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Acceleration of cosmic rays by shock waves
E.G. Berezhko and G.F. Krymskii

Institute of Space-Physics Research and Aeronomy, Yakutsk Branch, Siberian Division, Academy of Sciences
of the USSR
Usp. Fiz. Nauk 154,49-91 (January 1988)

Theoretical work on various processes by which shock waves accelerate cosmic rays is reviewed.
The most efficient of these processes, Fermi acceleration, is singled out for special attention. A
linear theory for this process is presented. The results found on the basis of nonlinear models of
Fermi acceleration, which incorporate the modification of the structure caused by the accelerated
particles, are reported. There is a discussion of various possibilities for explaining the generation
of high-energy particles observed in interplanetary and interstellar space on the basis of a Fermi
acceleration mechanism. The acceleration by shock waves from supernova explosions is
discussed as a possible source of galactic cosmic rays. The most important unresolved questions in
the theory of acceleration of charged particles by shock waves are pointed out.
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1. INTRODUCTION
A characteristic feature of a collisionless space plasma

is the occurrence of processes which result in the generation
(or acceleration) of fast charged particles with an energy far
above the thermal energy. These particles can be observed
directly in interplanetary space.' The presence of fast accel-
erated particles in interplanetary space and in various astro-
physical objects has been established by radio, x-ray, and y-
ray astronomy (see, for example, Ref. 2 and the bibliography
there). Among the most obvious manifestations of the accel-
eration processes are the galactic cosmic rays.

There is particular interest in the acceleration processes
which occur near the fronts of shock waves which are propa-
gating through a space plasma, primarily because shock
waves are a fairly common phenomenon in space. As exam-
ples we might cite the shock waves from chromospheric
solar flares and from supernova explosions. Furthermore, a
large amount of energy is usually released in the form of a
directed motion of plasma in the processes which lead to the
formation of shock waves. A significant fraction of this ener-
gy may go into the acceleration of a small fraction of the
plasma particles, with the result that particles appear with
energies many orders of magnitude above the thermal
energy.

A theory for the acceleration processes must be derived
in order to reach an understanding of the fundamental prop-
erties of the plasma and also to reconstruct the overall pic-
ture of such phenomena as chromospheric flares and super-

nova explosions. Furthermore, there are strong arguments
for believing that shock waves from supernovae are among
the primary sources of galactic cosmic rays.

The first experimental indications of an acceleration of
charged particles by interplanetary shock waves3"8 stimulat-
ed the development of theoretical ideas regarding possible
mechanisms for the acceleration of particles near shock
fronts.9"16 Experiments which have been carried out on
space vehicles directly in interplanetary space have conclu-
sively proved that intense acceleration processes operate
near the fronts of shock waves.1718 These acceleration pro-
cesses are presently being studied widely and in detail.

Shock waves themselves are fairly complex physical
phenomena. 19~24 In the narrow spatial region which is called
the "shock front," magnetohydrodynamic (MHD) energy
of the unperturbed medium is converted in part into thermal
energy as the result of a variety of dissipative processes. In an
ordinary gas the dissipation results from binary collisions.20

For the conditions which prevail in a space plasma, "colli-
sionless" shock waves are more typical. The dissipation at
the front of such shock waves is of a collective nature and is a
consequence of the onset of plasma instabilities. 21~24 The mo-
tion of the plasma particles in this case is determined not by
binary collisions but by the interaction of the particles with a
turbulence which is generated at the front; the length scale
which determines the thickness of the front of an intense
shock wave is the gyroradius of the thermal ions. The collec-
tive nature of the plasma processes which occur at the front
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and their definitely nonlinear nature pose significant diffi-
culties in a theoretical description of collisionless shock
waves. Except for cases of shock wave which are not very
strong,22'23 the theory here is very incomplete (see the review
by McKee and HoUenbach24 regarding the present state of
this question).

