Analysis of hydrogen halide lasers

To cite this article: V A Levin and A M Starik 1982 Sov. J. Quantum Electron. 12 171

View the article online for updates and enhancements.

You may also like

- <u>A level-crossing model for infrared pumpprobe spectroscopy of water</u> A I Burshtein and A Yu Sivachenko
- <u>A Predict Method of Water Pump</u> Operating State Based on Improved Particle Swarm Optimization of Support Vector Machine Jian Pan, Yujiang Li and Panfeng Wu
- <u>Operation of vibration source of an</u> <u>unbalance type with liquid-filled internal</u> <u>working chamber</u>
 A Savchenko, A Nikolaev and D Evstigneev

⁷M. S. Burberry and A. C. Albrecht, J. Chem. Phys. 70, 147 (1979).

⁸R. N. Kesarwani and Y. P. Varshni, Can. J. Phys. 58, 363 (1980).

⁹E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen, Bd. 2, reprinted by Edward Bros., Ann Arbor, Mich. (1946).

¹⁰V. T. Platonenko and N. A. Sukhareva, Zh. Eksp. Teor. Fiz. 78, 2126 (1980) [Sov. Phys. JETP 51, 1065 (1980)].

¹¹B. Ranby and J. F. Rabek, Photodegradation, Photooxidation, and Photostabilization of Polymers: Principles and Applications, Wiley, New York (1975).

¹²A. S. Dneprovskii and T. I. Temnikova, Theoretical Princi-

ples of Organic Chemistry [in Russian], Khimiya, Leningrad (1979).

- ¹³W. West (ed.), Chemical Applications of Spectroscopy, Interscience, New York (1956).
- ¹⁴A. I. Kitaigorodsky, Molecular Crystals and Molecules, Academic Press, New York (1973).
- ¹⁵F. K. Long (ed.) Radiationless Processes in Molecules and Condensed Phases, Springer Verlag, New York (1976).
- ¹⁶R. G. Bray and M. J. Berry, J. Chem. Phys. **71**, 4909 (1979).
 ¹⁷C. K. N. Patel, A. C. Tam, and R. J. Kerl, J. Chem. Phys. **71**, 1470 (1979).

Translated by R. M. Durham

a carbo

Analysis of hydrogen halide lasers

V. A. Levin and A. M. Starik

Institute of Mechanics at the M. V. Lomonosov State University, Moscow (Submitted April 16, 1981) Kvantovaya Elektron. (Moscow) 9, 315–322 (February 1982)

A comparative analysis is made of the optical and energy characteristics of lasers utilizing binary mixtures containing hydrogen halides in which nonresonant vibrational-vibrational (VV') exchange is used to pump vibrations of the emitting molecules. Specific values are obtained for the gain and specific radiation energy achieved in these systems.

PACS numbers: 42.55.Hq

Excitation of metastable levels of diatomic homonuclear molecules followed by energy transfer to molecules with dipole-allowed transitions capable of emitting a coherent energy flux is now widely used to obtain coherent radiation in continuous-flow lasers. This principle has been used to develop both high-power gasdynamic and electric-discharge lasers using N_2 molecules as the energy carrier and CO_2 , N_2O , and CO molecules as the emitter.¹ Of considerable interest from the point of view of their use as the active component are the hydrogen halide molecules: HF, HC1, HBr, HI, DF, DC1, DI, and DBr.

The advisability of using hydrogen halides in mixtures with homonuclear molecules was first noted in Ref. 2. These molecules are of interest since it is possible to obtain a high specific radiation power and highly efficient conversion of thermal or electrical energy into coherent radiation energy.³ Moreover, the radiation wavelengths of these molecules are within the transparency window of the Earth's atmosphere. All these molecules have an intrinsic dipole moment and thus, when they are used as the active component, high gains can be expected for a small population inversion due to a given vibrational-rotational transition. This is also demonstrated by the results of theoretical studies⁴⁻⁶ in which the feasibility of developing a D_2 -HCl-He(Ar) gasdynamic laser was considered. A detailed analysis of an H₂-HF laser using electron-beam excited molecular hydrogen was made in Ref. 3. Earlier investigations of hydrogen halide lasers⁷⁻¹² were mainly made for systems where vibrations of the HF, HC1, DF, and HBr emitting molecules were excited chemically or electrically.

The aim of the present investigation was to search for new active media using binary homonuclear molecules and hydrogen halide molecules, to analyze the vibrational energy exchange kinetics in these media, and to estimate the energy characteristics of lasers utilizing these mixtures.

