}_{43}\text{(C}_2\text{Ph})_{22}\) and \(\text{Au}_{46}\text{(C}_2\text{Ph})_{24}\) are better soluble in chloroform than in toluene. This leads to an increase in their concentrations and favours more efficient transformation to the stable cluster \(\text{Au}_{54}\text{(C}_2\text{Ph})_{26}\) via bimolecular reactions.

A mass spectrometric study of the ‘magic’ cluster \(\text{Au}_{54}\text{(C}_2\text{Ph})_{26}\) confirmed its individual character.\(^{27}\) All gold atoms belong to the 1.3 nm core. The average coordination number of gold atoms equal to 7.9 corresponds to cuboctahedral symmetry of the cluster core. An analysis of vibrational frequencies showed that the Au—C covalent bond is formed as a result of donor–acceptor transfer of electron density from the valence orbitals of gold atom to the antibonding \(\pi\)-orbitals of the alkynyl fragment. According to XPS data, transfer of electrons from atomic orbitals of gold to \(\pi\)-orbitals of the \(\text{C}_2\text{Ph}\) ligands leads to weakening of the \(\text{C}_\equiv\text{C}\) bond.\(^{27}\)

The \(\text{Au}_{m}\text{(C}_2\text{Ph})_m\) clusters are novel, poorly studied compounds with unknown structure. The covalent character of the Au—C bond in these systems was recently confirmed by physicochemical methods and DFT calculations.\(^{27}\) It should be noted that their ‘magic’ composition cannot be explained within the framework of the superatom model. One can assume that the stability of \(\text{Au}_{m}\text{(C}_2\text{Ph})_m\) clusters of particular composition is due to high symmetry of the cluster core or is determined by the thermodynamic or kinetic stability of the particular cluster \(\text{Au}_{m}\text{(C}_2\text{Ph})_m\) in each step of decomposition.

VI. Gold clusters stabilized by phospine ligands

Small atomic clusters \(\text{Au}_{13}\text{(PPh}_3)_3\text{X}_3\) (\(X = \text{CNR}, \text{SCN}, \text{SPy–4}, \text{[Au}_{13}\text{(PMe}_3\text{Ph})_3\text{Cl}]^{3–}\), \(\text{[Au}_{10}\text{(PPPh}_3)_2\text{Cl}_4}\) –. Traditionally, the structure and properties of phosphine-stabilized clusters have been analyzed separately from those of thiolate-protected clusters. Classification and generalization of a considerable body of experimental data were precluded by the lack of universal theoretical concepts. Elaboration of the superatom theory made it possible to consider the structure and properties of the \(\text{Au}_{m}\text{(SR})_m\) and \(\text{Au}_{m}\text{(PR}_3)_m\) clusters from a unified, electronic-structure point of view.

The \(\text{[Au}_{m}\text{(PR}_3)_m\text{X}_m}\) clusters (\(X = \text{CNR}, \text{SR}, \text{Cl}\)) belong to the few ones with known structures. As in the case of thiolate clusters, the symmetric core, \(\text{Au}_{m}\text{(PR}_3)_m\text{X}_m\), contains gold atoms only. But unlike thiolate ligands, the PR\(_3\) ligands have little effect on the electronic structure of the cluster. The energy of the Au—PR\(_3\) bond is too low to form stabilizing ‘staple’ units of the ligand shell. The \(\text{Au}_{m}\text{(PR}_3)_m\text{X}_m\) clusters are stabilized in different fashion. The interaction of PR\(_3\) ligands with gold atoms favours an increase in the hybridization of atomic orbitals of the metal.
and enhancement of aurophilic interaction within the core, thus making the cluster core more stable. The influence of the nature of ligands on the electronic structure of small gold clusters was studied within the framework of the DFT taking the bonding of donor ligands (PH₃, PMe₃, NH₃, NMe₃) with small clusters (Au₂⁺, Au₃⁺) as examples.

According to calculations, the bond energy and electronic effects increase in the order NMe₃ < NH₃ < PH₃ < PMe₃.

In the text below we will consider specific features of the structure of phosphine-stabilized gold clusters.

[Au₆(dppp)₄]²⁺ (nₑ = 4). This is one of the first phosphine-stabilized gold clusters whose structure was determined by X-ray diffraction. Four gold atoms form a tetrahedron, while the remaining two Au atoms are coordinated to two opposite edges (Fig. 13a). Each terminal metal atom forms two Au–Au bonds and two bonds with ligands. This compound was used to obtain structurally similar clusters [Au₇(dppp)₄]³⁺ and [Au₈(dppp)₄Cl₂]²⁺.

[Au₇(dppp)₄]³⁺ (nₑ = 4). According to X-ray data, the cluster comprises the Au₆ bi-tetrahedron and one exo gold atom coordinated to the edge (see Fig. 13b). The vertices of the tetrahedron are linked by two dppp ligands through the exo gold atom, while the other two ligands are coordinated to the Au₆ edges. The stability of the cluster is due to the presence of four valence electrons; this nₑ value corresponds to stable clusters with a prolate structure.

[Au₈(dppp)₄Cl₂]²⁺ (nₑ = 4). Six gold atoms form a bi-tetrahedron, while the two remaining (exo) gold atoms are coordinated to two opposite edges of the bi-tetrahedron (see Fig. 13c). Each exo gold atom is bridged to a vertex of the tetrahedron through the dppp ligand and coordinates, the Cl ligand. By analogy with the [Au₇(dppp)₄]³⁺ cation, the two remaining dppp ligands connect the edges of the tetrahedron. Replacement of Cl ligands by C≡CR groups led to the [Au₈(dppp)₄(C≡CR)₂]²⁺ clusters (R = Ph, Bu, 2-Py, 3-Py, 4-Py) exhibiting photoluminescent properties.

[Au₁₁(PR₃)₇X₃]⁺ (R = Ph; X = CNR, SCN, SPy-4, Cl; nₑ = 8). The synthesis and crystallization of Au₁₁(PPh₃)₇X₃ clusters were followed by the determination of their crystal structure. It was found that the clusters have an icosahedral core; the PR₃ and X ligands are coordinated to twelve metal atoms of the core surface (see Fig. 13d). The calculated HOMO–LUMO gap (1.5 eV for X = SR and 2.1 eV for X = Cl) suggests high electronic stability of these compounds. The total number of valence electrons is eight; changes in the symmetry type of electronic states in the HOMO–LUMO region correspond to the closed electron shell 1S²1P⁶. Structurally different groups X in the cluster

Figure 13. Crystal structures of clusters [Au₆(dppp)₄]²⁺ (a), [Au₇(dppp)₄]³⁺ (b), [Au₈(dppp)₄Cl₂]²⁺ (c), Au₁₁(PPh₃)₇Cl₃ (d), and Au₁₄(PPh₃)₈(NO₃)₄ (e) according to X-ray data.
have similar functions, viz., they create steric protection and stabilize the cluster core.

\[\text{[Au}_{13} \text{(PMMe3P)}_{10} \text{Cl}_2]^{3-} \text{ and [Au}_{13} \text{(dppe)}_6 \text{Cl}_2]^{2+} \text{ (dppe is 1,2-bis(diphenylphosphino)ethane; } n_e = 8). \]