The nature of the motion of fairly fast particles near the
front of a collisionless shock wave is relatively independent
of the particular structural details of the wave. The reason
for this situation is that the motion of charged particles in a
space plasma is determined primarily by the interaction of
these particles with magnetic fields: the large-scale (or regu-
lar) field, on the one hand, and the random (or turbulent)
field, on the other. The interaction with the random field
component results in random changes in the directions in
which the fast particles move, i.e., a scattering of these parti-
cles. The mean free path with respect to scattering of fairly
high-energy particles is far greater than the thickness of the
shock fronts, so the particular structural features of the
fronts do not influence the fast particles. This assertion of
course does not mean that there is no interest in studying the
structure of a shock front as part of a larger study of the
acceleration of charged particles. As we have already men-
tioned, the unperturbed plasma through which the shock
wave propagates undergoes a heating at the front. After this
heating, the fastest particles in the thermal distribution may
be subject to acceleration by some mechanism or other. The
processes which occur at the shock front and the structure of
the front thus determine the rate at which particles are in-
jected into the acceleration regime and, ultimately, such an
important parameter as the number of accelerated particles.

The possibility that charged particles will be acceler-
ated in a plasma stems from the electric fields in the plasma.
These are primarily the induced fields which arise as a highly
conducting plasma moves in a magnetic field. Acceleration
of particles by such fields may occur near a shock front.
Figure la illustrates the situation with a schematic diagram
of the trajectory traced out by a fast charged particle in the
rest frame of the front of a transverse plane shock wave
which is propagating opposite the x axis. This particular dia-
gram corresponds to the case in which there are no small-
scale electromagnetic fields, or they play only a minor role
(a laminar shock wave). For a fast particle whose velocity v
is much greater than the plasma velocity u, and for which the
mean free path with respect to scattering {A) and the gyrora-
dius/os are much greater than the front thickness /, the shock

wave represents an MHD discontinuity in which the mag-
netic field B, the density p, and the plasma velocity u in the
regions behind and ahead of the wavefront are related by19

(1.1)u2 = a B2 =

where a is the degree of compression of the matter at the
shock front, Here and below, the subscripts 1 and 2 specify
the regions ahead of and behind the front, respectively. As it
intersects a shock front, a particle undergoes a gradient drift
and is displaced along the electric field E = — [uB]/c (c is
the velocity of light), so its energy increases. The change in
the energy of the particle is determined quantitatively by
conservation of the adiabatic invariant121316 /j, —p\/B,
where PL is the component of the particle momentum per-
pendicular to the magnetic field. The conservation of /z in
this case is not a trivial fact. Furthermore, it is not a conse-
quence of the validity of the drift approximation, which is
not applicable for the region of the shock front, where the
magnetic field undergoes rapid changes. The conservation of
fj. for a particle intersecting a shock front has been estab-
lished as the result of a detailed study of the trajectory of
such a particle.121 The results have been supported by nu-
merical calculations.25

If the magnetic field is oriented obliquely with respect
to the shock front, particles with sufficiently large pitch an-
gles can be reflected by the front, since the magnetic field
which is intensified behind the front plays the role of a mag-
netic mirror. The reflection of the particles is accompanied
by an increase in their energy.1016 Even if the magnetic field
is in the most favorable direction, however, the energy of the
particles—except for a negligible fraction of these parti-
cles—increases by no more than an order of magnitude.25'26

Under conditions with a laminar, quasitransverse shock
wave, with the magnetic field making a small angle with
respect to the surface of the front, a reflection of ions may
also occur as the result of an electric field which arises be-
cause of a charge separation near the shock front.22'23'27'28

These processes undoubtedly play a governing role in shap-
ing the structure of a shock wave. However, the one-shot
nature of these mechanisms limits their possibilities in the
generation of high-energy particles.

The laminar shock wave we have been talking about is
of course an idealization. For space plasmas, there would
typically be a random magnetic field, which results from the
development of a plasma turbulence, in addition to the regu-
lar magnetic field. The scattering of particles by irregulari-

FIG. 1. Motion of a fast charged particle near the shock front of
a laminar shock wave ( E = — [uB]/c) (a) and a shock wave in
a turbulent medium (b).
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ties of the magnetic field tends to make the particles isotrop-
ic, and it also presents the possibility of a repeated
intersection of a shock front (Fig. lb). The particles may
thus undergo an acceleration of a cyclic nature. Each cy-
cle—a double intersection of the front—is accompanied by
an increase in the energy of a particle, even in the absence of a
regular magnetic field.29"33 Since the typical velocities of tur-
bulent fluctuations are of the order of the Alfven velocity ca

= B/{Avp)ul, and since the relation c a < « , 2 holds in the
case of strong shock waves, we can treat the irregularities of
the magnetic field—the scattering centers—as being frozen
in the plasma. Furthermore, the scattering of the particles
will be an elastic scattering in the frame of reference which is
moving with the scattering centers, if the effect of the fast
particles on the medium is ignored.