1. CHOICE OF ACTIVE MEDIA AND VIBRATIONAL ENERGY EXCHANGE KINETICS IN THESE MEDIA

In order to identify carrier molecules capable of efficiently transferring energy to hydrogen halide molecules, we shall analyze the kinetics of the physical processes in these binary mixtures. In this case, the carrier molecules will be denoted by the letter "A" and the emitting molecules will be denoted by "B". The analysis will be made using the harmonic oscillator model. Relaxation of the energy in each mode can then be considered to be relaxation of a level with the number V = 1 and the main energy exchange channels will be as follows:

$$A (V = 1) + M \rightleftharpoons A (V = 0) + M \qquad \qquad W_{A0}^{t};$$

$$A (V = 1) + B (V = 0) \rightleftharpoons (B = 0) + B (V = 1) \qquad \qquad W_{AB};$$

$$B (V = 1) + M \rightleftharpoons B (V = 0) + M \qquad \qquad W_{B0}^{t}.$$

Here, M is any mixture molecule (M = A, B); W_{M0}^{i} is the rate of relaxation of the V=1 level in an M molecule; W_{AB} is the rate of vibrational-vibrational (VV) exchange between the mixture components.

The equations determining the change in the average number of quanta in the modes in the presence of energy exchange by these channels may be expressed in the form¹

0049-1748/82/020171-05\$04.10

$$\frac{de_V^A}{dt} = \frac{\rho R}{\mu K} \left[-\frac{y_A - y_B \exp(-(\Theta_A - \Theta_B)/T)}{(1 - y_A)(1 - y_B)} W_{AB} \gamma_B - \frac{y_A - y_{A0}}{1 - y_A} \sum_{i=1}^n W_{A0}^i \gamma_i \right]; \qquad (1)$$

$$\frac{de_V^B}{dt} = \frac{\rho R}{\mu K} \left[\frac{y_A - y_B \exp(-(\Theta_A - \Theta_B)/T)}{(1 - y_A)(1 - y_B)} W_{AB} \gamma_A - \frac{y_B - y_{B0}}{1 - y_B} \sum_{i=1}^n W_{B0}^i \gamma_i \right]. \qquad (2)$$

Here, $\varepsilon_{f}^{i} = r_{j} y_{j} / (1 - y_{j}); r_{j}$ is the degree of degeneracy of the j-th mode; $y_{j} = \exp(-\theta_{j}/T_{j}); y_{j0} = \exp(-\theta_{j}/T); \theta_{j}$ and T_{j} are the characteristic and local vibrational temperatures of the j-th mode; T is the translational temperature of the gas; γ_{i} is the molar fraction of the *i*-th component in the mixture (*i*=A, B); *n*=2; μ is the molecular weight of the mixture; K is the Boltzmann constant; R is the universal gas constant.

The analysis will be made for systems with mixing. At zero time all the energy is concentrated in molecular vibrations of the A component, i.e., $\varepsilon_V^A = \varepsilon_V^A (t=0)$, whereas $\varepsilon_V^A (t=0)$ is governed by its equilbrium value $\varepsilon_{V0}^B = r_B y_{B0}/(1-y_{B0})$. During mixing of the A and B components, energy is transferred to vibrations of the B molecules and maximum pumping of the B component by the carrier gas A is governed by the condition

$$d \, \epsilon_V^B / dt = 0_{\bullet} \tag{3}$$

Allowing for Eq. (2), we have

$$y_A - y_B \exp\left(-\left(\Theta_A - \Theta_B\right)/T\right) - \left(y_B - y_{B_0}\right)\left(1 - y_A\right) \sum_{i=1}^n W_{B_0}^i \gamma_i / W_{AB} \gamma_A = 0.$$
(4)

At gas temperatures T = 300 °K, which will be analyzed subsequently, it can be accurately assumed for hydrogen halide molecules that

$$y_{B0} \sum_{i=1}^{n} W_{B0}^{i} \gamma_{i} / W_{AB} \gamma_{A} \ll y_{A} \ll 1$$

In this case, we can obtain from Eq. (4)

$$y_{B} = \frac{y_{A}}{\left(1 - y_{A}\right) \sum_{t=1}^{n} W_{B0}^{t} \gamma_{t} / W_{AB} \gamma_{A} + \exp\left(-\left(\Theta_{A} - \Theta_{B}\right) / T\right)}$$
(5)

It can be seen from Eq. (5) that in order to maximize the relative populations and thus the energies stored in the inverted transition, it is necessary to select the components A and B for which there is a large difference between the characteristic temperatures $\theta_A - \theta_B$

and
$$W_{AB}\gamma_A \gg \sum_{i=1}^n W_{B_0}^i \gamma_i$$
.

Mixtures comprising H₂, D₂, and N₂ homonuclear molecules and hydrogen halide molecules satisfying these requirements are given in Table I. Also given are the rate constants W_{B0}^i , W_{AB} at T = 300 °K and $\sum_{i=1}^{n} W_{B0}^i \gamma_i / W_{AB} \gamma_A$, $\exp[-(\theta_A - \theta_B)/T]$ calculated for a mixture with $\gamma_A = 0.95$ and $\gamma_B = 0.05$. The probabilities of the elementary processes were determined on the basis

the elementary processes were determined on the basis of data from Refs. 12-17 or were calculated using equations given in Refs. 1 and 18.