The \([\text{Au}_{13} \text{(PMMe3P)}_{10} \text{Cl}_2]^{3-}\) cluster was synthesized and structurally characterized by X-ray diffraction.\(^{35}\) Later on, the icosahedral structure of the cluster core was confirmed by cam-B3LYP/LANL2dz calculations.\(^{242, 246}\) The HOMO–LUMO gap calculated for the model cluster \([\text{Au}_{13} \text{(PH}_3)_3 \text{Cl}]^{3+}\) is rather large (1.8 eV), as in the clusters with the \(\text{Au}_{11}\) core. Recently, the \([\text{Au}_{13} \text{(dppe)}_6 \text{Cl}_2]^{2+}\) cluster was synthesized from a mixture of small gold clusters \(\text{Au}_n\) \((9 \leq n \leq 15)\) in the presence of \(\text{HCl}.\)\(^{247}\)

\[
\text{Au}_3\text{dppeCl}_2 \xrightarrow{\text{NaBH}_4, \text{CH}_2\text{Cl}_2} \text{Au}_8\text{(dppe)}_3\text{Cl}_2 \xrightarrow{\text{HCl, EtOH}} \text{[Au}_{13} \text{(dppe)}_6\text{Cl}_2]
\]

\([\text{Au}_{14} \text{(PPh}_3)_6 \text{(NO}_3)_4] \text{ (} n_e = 10). \text{ According to X-ray data, this cluster has two central atoms and is characterized by short } \text{Au–Au distances (2.5817–2.9839 Å) (see Fig. 13 c).}\(^{37}\) This is the one and only example of the cluster with the \(\text{ONO}_2\) ligand in the shell. The molecular and electronic structure calculations of the cluster revealed a closed electron shell.

\([\text{Au}_{20} \text{(PPPh} \text{Py-2)}_2\text{Cl}_4]^{2+} \text{ (} n_e = 14). \text{ The cluster core comprises two incomplete } \text{Au}_{13} \text{ icosahedra fused } \text{via sharing two vertices (Fig. 14 a).}\(^{38}\) \text{The overall stability of the cluster arises from considerable stabilization of the core by the bidentate PPh(Py-2)-ligands. The HOMO–LUMO gap is large than those of the } \text{Au}_{25}(\text{SCH}_2\text{Bn})_{16} \text{ and } \text{Au}_{20} \text{ clusters, namely, 2.24 eV vs. 2.15 and 1.77 eV, respectively. Since the number of valence electrons in the cluster does not obey the electron count rule for the closed shell, the stability of the system was not explained for long. It was proposed to treat the cluster as two subunits, each having a closed shell containing seven own valence electrons and one electron from the neighbouring subunit.}\]

\([\text{Au}_{20} \text{(PP)}_3)_4]^{4+} \text{ (PP is tris[2-(diphenylphosphino)ethyl]phosphine; } n_e = 16). \text{ According to X-ray data, the } \text{Au}_{13} \text{ core is ‘capped’ by seven gold atoms (see Fig. 14 b).}\(^{59, 60}\) The unusual cluster structure is due to high coordinative ability of the PP ligands, namely, one PP ligand is coordinated to four metal atoms from the ‘cap’, while the three remaining PP ligands coordinate one Au atom from the ‘cap’ and three Au atoms from the core. The chirality of the cluster originates from peculiar structure of the core rather than the arrangement of ligands.\(^{249}\) It is noteworthy that three gold atoms in the cluster are not coordinated by the PP ligands; this offers prospects for application of this compound in catalysis.

\([\text{Au}_{20} \text{(PPPh} \text{Py-2)}_2\text{Cl}_4]^{2+} \text{ (} n_e = 18). \text{ The } \text{Au}_{20} \text{ cluster coordinated by eight PPh}_3 \text{ ligands was obtained in a solution in pyridine}.\(^{250}\) \text{Tentatively, the cluster has a tetrahedral structure like a cluster in the gas phase}\(^{241}\) \text{and the } \text{Au}_{20} \text{ particle immobilized on carbon surface.}\(^{34}\) When heated, \([\text{Au}_{20} \text{(PPPh}_3)_6]^{2+}\) readily loses four ligands bonded to the gold atoms on a cluster facet and undergoes transformation to a stable cation \([\text{Au}_{20} \text{(PPPh}_3)_4]^{2+}\) (in Fig. 14 c this transition is shown for the model cluster \([\text{Au}_{20} \text{(PPPh}_3)_4]^{2+}\)). \text{The four remaining PPh}_3 \text{ ligands are coordinated to the top atoms. A large HOMO–LUMO gap of 1.44 eV obtained from DFT calculations of the neutral cluster } \text{Au}_{20}(\text{PPh}_3)_8 \text{ suggests high stability of the system. However, calculations predict low first and second ionization potential for the neutral cluster, so the species can be readily oxidized to } \text{[Au}_{20}(\text{PPPh}_3)_8]^{2+}.

\([\text{Au}_{22}(\text{ddp})_6] \text{ [ddp is 1,8-bis(diphenylphosphino)octane; } n_e = 22]. \text{ The cluster was synthesized, crystallized and characterized by X-ray diffraction. It comprises two } \text{Au}_{11} \text{ units linked by four PR}_3 \text{ ligands (Fig. 15 a).}\(^{61}\) \text{The other two PR}_3 \text{ ligands are coordinated to the oppositely lying vertices of the } \text{Au}_{22} \text{ core. Eight gold atoms in the cluster are accessible to reactants, being potential active sites in catalytic reactions. The HOMO–LUMO gap (1.9 eV) suggests a stable cluster.}\]

\([\text{Au}_{25}(\text{SCH}_2\text{Bn})_8]\text{Cl}_6\text{Br}^{+} \text{ (} n_e = 16). \text{ According to X-ray data, the cluster represents two incomplete } \text{Au}_{11} \text{ icosahedra linked by edge SR ligands (see Fig. 15 b).}\(^{62}\) \text{The halide ligands, Cl and Br, are coordinated to the two apex gold atoms, while the PPh}_3 \text{ ligands are coordinated to other ten metal atoms on the core surface. The cluster has a prolate geometry and a stable electronic structure (} n_e = 16); \text{the HOMO–LUMO gap is 1.35 eV.}\(^{62}\) \([\text{Au}_{25}(\text{SCH}_2\text{Bn})_8]\text{Cl}_6\text{Br}^{+} \text{ (} n_e = 2–18; \text{ } n_e = 16). \text{ The cluster was synthesized by the reaction of } \text{[Au}_{11}(\text{PPPh}_3)_2\text{Cl}_2]^{2+} \text{ with n-alkanethiols } \text{C}_n\text{H}_{2n+1}\text{SH (} n = 2, 8, 10, 12, 14, 16, 18).\(^{63}\) \text{According to X-ray data, the cluster structure is formed by two } \text{Au}_{13} \text{ icosahedra sharing a common vertex (see Fig. 15 c). Two Au5 pentagons separated by the central gold atom are linked by the thiolate ligands. Gold atoms from peripheral pentagons coordinate}}