It can be seen from the results presented in Table I that the following binary mixtures are of the greatest

TABLE I.

Mi	Mixture								
A	В	€A, °K	e _B , °K	$\Theta_A - \Theta_B^{\circ} \circ K$	₩ ^A _{B0} , cm³/sec	₩ ^B _{B0} ,cm³/sec	W _{AB} ,cm³/sec	$\sum_{i=1}^{n} \frac{w_{B0}^{t} v_{i}}{w_{AB}^{v} A}$	$\exp\left(\frac{\Theta_B-\Theta_A}{T}\right)$
H ^s H ^s H ^s D ^s D ^s N	HF HCI DF HCI DF HBr DCI HJ DCI DBr HJ DJ	5991 5591 4306 4306 4306 4306 4306 3357 3357 3357 3357	5703 4155 4183 4155 4183 3685 3011 3325 3011 2649 3325 2300	288 1846 1808 151 123 621 1295 981 346 708 32 1057	$\begin{array}{c} 7.42\cdot10^{-13}\\ 6.10^{-18}\\ 2.25\cdot10^{-13}\\ 6.2\cdot10^{-16}\\ 3.18\cdot10^{-16}\\ 3.18\cdot10^{-18}\\ 1.7\cdot10^{-18}\\ 3.66\cdot10^{-18}\\ 1.75\cdot10^{-18}\\ 3.58\cdot10^{-16}\\ 1.46\cdot10^{-15}\\ \end{array}$	$\begin{array}{c} 2.03 \cdot 10^{-12} \\ 2.10^{-14} \\ 7.5 \cdot 10^{-13} \\ 2.0 \cdot 10^{-13} \\ 2.5 \cdot 10^{-13} \\ 2.5 \cdot 10^{-13} \\ 2.5 \cdot 10^{-13} \\ 9.9 \cdot 10^{-15} \\ 7.6 \cdot 10^{-15} \\ 5.15 \cdot 10^{-15} \\ 8.9 \cdot 10^{-16} \\ 4.3 \cdot 10^{-16} \end{array}$	$\begin{array}{c}1.5\cdot10^{-13}\\6\cdot10^{-14}\\8.3\cdot10^{-13}\\2.82\cdot10^{-13}\\9.6\cdot10^{-13}\\9.6\cdot10^{-13}\\9.6\cdot10^{-13}\\3.2\cdot10^{-13}\\2\cdot10^{-13}\\6.65\cdot10^{-13}\\1\cdot95\cdot10^{-13}\\1\cdot15\cdot10^{-14}\end{array}$	$\begin{array}{c} 0.495\\ 0.1175\\ 0.319\\ 0.000794\\ 0.0478\\ 0.00143\\ 0.0414\\ 0.0053\\ 0.00355\\ 0.303\\ 0.00445\\ 0.129\\ \end{array}$	$\begin{array}{c} 0.382\\ 0.00216\\ 0.00241\\ 0.605\\ 0.645\\ 0.125\\ 0.0135\\ 0.0392\\ 0.315\\ 0.0943\\ 0.896\\ 0.0296\end{array}$

interest from the point of view of the criteria specified: H_2-HCl , H_2-DF , D_2-HBr , D_2-DCl , D_2-HI , N_2-DBr , and N_2-DI .

It should be noted that the use of Eq. (5) may give unjustifiably high values of y_B (even $y_B > 1$). Values of y_B and y_A satisfying the condition $y_B < 1$ and $y_A < 1$ may be obtained by using, in addition to Eq. (4), the condition for a constant average number of vibrational quanta in the system before and after mixing:

$$\epsilon_A \gamma_A + \epsilon_B \gamma_B = \epsilon_A \ (t=0) \ \gamma_A \ (t=0). \tag{6}$$

Assuming that $\gamma_A(t=0)=1$, the required system of equations may be expressed in the form

$$y_{A} - y_{B} \exp\left(-\left(\Theta_{A} - \Theta_{B}\right)/T\right) - y_{B} \sum_{i=1}^{n} W_{B0}^{i} \gamma_{i} / W_{AB} \gamma_{A}$$
$$+ y_{B} y_{A} \sum_{i=1}^{n} W_{B0}^{i} \gamma_{i} / W_{AB} \gamma_{A} = 0; \qquad (7)$$

 $y_{A} (1-y_{B}) \gamma_{A} + y_{U} (1-y_{A}) \gamma_{A} = \varepsilon_{A} (t=0) (1-y_{A}) (1-y_{B}).$ (8)

This system of equations is satisfied by

$$y_{A} = \frac{\varepsilon_{A} (t=0) - \varepsilon_{A} (t=0) y_{B} - y_{B} \gamma_{B}}{\gamma_{A} - y_{B} \gamma_{A} - \varepsilon_{A} (t=0) y_{B} + \varepsilon_{A} (t=0)};$$
(9)
$$y_{B} = B/2 - \sqrt{(B^{2} - 4C)/4},$$
(10)

where

$$B = \frac{\varepsilon_A (t=0) \left[1 + \exp\left(\frac{\Theta_B - \Theta_A}{T}\right)\right] + \gamma_A \left[\exp\left(\frac{\Theta_B - \Theta_A}{T}\right) + \sum_{i=1}^n W_{B0}^i \gamma_i / W_{AB} \gamma_A\right] + \gamma_B}{\sum_{i=1}^n W_{B0}^i \gamma_i / W_{AB} + \exp\left(\frac{\Theta_B - \Theta_A}{T}\right) \left[\gamma_B + \varepsilon_A (t=0) + \gamma_A\right]};$$

$$C = \frac{\varepsilon_A (t=0)}{\sum_{i=1}^n W_{B0}^i \gamma_i / W_{AB} + \exp\left((\Theta_B - \Theta_A) / T\right) \left[\gamma_B + \gamma_A + \varepsilon_A (t=0)\right]}.$$

We note that this solution is not quite correct since Eqs. (7) and (8) are contradictory. Equation (8) is the condition for a constant number of vibrational quanta in the system (no dissipation of vibrational energy), whereas Eq. (7) characterizes the equality of the fluxes of vibrational quanta transferred to molecules of the *B* component from the carrier gas *A* and lost as a result of dissipation due to vibrational-translational exchange. However, since the condition $l_{VV'} < l_{VT}$ is accurately satisfied for all the systems under study, where $l_{VV'}$ and l_{VT} are the characteristic lengths of vibrational energy exchange between molecules of the *A* and *B* components and of vibrational-translational relaxation of the energy of *B* molecules, the total quantum losses over the distance $l_{VV'}$ are low and it can be considered that condition (8) is approximately satisfied.

2. OPTICAL AND ENERGY CHARACTERISTICS OF HYDROGEN HALIDE LASERS

The relationships for y_A and y_B derived in Sec. 1 can be used to estimate the gain achieved due the inverted transition and the specific radiation energy stored per unit mass of gas.

We shall use the harmonic oscillator and rigid rotator models to describe the internal structure of hydrogen halide molecules. It should be noted that in diatomic molecules an absolute inversion due to V - V - 1 vibrational transitions is only achieved by chemical excitation. When other methods of excitation are used, a partial inversion is generally only achieved for Pbranch vibrational-rotational transitions and thus we will subsequently be interested in (V, j - 1) + (V - 1, j)transitions, where V and j are the numbers of the vibrational and rotational levels. Subject to the assumptions made, the gain at the line center of the transition under study may be expressed in the form

$$k_{\nu}^{l} = \frac{\rho R}{\mu KT} \gamma_{B} \left(2j+1 \right) A_{\nu-1,j}^{\nu,j-1} \frac{(\lambda_{0}^{l})^{3}}{8\pi^{2/2}} H \left(a,0 \right) \sqrt{\mu_{B}/2RT} \left(1-y_{B} \right) y_{B}^{\nu-1} \delta N;$$
(11)

 $\delta N = y_B B_V \exp\left[-B_V j (j-1)/T\right] - B_{V-1} \exp\left[-B_{V-1} j (j+1)/T\right].$ (12)

Here, λ_0^j is the emission wavelength at the line center; $A_{V+1,j}^{r,j-1}$ are the Einstein coefficients; H(a, 0) is the Voigt function; B_V is the rotational constant of the vibrational level with the number V.

In the harmonic oscillator approximation every V - V-1 transition with the same number j emits at the same wavelength λ_0^j and the gain should be calculated as the sum of the contributions k_{ν}^j for (V, j-1) + (V-1, j) transitions with $V = 1, 2, \dots, \infty$. However, as a result of the anharmonicity of the molecules, this situation does not in fact arise so that we shall subsequently be interested in the gain and specific radiation energy for the highest-intensity transition in the harmonic approximation (1, j-1) - (0, j). For all the molecules under study the value of λ_0^j was determined from

$$\lambda_0^j = \frac{K}{hc} \left[(\Theta_V - \Theta_{V-1}) + B_V j (j-1) - B_{V-1} j (j+1) \right]^{-1}.$$
 (13)

We shall now analyze the Einstein coefficients for hydrogen halide molecules. For the HF, HCl, DF, and DCl molecules these were calculated for various V - V-1 transitions up to V = 15 in Ref. 19. For the HBr, DBr, HI, and DI molecules the dipole moments in the equilibrium position are known,²⁰ these being related to the Einstein coefficient, and for the nV''j'' - mV'j' electronic-vibrational-rotational transition these are given by²¹

$$A_{NV'j'}^{nV'j'} = \frac{64\pi^4 v_0^3}{3\hbar} \frac{|R_{V'V'}^{nm}|^2}{2j''+1} S_{j'j'};$$

$$R_{V'V'}^{nm} = \int \psi_n \psi_V \cdot \hat{M}_l \psi_V \psi_m d\tau_l dr.$$
(14)