Figure 14. Crystal structures of clusters \([\text{Au}_{20}(\text{PPPh} \text{Py-2)}_2\text{Cl}_4]^{2+} \text{ (} a \text{) and } \text{[Au}_{20}(\text{PP)}_3)_4]^{4+} \text{ (} b \text{) determined by X-ray diffraction and structures of clusters } \text{[Au}_{20}(\text{PH}_3)_8]^{2+} \text{ and } \text{[Au}_{20}(\text{PH}_3)_4]^{2+} \text{ obtained from DFT calculations (} c).\(^{250}\)
ten triphenylphosphine ligands. The theoretically predicted optical properties of the cluster are due to specific features of the interaction of valence electrons in the two icosahedra, while the cluster stability is ensured by the closed electron shells ($n_e = 8$) in the two icosahedra. Replacement of the central gold atoms in the icosahedra by Hg and Pt atoms gives the $[\text{HgPtAu}_{23}(\text{PR}_3)_{10}(\text{SMe}_2)\text{Cl}_2]^2+$ cluster characterized by a large dipole moment. $[\text{Au}_{39}(\text{PPh}_3)_{14}\text{Cl}_6]^7$ is the largest gold cluster with the unambiguously determined structure. Two Au_{19} units represent a fragment of the hcp structure; they are rotated by 30° relative to each other and form an antiprismonic cavity with the Au atom at the centre. The calculated HOMO–LUMO gap equals 0.8 eV and thus points to high stability of the cluster. A symmetry analysis of the frontier orbitals revealed that all states with mainly F-character are filled, thus indicating the formation of a closed electron shell ($1S^21P^61D^42S^21F^4$) for the thirty-four electrons delocalized over the cluster core, which corresponds to full acceptance of six electrons by the Cl atoms.

Major component of commercially available reagent Nanogold®: cluster $\text{Au}_{55}(\text{PPh}_3)_{12}\text{Cl}_6$. The so-called ‘Schmid cluster’ with the tentative formula $\text{Au}_{55}(\text{PPh}_3)_{12}\text{Cl}_6$ is the major component of the commercially available product Nanogold®, which contains gold nanoparticles with an average size of 1.4 nm. Although the reagent is widely used, the structure, exact formula and molecular mass of its major component are unknown. This is probably due to the fact that the product synthesized according to Schmid contains clusters of different composition and size, namely, $[\text{Au}_{39}(\text{PPh}_3)_{14}\text{Cl}_6]^-$, $\text{Au}_{101}(\text{PPh}_3)_{21}\text{Cl}_5$, $\text{Au}_{99}(\text{PPh}_3)_{24}\text{Cl}_12$, etc. In particular, the mass spectra of Nanogold® exhibit three peaks corresponding to clusters with masses of 8, 13 and 18 kDa. The peaks cannot be assigned to $[\text{Au}_{39}(\text{PPh}_3)_{14}\text{Cl}_6]^-$ (12 kDa) or $\text{Au}_{55}(\text{PPh}_3)_{12}\text{Cl}_6$ (14 kDa). Based on the superatom concept, it was assumed that the reagent contains $\text{Au}_{46}(\text{PPh}_3)_{12}\text{Cl}_6$, $\text{Au}_{67}(\text{PPh}_3)_{14}\text{Cl}_6$ and $[\text{Au}_{69}(\text{PPh}_3)_{20}\text{Cl}_12]^-$ (Fig. 16 b).

However, a recent study of the composition of Nanogold® confirmed the formula $\text{Au}_{55}(\text{PPh}_3)_{12}\text{Cl}_6$ proposed by Schmid. The structure and properties of the $\text{Au}_{55}(\text{PPh}_3)_{12}\text{Cl}_6$ cluster were studied by quantum chemical methods. Different polyhedra were used to describe metallic core geometry, namely, a cuboctahedron, an icosahedron, a dodecahedron etc...
hedron and a decahedron. According to calculations, the icosahedral structure (see Fig. 16 a) is 2.23 eV more stable than the cuboctahedral one.258 The stability of \(\text{Au}_{55}(\text{PPh}_{3})_{12}\text{Cl}_{6}\) has no explanation within the framework of the superatom theory. Probably, the stability of this cluster is determined by high symmetry. The 55-atom icosahedral fragments are known to form cluster cores, so large stable particles often contain the icosahedral fragment.216 A high symmetry of the cluster polyhedron (icosahedron, decahedron, truncated octahedron) will favour its stability. Thus, the presence of highly symmetric fragments plays the decisive role in the formation of large clusters.

VII. Bimetallic clusters \(\text{M}_x\text{Au}_n\text{L}_m\) (\(\text{M} = \text{Pd}, \text{Pt}, \text{Cu}, \text{Ag}\))

Using the superatom theory, one can predict the stability of ligand-protected gold clusters when \(\text{Au}\) atoms are replaced by atoms of other metals. As mentioned above, \([\text{Au}_{25}(\text{SR})_{18}]^{2-}\) has a total of eight valence electrons. When a gold atom is replaced by the atom of a metal (\(M\)) having \(x\) valence electrons, the stable eight-electron configuration of the \([\text{MAu}_{24}(\text{SR})_{18}]^{x}\) cluster will persist under the following conditions [see Eqn (1)]:

\[
x + 24 - 18 - q = 8 \\
x = q + 2
\]

Usually, the total charge of the cluster (\(q\)) equals \(\pm 2\), \(\pm 1\), or 0. Therefore, a corresponding formula can be proposed for all metals in the periodic system using the possible oxidation states in the cluster. For instance, singly doped clusters containing \(\text{Ni}, \text{Pd}\) or \(\text{Pt}\) atoms with \(d^{10}\) electronic configuration (\(x = 0\)) are described by the formula \([\text{MAu}_{24}(\text{SR})_{18}]^{x}\), while clusters containing Group I metal atoms (\(x = 1\)) are described by the formula \([\text{MAu}_{24}(\text{SR})_{18}]^{x+}\).

There is a number of nonequivalent positions for the \(M\) atom in metal-doped clusters \(\text{MAu}_{24}\text{L}_{16}, \ldots\), at the centre of the cluster, on the surface of the core or in the shell (Fig. 17). In most bimetallic systems, the heteroatom occupies a symmetric position at the centre.

The compositions of the \(\text{MAu}_{24}\text{L}_{16}\) clusters predicted using the concept of closed-shell electronic configuration can be tested by carrying out geometry optimization and total energy calculations; most often, DFT methods are used. A study of the \([\text{MAu}_{24}(\text{SR})_{18}]^{x}\) clusters with the \(M\) atom at the centre made it possible to specify the possible metals \(M\).262 There is a total of 16 chemical elements suitable for doping with retention of the closed electron shell and icosahedral structure of the cluster core. The existence of the following clusters was predicted: \([\text{MAu}_{24}(\text{SR})_{18}]^{x-}\) (\(M = \text{Pd}, \text{Pt}, \text{Ni}\)), \([\text{MAu}_{24}(\text{SR})_{18}]^{x-}\) (\(M = \text{Ag}, \text{Cu}\)) and \([\text{MAu}_{24}(\text{SR})_{18}]^{x+}\) (\(M = \text{Ge}, \text{Sn}\)). Clusters doped with \(\text{Ni}, \text{Pt}\) and \(\text{Pd}\) have the largest HOMO – LUMO gap, thus being the most stable.