Here, ψ_n and ψ_m are the wave functions of the *n*-th and *m*-th electronic states; $\psi_{V''}$ and $\psi_{V'}$ are the wave functions of vibrational states with the numbers V'' and V';

 $S_{j''j'}$ is the Hönl-London factor; \hat{M}_i is the dipole moment operator. In our case, optical transitions take place between vibrational levels of the same electronic state and for the *P*-branch transitions under study we have $S_{j''j'} = j'$.

i - inde

In order to estimate the Einstein coefficients of the (1, j-1) - (0, j) transitions in HBr, DBr, HI, and DI, we shall use the harmonic oscillator approximation and we shall also assume that for vibrations of a diatomic molecule the dipole moment depends linearly on x (x is the displacement of the molecule from the equilibrium position): $\hat{M}_{I} = \mu_{I}(1 + D\hat{x})$ (μ_{I} is the dipole moment for x = 0; D is the proportionality factor).

The wave functions of a one-dimensional harmonic oscillator are well known:²²

$$\psi_{V}(x) = \left(\frac{\alpha \mathbf{1}}{\sqrt{\pi} \mathbf{2}^{V} \mathbf{V}!}\right)^{\frac{1}{2}} H_{V}(\alpha x) \exp\left(-\frac{\alpha^{2} x^{2}}{2}\right).$$

Here, $\alpha = 2\pi (M_{\nu}/h)^{1/2}$; *M* is the reduced mass of the oscillator; ν is the normal vibration frequency; $H_{\nu}(\alpha x)$ is a Hermite polynomial of the *V*-th degree: $H_0(\alpha x) = 1$, $H_1(\alpha x) = 2 \alpha x$.

Subject to the assumptions made, the expression for the matrix element of the dipole moment of the $1 \rightarrow 0$ transition is given by the following integral:

$$R_{10} = \int \left[\frac{\sqrt{2\pi} \, 2M\nu}{\hbar} \, \mu_l \exp\left(-\frac{4\pi M\nu}{\hbar} \, x^2\right) x + D \exp\left(-\frac{4\pi M\nu}{\hbar} \, x^2\right) \right] dx.$$
(15)

The integral of the first term in brackets is reduced to the tabulated value by changing the variables $ax^2 = t$, where $a = -4\pi M \nu/h$ and that of the second term is reduced by expressing the function in the integrand as a series near the point x = 0.

We shall assume that for a certain diatomic molecule the Einstein coefficient for the $(1, j - 1) \rightarrow (0, j)$ transition is known and is equal to A_m^n ; the unknown Einstein coefficient for the other diatomic molecule is then, in accordance with Eqs. (14) and (15), given by:

$$A_0^{l} = A_m^n (v_{02}/v_{01})^3 (\mu_{l2}/\mu_{l1})^2.$$
(16)

Here, the indices 1 and 2 refer to molecules with known and unknown Einstein coefficients, respectively.

We note that Eq. (16) accurately (to within ~8%) agrees with the results of Ref. 19 where $A_{V'}^{\nu \nu}$ was calculated accurately for the HF, HCl, DF, and DCl molecules. Table II gives λ_0^j (j=1) and A_0^1 taken from Ref. 19 or calculated from Eq. (16) for the hydrogen halide molmolecules under study. Also given are the characteristic vibrational and rotational temperatures and the dipole moments μ_{I} .

An inversion due to the $(1, j-1) \rightarrow (0, j)$ vibrationalrotational transition is only achieved for those values of *j* for which the following condition is satisfied

$$\dot{J}_{m1n} \gg T \ln (y_B)/2 B_0.$$
 (17)

The radiation energy stored in the inverted transition per unit mass of gas can be determined from

.

$$\left.\begin{array}{c}N^{l} = l_{y} - l_{b}^{l};\\ l_{v} = R\gamma_{B}\Theta_{B}r_{B}y_{B}/(1 - y_{B})\mu;\\ l_{0}^{l} = \frac{R}{u}\gamma_{B}\Theta_{B}\left[\exp\left(2jB_{0}/T\right) - 1\right]^{-1}.\end{array}\right\}$$
(18)

173 Sov. J. Quantum Electron. 12(2), Feb. 1982

V. A. Levin and A. M. Starik 173

,

TABLE II.