Intensive experimental and theoretical research into doped gold clusters began with the synthesis of \(\text{PdAu}_{24}(\text{SR})_{18}\) (\(R = \text{CH}_{2}\text{Bn}, \text{C} \equiv \text{CPh}, \text{C}_{12}\text{H}_{25}\)).94,96,263,264 Density functional calculations of \(\text{PdAu}_{24}(\text{SMc})_{18}\) \((q = \pm 2, \pm 1, 0)\) revealed the most stable structure for a neutral cluster with the core–shell structure and the \(\text{Pd}\) atom at the centre of the core.94

Later on, the central position of the \(\text{Pd}\) atom in \(\text{PdAu}_{24}(\text{SC}_{12}\text{H}_{25})_{18}\) was confirmed by Mössbauer spectroscopy and XPS.265 The core – shell structure is also characteristic of other palladium-doped gold clusters, e.g., \([\text{PdAu}_{12}(\text{PPh}_{3})_{6}\text{Cl}_{4}]^{-}\) (Ref. 12) and \(\text{PdAu}_{17}(\text{SCH}_{2}\text{Bn})_{24}\).96 The stability of the \([\text{PdAu}_{24}(\text{SR})_{18}]^{x}\) cluster is due to an increase in the \(\text{Pd} – \text{Au}_{12}\) (core surface) and core–shell interaction energies compared with those obtained for the \(\text{Au}_{25}(\text{SR})_{18}\) cluster.262 The thermodynamic stability of \(\text{PdAu}_{24}(\text{SMc})_{18}\) was predicted theoretically266 and confirmed experimentally for \(\text{PdAu}_{24}(\text{SC}_{12}\text{H}_{25})_{18}\).94

All \(\text{PdAu}_{24}(\text{SR})_{18}\) clusters that were isolated and investigated bear a zero charge, although the superatom theory predicts an anionic character of these systems (\(q = -2\)). Presumably, the formation of the \([\text{PdAu}_{24}(\text{SR})_{18}]^{-}\) cluster is accompanied by ready oxidation by atmospheric oxygen. For instance, an analysis of products formed during the synthesis of \(\text{PdAu}_{24}(\text{SR})_{18}\) revealed a small amount of \([\text{PdAu}_{24}(\text{SR})_{18}]^{-}\).96 Doped clusters containing different ‘magic’ numbers of gold atoms can exist. Recently, the \(\text{PdAu}_{17}(\text{SR})_{24}\) cluster was synthesized and studied.96 The catalytic properties of the \(\text{PdAu}_{17}(\text{SR})_{24}\) and \(\text{PdAu}_{24}(\text{SR})_{18}\) clusters were studied taking selective hydrogenation of \(\alpha,\beta\)-unsaturated ketones to corresponding alcohols as an example; the catalysts appeared to be highly active in the reaction and provided a high conversion.96 Synergistic effects in catalysis were also reported for nanoalloys based on gold.267

Platinum also forms singly doped clusters.268 To date, the \(\text{PtAu}_{24}(\text{SCH}_{2}\text{Bn})_{18}\) cluster was synthesized.269 Its structure and electronic properties were studied by XPS, EXAFS and theoretically using DFT calculations.270 The \(\text{Pt}\) atom occupies position at the core centre, similarly to \(\text{PdAu}_{24}(\text{SR})_{18}\). A DFT study of unusual trimetallic cluster \(\text{PtAu}_{9}(\text{Ag})_{12}(\text{PR}_{3})_{12}\) (Ref. 98) was reported.268 A bimetallic cluster \(\text{Pt}_{13}[\text{Au}_{6}(\text{PPh}_{3})_{12}]^{2+}(\text{PR}_{3})_{6}\) with a \(\text{Pt}_{13}\) icosahedral core was synthesized and structurally characterized by X-ray diffraction.271
Unlike platinum and palladium, which form singly doped systems MAu$_L$, silver and copper can form bimetallic variable-composition clusters. In particular, the Ag$_{1134}$Au$_{13}$ (PPh$_3$)$_6$(SPy-2)$_6$ clusters were synthesized. They are multiply doped analogues to the Au$_{1134}$Au$_{13}$ (PPh$_3$)$_6$(SPy-2)$_6$ clusters. The inner part of the core and participate in the formation of 'staple' bonds, while silver atoms form the surface of the polyhedron and the thirteenth silver is located at the core surface. Different types of structural organization of Cu$_{10}$Au$_{10}$ clusters are available. For instance, the copper atom can occupy positions at the core centre. The Ag$_{1134}$Au$_{13}$ (PPh$_3$)$_6$(SPy-2)$_6$ clusters were synthesized. They are multiply doped analogues to the Au$_{1134}$Au$_{13}$ (PPh$_3$)$_6$(SPy-2)$_6$ clusters. The inner part of the core and participate in the formation of 'staple' bonds, while silver atoms form the surface of the polyhedron and the thirteenth silver is located at the core surface. Different types of structural organization of Cu$_{10}$Au$_{10}$ clusters are available. For instance, the copper atom can occupy positions at the core centre. Different types of structural organization of Cu$_{10}$Au$_{10}$ clusters are available. For instance, the copper atom can occupy positions at the core centre. Different types of structural organization of Cu$_{10}$Au$_{10}$ clusters are available. For instance, the copper atom can occupy positions at the core centre. Different types of structural organization of Cu$_{10}$Au$_{10}$ clusters are available. For instance, the copper atom can occupy positions at the core centre.

Figure 18. Crystal structures of clusters [Ag$_{32}$Au$_{12}$(SPPh)$_3$]$_{10}$ (a), [Cu$_{32}$Au$_{12}$(SC$_6$H$_4$CF$_3$-4)$_3$]$_{10}$ (b), [Cu$_{32}$Au$_{12}$(SPPh)$_3$]$_{10}$ (c), [Cu$_{32}$Au$_{12}$(SPPh)$_3$]$_{10}$ (d), [Cu$_{32}$Au$_{12}$(SPPh)$_3$]$_{10}$ (e), [Cu$_{32}$Au$_{12}$(SPPh)$_3$]$_{10}$ (f) determined by X-ray diffraction and structure of cluster [Ag$_{32}$Au$_{12}$(SPPh)$_3$]$_{10}$ obtained from DFT calculations.
Cu₄Au₂₅₋₄(SCH₂Bn)₁₈

(x = 0 – 4). They are unstable and undergo a spontaneous transformation to Au₂₅(SCH₂Bn)₁₈. Recently, clusters [Cu₃Au₁₃(SPY-2)₂]⁺, [Cu₂Au₁₃(PPh₃)₂(SPY-2)₂]⁻ and [Cu₄Au₁₃(SPP₆(PY-2))₄(SCH₂Bn)₁₈]⁻ (see Fig. 18d–f) were synthesized by the reaction of Au(PPh₃)Cl with Cu(OAc)₂ and thiol under the action of NaBH₄ in a dichloromethane/methanol mixture at 0 °C; the yields were 25%, 20% and 40%, respectively. According to X-ray data, the clusters have the Au₁₃icosahedral core; copper atoms are part of the ‘staple’ units or coordinate ligands (see Fig. 18d–f). The clusters are thermally stable, the ligands are removed in the temperature interval between 200 and 325 °C. Removal of ligands from the surface allows active metallic sites [Cu₄Au₁₃(L)]⁺ to be involved in catalytic reactions. After heat treatment at 325 °C these clusters exhibit higher activity and selectivity in aerobic oxidation of benzaldehyde compared to the Au₂₅(SR)₁₈ cluster.

The bilayer structure of the core is characteristic of [Cu₃Au₁₃(SR)₁₈]⁻ (R = C₆H₄CF₃₋₄; n = 0, 2, 4, 6) clusters. These systems differ in composition of the ‘staple’ units. At n = 0, the Cu₃Au₁₃ core is stabilized by six Cu₂SR₃ units (see Fig. 18b); otherwise, the cluster contains 6–n Cu₂SR₃ units and n Cu₄As(SR)₃ units. Among these clusters, only [Cu₃Au₁₃(SR)₁₈]⁻ is stable in a solution in dichloromethane at room temperature.

VIII. Properties and applications of [LₚAuₙXₘ]ⁿ⁺ clusters in nanoelectronics, nanoptics and catalysis

VIII.1. The [Auₙ(SR)ₘ]ⁿ⁺ clusters as quantum dots

Unusual properties of [LₚAuₙXₘ]ⁿ⁺ clusters arise from quantum effects. Gold clusters have discrete electronic spectra in contrast to quasi-continuous spectrum of larger nanoparticles. Quantum particles usually have complicated optical absorption spectra, whereas spherical gold particles 200 nm in diameter exhibit well-defined plasmon resonance peak at 520 nm. Gold clusters exhibit fluorescent and magnetic properties as well as chirality. Since the fluorescence intensity and lifetime depend on temperature, gold nanoparticles are used as a versatile nanothermometer in studies of biological systems. In some cases, the onset of optical activity can be explained using the model for a symmetric field produced in the presence of a chiral ligand. The electronic and optical properties of a cluster can be significantly changed by varying the number of atoms. For gold nanoparticles, this quantum effect becomes noticeable as the particle size decreases to 2 nm. Recently, nonlinear optical properties of the Au₁₃(SG)₂₀ cluster have been reported. Understanding the origin of the optical properties of gold clusters requires taking account of the structure of the metal and ligand orbitals.

As mentioned above, the absorption spectrum of [Au₂₅(SR)₁₈]⁻ exhibits three peaks at 670, 450 and 400 nm (see Fig. 4). This spectral pattern was interpreted by comparing the experimental and theoretical spectra. The peak at λ = 670 nm corresponds to the HOMO–LUMO transition (interband D → SP transition). The peak at 400 nm is also an interband D → SP transition. Thus, discrete molecular-like character of the spectrum of Au₂₅(SR)₁₈ is due to one-electron transitions between quantum energy levels.

The influence of ligand configurations on the optical properties of gold clusters is still poorly studied. As the size of the hydrocarbon fragment in the ligand increases, the octahedral ligand field is distorted and the low-energy band in the spectrum of [Au₂₅(SCH₂Bn)₁₈]⁻ is split unlike the band in the spectrum of [Au₂₅(SMe)₁₈]⁻. The interaction within the aromatic π-electron system leads to formation of a field of S₈ symmetry where P-orbitals are split into two sets, viz., a low-lying doubly degenerate orbital and a nondegenerate orbital which lies 0.13 eV higher. D-Orbitals are split into three sets, namely, two doubly degenerate orbitals and one nondegenerate orbital which lies 0.17 eV higher. Splitting of the P-orbitals causes the appearance of a double peak corresponding to the low-energy transition, as was observed for the [Au₂₅(SPh)₁₈]⁻ and [Au₄₅(SCH₂Bn)₁₈]⁻ clusters. The double peak can be reproduced theoretically by taking into account spin–orbit coupling. Study of the optical properties of the Au₄₅(SR)ₑ₈ cluster is a complicated task because the ligand can be a source of Raman signal.

Fluorescent gold clusters are of particular interest because of their application as sensors. To date, the reason for high yield of fluorescence in gold clusters remains unclear. Presumably, high yield of fluorescence is due to quantum effects in the metal atoms forming the cluster core. An alternative explanation is as follows: it is a consequence of the interaction between ligands and metal atoms on the core surface. For instance, fluorescence of Au₄₅(SR)₁₈ clusters (R = C₆H₁₁, CH₂Bn, G) is governed by all constituent Au atoms. Stabilization of the cluster with ligands containing electron-rich atoms (N, O) or groups (CO₂H, NH₃) enhances the fluorescent properties. Fluorescence of the Au₂₅(SG)₁₈ cluster allows this system to be used as sensor for I⁻ anions and silver ions.

A characteristic feature of gold clusters protected by sulfur-containing ligands and proteins is luminescence. Luminescence of metals is usually very weak owing to continuous spectrum of electronic states in the wide conduction band. The ability of small gold clusters 1–2 nm in size to luminesce arises from the existence of the HOMO–LUMO gap. Gold(0) compounds exhibit luminescent properties. It seems reasonable to assume that the role of emitters in the Au₄₅(SR)₁₈ clusters is played by the Au₄₅(SR)₁₈ oligomeric structures in the shell. An important role in luminescence is also played by the nature of the ligand. Recent experimental studies on the temperature dependence of luminescence in Au₂₅(SR)₃₄ showed that emission occurs at higher energies compared to the energy of the absorbed quantum. However, the mechanism of filling of highly excited states is to be clarified. Luminescencent properties of gold clusters allowed them to be used in microprinting, in studies of cell structures, in the design of metal ion sensors, and in qualitative determination of amino acids. Individual gold atoms have an unpaired 6s¹ electron and exhibit the paramagnetic properties. Probable, the loss of paramagnetism in individual atoms upon formation of diamagnetic metallic gold will be studied in the future. Paramagnetism in various Au₄₅(SR)₁₈ clusters was detected long ago, but its origin remained unclear owing to the lack of information on the structure of these systems. Earlier, it was assumed that the magnetic properties of gold clusters arise from charge transfer from the Au atoms of the core surface to ligands. According to modern con-
cept, the magnetic moment of a neutral cluster \(\text{Au}_{25}(\text{SR})_{18} \) is due to the spin of unpaired electron in the HOMO localized on the \(\text{Au}_{11} \) core. The magnetic properties of clusters can be reversibly switched by varying the charge of the cluster.\(^{312} \) The \([\text{Au}_{25}(\text{SR})_{18}]^+ \) and \([\text{Au}_{25}(\text{SR})_{18}]^- \) charged clusters have even numbers of electrons and behave as diamagnetics. Recently, the ferromagnetic properties were predicted for \(\text{Au}_{30}(\text{PPh}_{3})_{12} \text{Cl}_{4} \).\(^{313} \)