Mole- cule	θ _V , °K	B, °K	A0 H .	μ ₁ . 10 ¹⁶ cgs esu	A0. sec -1
HF DF HCI DCI HBr DBr HI DI	5703 4183 4155 3011 3685 2649 3325 2300	30.2 15.9 15.3 8 12.2 6.2 9.44 4.73	2,46 3.5 3.5 4,8 3,94 5,5 4,35 6,25	1.736 1.07 1.12 0.788 0.83 0.382 0.445	188.6 54.4 35 9.53 13.3 3.85 2.88 0.756

The value of l_0^j for a given *j* decreases as *T* decreases and for a given temperature, it decreases as *j* increases, so that in order to maximize N^j it is advantageous to have high values of *j*, provided that this is allowed by condition (17) and by the gain k_{ν}^j .

In order to estimate the efficiency of various laser mixtures, it was assumed that the initial vibrational temperatures of the energy carrier molecules T_A (t=0) are the same, 3000 °K, and that the translational temperature of the stream may be 300, 200, and 100 °K. The pressure of the active medium was taken to be p= 0.01 atm. Table III gives results of calculations of the gain and specific radiation energy in these mixtures for various temperatures of the active medium. Also given are the values of j_{\min} and j for which k_{ν}^{j} and N_{j} $(j \ge j_{\min})$ were calculated. It can be seen from these results that the maximum gain and specific radiation energy are achieved in $H_2 - HCl$, $D_2 - HBr$, $D_2 - DCl$, D_2 - HI, and N_2 - DCl mixtures. On the other hand, in the systems now being studied using $H_2 - HF$ and $D_2 - HCl$ mixtures the values of k_{ν}^{j} and N^{j} are low (at T = 300 °K we find $k_{\nu}^{j} < 0, 1 \text{ m}^{-1}$). A N₂ – HI mixture is evidently completely unsuitable as a result of the extremely low values of k_{μ}^{j} even at $T \leq 100$ °K.

It should be noted that in estimates of the specific radiation energy an allowance was only made for the vibrational energy stored in type *B* molecules. This is because, although the number of vibrational quanta stored in type *A* molecules after transfer of energy to *B* emitting molecules is appreciable (this is most typical of mixtures with a low value of $\Theta_A - \Theta_B$: $H_2 - HF$, $D_2 - DF$, $D_2 - HC1$, and $N_2 - HI$), conversion of this energy into coherent radiation is impeded either by the extremely fast vibrational-translational relaxation

TABLE III.

	T = 300 °K				<i>T</i> ≈ 200 °K				T == 100 °K			
Mixture	l _{min}	1	k ¹ , m ⁻¹	N ⁱ · J/g	/min	1	k ¹ , m ⁻¹	Ni. J/g	1 min	1	k ¹ , m ⁻¹	Ni. J/g
$\begin{array}{c} H_{1}-HF\\ H_{2}-HCI\\ H_{2}-HCI\\ D_{2}-HCI\\ D_{2}-DF\\ D_{3}-DF\\ D_{3}-DF\\ D_{3}-DCI\\ D_{2}-HI\\ N_{3}-DBr\\ N_{3}-DI\\ N_{3}-DI\\ N_{3}-DI\\ \end{array}$	9 5 9 10 11 4 4 4 5 7 16 6	9 5 9 10 11 4 4 4 6 7 16 6	$\begin{array}{c} 0.06\\ 3.4\\ 0.5\\ 0.08\\ 0.17\\ 4.01\\ 0.9\\ 0.6\\ 1.19\\ 0.831\\ 0.014\\ 0.172\\ \end{array}$	43 375 44 33 49 470 301 282 35 18.5 -2 64	6 3 6 7 8 2 2 2 2 4 5 11 4	6 5 6 7 8 4 4 4 4 6 7 11 6	$\begin{array}{c} 0.4 \\ 7.16 \\ 1.4 \\ 0.65 \\ 0.533 \\ 5.44 \\ 3.9 \\ 1.09 \\ 2.54 \\ 1.487 \\ 0.0142 \\ 0.304 \end{array}$	38 770 36 43 67 730 731 460 75 68 0 104	6 2 3 4 5 1 1 2 3 6 2	65645446766	$\begin{array}{c} 3.2\\ 4.02\\ 0.98\\ 3.9\\ 2.55\\ 5.6\\ 4.7\\ 1.5\\ 1.8\\ 1.1\\ 0.296\\ 0.41 \end{array}$	88 945 330 93 132 950 1151 638 125 88 3 174