Gold clusters stabilized by chiral ligands, \(L \)-glutathione and penicillamine, exhibit optical circular dichroism.\(^{314, 315} \) Clusters stabilized by \(N \)-isobutyl-L-cysteine and \(N \)-isobutyl-D-cysteine behave analogously.\(^{316} \) It should be noted that the \(\text{Au}_{25}(\text{SR})_{18} \) clusters with achiral ligand \(\text{SCH}_{2}\text{Bn} \) are optically inactive, whereas \(\text{Au}_{25}(\text{SG})_{18} \) exhibits a clearly seen circular dichroism signal.\(^{314} \) There are three reasons for the appearance of chirality in gold clusters. First, this is intrinsic chirality of the cluster core;\(^{11, 286} \) second, asymmetric coordination of ligands to the symmetric core leads to formation of optical isomers, as is the case for, e.g., clusters \(\text{Au}_{25}(\text{SR})_{24} \) (Ref. 50) and \(\text{Au}_{102}(\text{SR})_{44} \).\(^{22} \) Finally, chiral centres can exist in the ligands and thus influence the properties of the entire cluster. As was shown theoretically,\(^{11} \) the optical activity is governed by the shell Au atoms surrounded by asymmetric ligands. Owing to their chiral properties, gold nanoparticles are used as enantio-selective catalysts.\(^{89} \)

VIII.2. Application of \(\text{Au}(\text{SR})_{m} \) and \(\text{Au}(\text{PR}_{3})_{m} \) clusters in catalysis

Phosphine-protected gold clusters are widely used in homogeneous\(^{266} \) and heterogeneous catalysis.\(^{318 – 320} \) The catalytic properties of \(\text{Au}(\text{SR})_{m} \) clusters were discovered recently,\(^{321 – 338} \) and are rather surprising (Table 1).

It is commonly accepted that the sulfur atoms present in a cluster block the active sites and reduce the catalytic activity of the cluster. Therefore, it is surprising that the \(\text{Au}(\text{SR})_{m} \) clusters of different composition catalyze the oxidation and hydrogenation reactions.

Currently, the catalytic properties of gold particles are explained by the specific electronic properties of nanoparticles and by the presence of gold atoms with low coordination number in the gold particles. By varying the position of the centre of the density of d-electronic states for gold atoms in a cluster one can influence its catalytic properties. Thiol ligands possess electron-withdrawing properties and favour a shift of the centre of the electron density of Au d-levels in the cluster towards the Fermi level.\(^{256} \) This can be a reason for the catalytic activity of \(\text{Au}(\text{SR})_{m} \).\(^{322} \)

Gold clusters are used for catalysis in solution or as supported composites (Fig. 19). One can assume that the active sites of homogeneous systems containing \(\text{Au}(\text{SR})_{m} \) represent gold atoms from the cluster shell or gold atoms located on the core surface.

Besides, the catalytic properties of \(\text{Au}(\text{SR})_{m} \) clusters in solution are due to dynamic ligand exchange of the RS group with a substrate fragment. According to original studies,\(^{225, 334} \) this is a key step in selective hydrogenation of unsaturated ketones and aldehydes.

The use of clusters as precursors of supported catalysts (see Fig. 19) appears to be a promising line of research. The advantages of supported systems include a higher stability compared to homogeneous systems and the possibility of multiple use owing to regeneration. Traditionally, supported catalysts are prepared by impregnating the surface of oxide supports with solutions containing \([\text{L}_{\text{Au}}, \text{X}_{\text{n}}]^{2m} \) and subsequent calcination.\(^{339} \) Removal of ligands from the cluster shell on heating makes the active sites more accessible. This is accompanied by changes in the number of filled electronic states of the metal that are responsible for the catalytic activity. Highly efficient catalysts were prepared by impregnating titania with a solution containing \([\text{Au}(\text{PPh}_{3})_{6}][\text{BF}_{4}]_{2} \).\(^{320} \)

The choice of the calcination temperature and reaction temperature specifies the extent of retention of the ligand shell. Ligands split off from the \(\text{Au}_{m}(\text{PPh}_{3})_{m} \) clusters at 200 °C.\(^{340} \) Removal of the \(\text{PR}_{3} \) ligands from the ligand shell enhances the catalytic activity in the oxidation of benzaldehyde.\(^{319} \) A study of thiolate-capped gold clusters showed that ligand loss begins at 200 °C and the ligand shell no longer exists at 250 °C.\(^{327} \) Also, heat treatment of \(\text{Au}_{10}(\text{SG})_{10}/\text{HAP}, \text{Au}_{18}(\text{SG})_{14}/\text{HAP}, \text{Au}_{25}(\text{SG})_{18}/\text{HAP} \) and \(\text{Au}_{50}(\text{SG})_{24}/\text{HAP} \) composites at 300 °C afforded catalysts containing ligand-free gold particles active in cyclohexane oxidation at 150 °C.\(^{323} \) The gold particles thus formed retain the small cluster size due to strong interaction between Au atoms and phosphate groups. These catalysts are efficient in the oxidation of CO (at 60 °C.\(^{321} \) and hydrocarbons (at 30 – 80 °C).\(^{328, 323, 327 – 329} \) Probably, in this case the role of active sites is played by the type-D gold atoms with low coordination number or by the type-C gold atoms located near the particle–support interface (see Fig. 19). In other situations, calcination of supported gold clusters leads to reduction of their catalytic activity. For instance, the \(\text{Au}_{25}(\text{SCH}_{2}\text{Bn})/\text{SiO}_{2} \) and \(\text{Au}_{25}(\text{SC}_{6}\text{H}_{4}\text{NH}_{2}-4)_{17}/\text{SiO}_{2} \) composites heat treated at 400 °C were characterized by the same particle size and reduced catalytic activity in selective oxidation of stilbene (80 °C).\(^{330} \) This indicates an important role of ligands in the formation of active sites in the catalysts.

Like nanoparticles,\(^{72, 73} \) gold clusters are active and selective catalysts of oxidation of many compounds including reactions involving molecular oxygen.\(^{69} \) The oxidation of \([\text{Au}(\text{SR})_{18}]^- \) (\(R = \text{CH}_{2}\text{Bn} \)) by oxygen takes a few days.\(^{339} \) Surprisingly, the reaction includes photochemical steps.\(^{341} \) The electron density transfer from the cluster to the oxygen molecule is a photoinitiated process whose rate is governed by the energy difference between the cluster and LUMO and the energy of the acceptor level of \(\text{O}_{2} \) molecule. Therefore, it seems quite natural that the maximum yield of \(\text{H}_{2}\text{O}_{2} \) produced electrochemically from \(\text{O}_{2} \) was observed in the presence of \([\text{Au}(\text{SR})_{18}]^- \) (Ref. 332) owing to ready transfer of the electron density to the \(\pi \)-orbitals of \(\text{O}_{2} \). The reaction of the \(\text{Au}_{25} \) – PVP complex with oxygen was studied using DFT calculations\(^{342} \) assuming that \(\text{O}_{2} \) can be activated owing to weak bond between PVP and the cluster core. When the supported clusters \([\text{L}_{\text{Au}}, \text{X}_{\text{n}}]^{2m} \) are used, an important role in the activation of molecular oxygen is played by the nature of the support. For instance, \(\text{Au}_{25}(\text{SCH}_{2}\text{Bn})_{18}/\text{CeO}_{2} \) and \(\text{Au}_{38}(\text{SCH}_{2}\text{Bn})_{24}/\text{CeO}_{2} \) complexes appeared to be the most active catalysts of CO oxidation at 60 – 80 °C. Calculation of the samples at 150 °C for 1.5 – 2 h causes the conversion to increase to 98%. It is believed that in this case ligands are retained in the cluster composition. A tentative reaction mechanism is as follows. Initially, the \(\text{O}_{2} \) molecule is activated on the gold cluster through electron density transfer from the cluster to give active oxygen \(\text{O}^2 \).\(^{321} \) Then \(\text{O}^2 \) migrates to the cluster –
support contact region and undergoes transformation to the hydroperoxide intermediate OOH with participation of the surface OH groups from CeO_2. The intermediate oxidizes the adsorbed CO molecule. This mechanism of CO oxidation was proposed for the gold nanoparticles immobilized on CeO_2.72, 73

The oxidation of styrene was studied in homogeneous systems, e.g., toluene in the presence of $\text{Au}_{25}(\text{SR})_{18}$.74

Table 1. Homogeneous and heterogeneous catalytic reactions with participation of gold clusters.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Catalyst a</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{CO} + \text{O}_2 \rightarrow \text{CO}_2$</td>
<td>$\text{Au}{25}(\text{SR}){18}/\text{CeO}_2$</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>$\text{Au}{38}(\text{SR}){24}/\text{CeO}_2$</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td>$\text{Au}{10}(\text{SG}){10}/\text{HAP}$</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>$\text{Au}{14}(\text{SG}){14}/\text{HAP}$</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>$\text{Au}{25}(\text{SG}){18}/\text{HAP}$</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>$\text{Au}{39}(\text{SG}){24}/\text{HAP}$</td>
<td>326</td>
</tr>
<tr>
<td></td>
<td>$\text{Au}{38}(\text{SR}){24}/\text{CNT}$</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>$\text{Au}{14}(\text{SR}){60}/\text{SiO}_2$</td>
<td>328</td>
</tr>
<tr>
<td></td>
<td>$\text{Au}{25}(\text{SR}){18}/\text{SiO}_2$</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>$\text{Au}{25}(\text{SG}){18}/\text{HAP}$</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>$\text{Au}_{25}(\text{PPh}3){12}\text{Cl}_6$</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>$\left[\text{Au}{25}(\text{PPh}3){10}(\text{SC}{12}\text{H}_{25})_5\text{Cl}_2\right]^2+$</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>$\text{Au}{25}(\text{SR}){18}/\text{SiO}_2$</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>$\text{Au}{25}(\text{SR}){18}/\text{TiO}_2$</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td>$\text{Au}{25}(\text{SR}){18}/\text{MgO}$</td>
<td>335</td>
</tr>
</tbody>
</table>

a HAP stands for hydroxyapatite $\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2$ and CNT stands for carbon nanotubes.
(R = CH2Bn, C6H13, C12H25)258 and using heterogeneous catalysts Au25(SCH2Bn)18/SiO2,327 Au25(SR)18/HAAl (R = G, CH2-Bn)328 and Au25(PPh3)2Cl6/HAP.258,329 It was found that the Au55(PPh3)2Cl6 cluster exhibits catalytic activity in styrene oxidation resulting in benzaldehyde, styrene epoxide and acetophenone.329 Low reaction temperature (80 °C) suggests retention of the ligand shell in the clusters. Theoretical studies of the structure of the active site in this cluster and of the mechanism of oxidation showed that the catalytic properties of Au55(PPh3)2Cl6 arise from specific arrangement of ligands on the surface of the quasi-icosahedral Au55 core.258 The active site represents a centred Au6 pentagon surrounded by PR3 ligands. Catalytic activity of styrene on thiolate-protected gold clusters depends on the catalyst preparation procedure, on the type of support and on the nature of oxidizing agent. A 100% yield of benzaldehyde was obtained using Au25(SCH2-Bn)18/SiO2 as the catalyst (without calcination) and tert-butyl hydroperoxide (TBHP) as the oxidizing agent.327 Similar results were obtained using the Au25(SR)24/SiO2 and Au148(SR)60/SiO2 systems. It was found that the cluster shell is retained under experimental conditions. The mechanism of styrene oxidation was studied theoretically taking ligand-free Au6 clusters (n = 16–35) as examples. It involves the formation of a cyclic intermediate CCOO*343. But the key step in styrene oxidation represents activation of the oxidizing agent (O2 or TBHP). One can assume that activation is as a result of the shift of the electron density from the metallic cluster core to the adsorbed oxidant. Activation of the double bond in the hydrocarbon molecule occurs on the Au5+7 sites from the cluster shell. The activity of such cationic sites in activation of unsaturated hydrocarbons was predicted theoretically for ligand-free gold clusters.144,146 Establishment of the mechanism of catalytic selective oxidation of styrene in the presence of gold clusters with certainty requires an additional theoretical research.

Studies on the catalytic properties of HAP-supported Au19(SG)10, Au19(SO)12, Au25(SG)18 and Au50(SG)34 clusters stored at 300 °C for 2 h in aerobic oxidation of cyclohexane at 150 °C revealed a correlation between the catalyst activity and the cluster size.23 The authors of that study believe that the samples contain supported ligand-free atomic gold clusters. The maximum activity [TOF = 2 × 10−4 h−1 (Au atom)−1] was observed for the Au39 cluster. Further increase in the Au39 particle size reduced the catalytic activity. The size effects of gold nanoparticles in the oxidation reaction are well known and can be explained by different structure of the particle–support interface at different particle size values.72

The thiolate cluster Au25(SCH2Bn)18 supported on TiO2, CeO2, MgO and Fe2O3 exhibits high activity and selectivity (92%) in the oxidation of sulfides to sulfoxides using PhIO as the oxidizing agent.331 The activity and selectivity of the supported catalyst are significantly influenced by the electronic properties and geometry of substituents. For instance, the oxidation of sulfides containing electron-donating groups [4-bromophenyl(methyl) sulfide, 4-methylphenyl(methyl) sulfide] proceeds with a higher yield compared to the oxidation of sulfides containing electron-withdrawing groups [methyl(4-nitrophenyl) sulfide]. The nature of support also significantly influences the catalytic activity, which enhances in the order MgO < CeO2 < Fe2O3 < TiO2. Low reaction temperature (40 °C) suggests retention of the ligand shell and possible involvement of the ‘staple’ units in the activation. It was assumed that owing to the reversible transition Au25(SR)18 ⇋ [Au25(SR)18]+ the cluster can act as acceptor and as oxygen carrier from PhIO to the sulfide molecule coordinated to the gold atom in the ‘staple’ unit. However, since the catalyst activity depends on the support nature, the role of the cluster/support interface in the activation of substrates and in the reaction itself cannot be ruled out.