TABLE	IV.
-------	-----

	$T = 300 \ ^{\circ}K$			$T = 200 $ $^{\circ}$ K			$T = 100 ^{\circ} \mathrm{K}$			
<u>Mix</u> ture		N ¹ . J/g	η <i>ί.</i> %		N ⁱ . J/g	η [/] . %		vi. J/g	η ^ί , %	
$\begin{array}{l} H_{2} & HF \\ H_{2} & HC \\ H_{2} & DF \\ D_{3} & HC \\ D_{4} & DF \\ D_{4} & HB \\ D_{4} & DF \\ D_{2} & HB \\ D_{2} & DF \\ D_{2} & HI \\ N_{2} & DC \\ N_{2} & DB \\ N_{2} & DB \\ N_{3} & HI \\ N_{3} & HI \\ N_{3} & JI \end{array}$	8 9 8 5 4 7 7	670 44 	16.9 1.1 29,8 18 10.1 10.4 9.15 -	6 9 8 7 8 9 7 6 8 8 	38 910 1866 43 67 965 1086 565 100 78 	0.96 23 4.7 1.58 2.4 34.6 39 20.2 20.8 16.2 	8 8 7 7 8 8 7 6 8 8 7 6 8 8 5	197 1025 350 198 220 1050 1345 725 134 107 	4.96 25.8 8.8 6.95 7.9 37.6 48.2 26 28 22.2 36.2	

process in the B molecules or by the high rate of radiative transitions (HF, DF, and HCl have extremely large Einstein coefficients). These processes result in rapid depopulation of the upper level of the inverted transition and an increase in the gas translational temperature, so that they quench lasing even when appreciable vibrational energy is stored in the carrier molecules. These factors were some of the reasons why a high lasing power was not obtained in an H₂-HF mixture when H₂ and HF molecules were excited by discharge electrons.⁷ An exception is the D_2 – HCl mixture for which the VV exchange time is much shorter than the time taken for vibrational-translational relaxation of the vibrational energy of the HCl molecules. By increasing the pressure of the active medium, the rate of VV exchange can be increased compared with the rate of radiative decay of the V=1 level during lasing. However, calculations of the characteristics of a D₂-HCl-He gasdynamic laser made in Refs. 5 and 6 showed that a specific radiation energy higher than 150 J/g cannot be obtained in this mixture even by cooling the medium to T = 40 - 60 °K.

We shall now analyze the efficiency of conversion of vibrational energy into coherent radiation energy using these binary mixtures. We shall take as the criterion the ratio of the specific radiation energy N^j to the specific vibrational energy of the A component at t=0: η^j $= N^j/l_V^A(t=0)$. The calculations were made for those values of j for which, as a result of the (1, j-1) - (0, j)transition, the gain $k_{\nu}^j > 0.5 \text{ m}^{-1}$ is achieved. Such a value of k_{ν}^j permits efficient extraction of radiation from the resonator even in a small laboratory system.

The results of calculations of N^{j} and η^{j} at various temperatures of the active medium are presented in Table IV. It can be seen that the highest values of η^{j} in various mixtures are achieved for different T. The most favorable mixtures from the energy point of view are $D_{2} - DCl$, $D_{2} - HBr$, $N_{2} - DI$, $N_{2} - DCl$, $D_{2} - HI$, and $H_{2} - HCl$. In these mixtures at T = 100 °K we find η^{j} >0.25. Lasers utilizing $H_{2} - HF$, $H_{2} - DF$, $D_{2} - HCl$, and $D_{2} - DF$ mixtures are less efficient.

In conclusion, we note that the total efficiency of the laser system η is readily determined by knowing the efficiency of excitation of vibrations of the energy carrier molecules A: $\eta = \eta_{\rm B} \eta^{j}$. For the H₂ and D₂ molecules the value of $\eta_{\rm B}$ in the discharge may reach 70% and for N₂ molecules it can even reach 100% (Ref. 3); for thermal excitation we find $\eta_{\rm B} = 10-20\%$.

- ¹S. A. Losev, Gasdynamic Lasers [in Russian], Nauka, Moscow (1977).
- ²N. G. Basov, A. N. Oraevski^{*}, and V. A. Shcheglov, Zh. Tekh. Fiz. **37**, 339 (1967) [Sov. Phys. Tech. Phys. **12**, 243 (1967)].
- ³V. I. Igoshin and A. N. Oraevskiĭ, Kvantovaya Elektron. (Moscow) 5, 1048 (1978) [Sov. J. Quantum Electron. 8, 599 (1978)].
- ⁴A. N. Oraevskiĭ, V. N. Pimenov, N. B. Rodionov, and V. A. Shcheglov, Kvantovaya Elektron. (Moscow) 4, 1686 (1977) [Sov. J. Quantum Electron. 7, 957 (1977)].
- ⁵A. N. Oraevskiĭ, N. B. Rodionov, and V. A. Shcheglov, Zh. Tekh. Fiz. 48, 1432 (1978) [Sov. Phys. Tech. Phys. 23, 809 (1978)].
- ⁶A. N. Oraevskiĭ, N. B. Rodionov, and V. A. Shcheglov, Preprint No. 220 [in Russian], Lebedev Physics Institute, Academy of Sciences of the USSR, Moscow (1978).
- ⁷R. M. Osgood Jr., and D. L. Mooney, Appl. Phys. Lett. 26, 201 (1975).
- ⁸A. N. Oraevskii, Khim. Vys. Energ. 8, 3 (1974).
- ⁹T. A. Cool, R. R. Stephens, and J. A. Shirley, J. Appl. Phys. **41**, 4038 (1970).
- ¹⁰M. S. Dzhidzhoev, V. T. Platonenko, and R. V. Khokhlov, Usp. Fiz. Nauk 100, 641 (1970) [Sov. Phys. Usp. 13, 247 (1970)].