Among other processes catalyzed by the [LnxAuXn]m+ clusters, mention may be made of low-temperature (25 °C) catalytic hydrogenation of unsaturated ketones325,334 and reduction of nitro compounds.335,336 Cross-coupling reactions in the presence of gold clusters are carried out at higher temperatures. The oxide-supported cluster Au25(SCH2Bn)18 catalyzes cross-coupling of aryl iodide resulting in diphenyl (130 °C).377 The product yield can be as high as 99.8% using CeO2 as support. The same cluster, Au25(SCH2Bn)18, supported on SiO2, AI2O3, CeO2, and MgO catalyzes the Sonogashira cross-coupling reaction,

Figure 19. Catalytic systems based on Au84(SR)m clusters. Clusters in solution (a): clusters immobilized on support by impregnation with solution and characterized by partial retention of ligand environment (b); and ligand-free clusters immobilized on support and prepared by calcination of the catalyst (c).
which involves the reaction of phenylacetylene with 4-iodo-
methoxybenzene at 160 °C to give 4,4'-dimethoxy-1,1'-
biphenyl with a selectivity of 88%.33,34 At this temperature,
type-B sites (see Fig. 19) forming the Au₃ unit in the cluster
core may be accessible. A theoretical simulation revealed
activation of phenylacetylene on the Au₃ unit; the calculated
asorption energy for this coordination was 0.40 eV.338

The Au₂₃(SCH₂Bn)₁₈ and Au₂₅(PPh₃)₁₀(C≡CPh)ₓ₂₅ (X = Br, Cl) clusters on oxide supports (TiO₂, CeO₂,
SiO₂, Al₂O₃) exhibit high activity and selectivity in
partial hydrogenation of alkynes RCH=CHR at 100 °C (R = Ph, CH₂Bn, C₅H₁₁, C₇H₁₅,
C₉H₁₇).333 Hydrogenation of terminal alkynes does not
require calcination of catalysts, therefore, the ligand shell
do not preclude the process. The reaction mechanism
involves deprotonation of hydrocarbon and the formation
of an intermediate, R–C≡C–AuₙLₘ. For
Au₂₅(PPh₃)₁₀(C≡CPh)ₓ₂₅, the existence of such an
intermediate was detected by FT-IR spectroscopy. Thus,
the activity of the catalyst in this reaction is due to the
peculiar structure of the cluster, namely, the presence of
the Au₃ centres that are necessary for activation of the
alkyne. This is a common feature of gold clusters and
gold nanoparticles in selective hydrogenation of
alkynes. 144, 145, 343, 344

Concluding this Section, the use of [LₑAuₐXₐ]ₙ atomic
clusters as catalysts allows catalytic reactions to be studied
at the molecular level and thus the measured property of the
catalyst (activity, selectivity and stability) can be related to
a particular composition and structure of the cluster; this
may hardly be done for most heterogeneous catalytic sys-
tems. The type of the active site in the heterogeneous
systems based on ligand-protected gold clusters is governed
by the annealing temperature and reaction temperature.
Emphasize that the mechanisms of most catalytic reactions
involving the Auₙ(SR)m and Auₙ(PR)ₘ clusters are still to
be clarified, so quantum chemical simulation seems to have
great prospects in this field.

IX. Conclusion

Advances in experimental and theoretical research on the
synthesis and structure of individual ligand-protected gold
clusters revealed the possibility for the structure and prop-
erties of stable systems to be described within the frame-
work of the superatom theory. The observed deviations
from theory mainly concern aspherical clusters containing
subunits obeying the superatom theory. Magic number of
metal atoms in small clusters arises from the electronic
effects due to the need to complete the electron shells in
the cluster core. At the same time, as the cluster size
increases, structural effects related to the formation of
metal–metal bonds begin to dominate the electronic effects;
this, in particular, leads to the stable non-magic open-shell
cluster Au₃₅(PPh₃)₅Cl₈. The decisive role in the formation
of large clusters is played by geometric effects, i.e., the
possibility for a highly symmetric structure (icosahedron, a
Marks polyhedron, truncated octahedron) to exist. Selens
seem to be promising ligands for stabilizing atomic gold
clusters.

At present, quantum chemical simulation is a reliable
method for determination of the structure of stable gold
nanoclusters; it underlies theoretical research into novel
interesting systems. The variety of structures predicted
theoretically for the Au₃₈(SR)₃₄ clusters helped to develop
universal concepts and rules aimed at determining the
structure of these species.

The synthesis and studies on the structure of bimetallic
clusters M@AuₙLᵢₘ represent a novel trend of research in
cluster chemistry. All the available doped clusters obey
the electron count rule for ‘magic’ number of valence electrons.
The M@AuₙLᵢₘ structural motif is governed by the nature of
the metal. In the case of platinum and palladium, (i) the
initial structure of the AuₙLᵢₘ cluster is retained, (ii) the
dopant occupies the central position and (iii) singly doped
clusters are mainly formed in contrast to the variable-
composition clusters for M = Cu, Ag. Atoms of these
elements replace gold atoms on the surface of the cluster
core or in the cluster shell.

Research into the structure and properties of atomic
clusters allows one to disclose the characteristic features of
the structure and properties of gold nanoparticles of
harmonic size, because atomic clusters are their constituents.
Therefore, studies on the properties of atomic clusters give
the key to understanding the chemical and physical proper-
ties of nano-sized gold, including the influence of size and
morphology of gold nanoparticles on the catalytic proper-
ties. Better insight into the properties and structure of
ligand-protected gold clusters opens prospects for targeted
design of systems for applications in electronics, medicine
and catalysis. Great potential of small gold clusters in
catalysis is clearly seen now.

The authors express their gratitude to Professor
E K Belogrzakina and Assistant Professor A G Majouga
(both from M V Lomonosov Moscow State University)
for advice in organic synthesis and nomenclature of organic
compounds. The review has been written with the financial
support from the Russian Foundation for Basic Research
(Project Nos 14-01-00310, 13-03-00320) and the Ministry of
Education and Science of the Russian Federation (Grant
NSh-3171.2014.3).

References

1. Nanoscale Materials in Chemistry (Eds K J Klabunde,
2. C P Poole Jr, F J Owens Introduction to Nanotechnology
3. Nanocrystals—Synthesis Characterization and Applications
(Eds S Neralia) (Rijeka, Croatia: InTech, 2012)
Mendelev Commun. 24 145 (2014)
5. M Yu Zhiangirova, M S Kotelev, G S Skorikova, E V Ivanov,
L T Perelman, V A Vinokurov Mendelev Commun. 24 53
(2014)
13. J W A van der Velden, J J Bour, W P Bosman, J H Noordik
15. C E Briant, K P Hall, A C Wheeler, D M P Mings