- ¹¹Z. B. Alfassi, R. Giniger, E. Huler, and H. Reisler, J. Appl. Phys. 50, 4638 (1978).
- ¹²A. V. Dem'yanov, I. V. Kochetov, and V. G. Pevgov, Pis'ma Zh. Tekh. Fiz. 5, 304 (1979) [Sov. Tech. Phys. Lett. 5, 123 (1979)].
- ¹³C. B. Moore, Adv. Chem. Phys. 23, 41 (1973).

a sina ba

- ¹⁴W. D. Breshears and P. F. Bird, J. Chem. Phys. **52**, 999 (1970).
- ¹⁵W. D. Breshears and P. F. Bird, J. Chem. Phys. 54, 2968 (1971).
- ¹⁶B. M. Hopkins. H.-L. Chen, and R. D. Sharma, J. Chem. Phys. 59, 5758 (1973).
- ¹⁷S. Ormonde, Rev. Mod. Phys. 47, 193 (1975).
- ¹⁸F. I. Tanczos, J. Chem. Phys. 25, 439 (1956).
- ¹⁹J. M. Herbelin and G. Emanuel, J. Chem. Phys. **60**, 689 (1974).
- ²⁰O. A. Osipov, V. I. Minkin, and A. D. Garnovskiĭ, Handbook of Dipole Moments [in Russian], Vysshaya Shkola, Moscow (1971).
- ²¹S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities, Addison-Wesley, Reading, Mass, (1959).
- ²²A. S. Davydov, Quantum Mechanics, Pergamon Press, Oxford.

Translated by R. M. Durham

Low-voltage device for passive mode locking of pulsed infrared lasers

E. V. Beregulin, P. M. Valov, S. D. Ganichev, Z. N. Kabakova, and I. D. Yaroshetskii

A. F. Ioffe Physicotechnical Institute, Academy of Sciences of the USSR, Moscow (Submitted April 20, 1981) Kvantovaya Elektron. (Moscow) 9, 323-327 (February 1982)

A reliable mode-locking device which can be used to generate short CO_2 laser pulses has been developed and investigated. The device uses *p*-type germanium filters cooled to 78 °K, having a low threshold (10–15 MW/cm³) and a short bleaching time (≤ 0.1 nsec). As a whole, the system can withstand more than 10⁵ lasing cycles without appreciable damage to the antireflection coatings and laser elements.

PACS numbers: 42.60.Da, 42.55.Dk

In the infrared range, mode locking has only been achieved for a CO₂ laser. Gas filters using heated carbon dioxide² and SF_6 with added He (Ref. 3), and also uncooled semiconducting filters comprising roomtemperature p-type germanium^{4,5} have been used as nonlinear absorbers. Disadvantages of gas filters are their slow response (~2 nsec) (Ref. 2) and the resonant character of the absorption. In particular, SF_6 can only be used for lasing on the P(20) line of a CO₂ laser (Ref. 3).¹⁾ Compared with other nonlinear filters, ptype germanium semiconducting filters have many important advantages including their short relaxation time (~1 psec) and their broad infrared absorption spectrum. In order to avoid high reflection losses, antireflection coatings were applied to the faces of these filters. It was shown experimentally that successful operation of germanium filters at T = 300 °K requires high optical intensities $(10-40 \text{ MW/cm}^2)$ (Ref. 4) close to the damage threshold of the filter coatings and the laser optical elements. This has the result that systems using *p*-Ge filters have poor reliability and a short life

at T = 300 °K. For example, it was reported in Ref. 5 that a nonlinear *p*-Ge filter could withstand between 10 and 30 lasing cycles at T = 300 °K. As a result of these disadvantages, neither gas nor semiconducting filters have been widely used up till now.

We proposed a method of mode locking in infrared $lasers^5$ in which the bleaching threshold of a *p*-type germanium semiconducting nonlinear filter could be reduced by more than an order of magnitude by decreasing the temperature and selecting an appropriate carrier density. A decrease in the bleaching threshold should clearly substantially increase the reliability and life of the total laser system.

It was shown in Ref. 7 that the dependence of the absorption coefficient α on the optical intensity *I* in *p*-type germanium with a free carrier density of $10^{12} - 3 \cdot 10^{15}$ cm⁻³ at T = 78 °K takes the form

$$\alpha(I) = \frac{\alpha_0}{1 + I/I_s},\tag{1}$$

where α_0 is the absorption coefficient at low optical

0049-1748/82/020175-04\$04.10