This fact is physically obvious for the case in which a
particle interacts with a magnetic-field irregularity which
is frozen in a plasma, since the magnetic field performs no
work. A detailed study of the interaction of a charged parti-
cle with MHD waves1'2'34 leads to the same result. In this
case the change in the magnitude of the momentum of a
particle as a result of its scattering is

, —Pi)—, (1.2)

where u is the velocity of the plasma, and p; and pf are the
momenta of the particle respectively before and after the
scatterings. Since A/> is small (by virtue of the relation
u/v-4\), we can assume pf =p, =p. The change in the mo-
mentum of a particle after a double crossing of a front is
A/? = (pfc — PJJUJV"1 + (Pf — P*)u2v~'. Averaging this
expression over the particle flux, which we assume to be iso-
tropic, for angles from v/2 to v between the vectors Pj, pf

and u and from 0 to v/2 between p* and u, we find the aver-
age change in the momentum of the particle over the cycle:

<A/>) = -g-(;/j — u2) —. (1 .3 )

After a given cycle, the particle has a definite probability for
not returning to the front. The number of particles therefore
decreases with increasing index of the cycle. The integral
spectrum of accelerated particles N(p), i.e., the number of
particles with a momentum greater than/? in a unit volume,
can be found from the balance equation

d.V
dp (Ap>

•N, (1.4)

where Pc is the probability for the completion of the given
cycle. This probability follows from the obvious relation
N(p + A/>) = Pc N(p), which shows that the number of par-
ticles capable of undergoing the (/ + 1 )st front-crossing cy-
cle is equal to the product of the number of particles which
have undergone / cycles and the probability for the comple-
tion of the next cycle. The probability Pc satisfies the relation
Pc = P,P2, where PX2 are the probabilities for a particle
which has entered the regions ahead of and behind the front
to return to the front. The probability />, is equal to unity,
since all the particles from region 1 are carried by convection
to the front. The probability P2 can be expressed in terms of
Jl2, which is the flux of particles coming out of region 1 and
going into region 2, and the directed flux of particles into
region 2: P2 = (Jl2 — J2)/Jn. The assumption that the par-
ticle distribution behind the front is approximately isotropic
and homogeneous yields Jn — nv/4 and J2 = nu2, where

n = <1N/dp is the differential particle density. We thus find
an expression for the probability for the completion of the
next cycle:

rc— i v . i i - - > ;

Using (1.3)-(1.5),we find an equation for the density n:
d pn + 3 (1.6)dp ' " ui — u2

A solution of this equation is a power-law function n ~p
with an exponent y = {a -\- 2)/(a — 1).

The above analysis, which can also be found, aside from
inconsequential differences, in Refs. 31,32, and 35-39, illus-
trates the physical content of the type I Fermi acceleration
mechanism29"33 (we will say simply "Fermi mechanism";
this process is also called the "diffusive acceleration of parti-
cles by a shock wave" in the non-Soviet literature and the
"regular mechanism" in the Soviet literature).

Even this simple analysis shows an important advan-
tage of the Fermi mechanism: The spectrum of the acceler-
ated particles is independent of the properties of the medium
through which the shock wave is propagating. When we
further note that the degree of compression is in the interval
a = 3-4 for strong shock waves, we see that the exponent on
the accelerated-particle spectrum is y = 2-3, precisely what
is observed in the galactic cosmic rays and in the relativistic
electrons in the remnants of supernovae.40 This circum-
stance makes the Fermi mechanism extremely attractive for
explaining several astrophysical phenomena, and this mech-
anism has accordingly attracted much research interest in
recent years. Despite the fact that the theory of Fermi accel-
eration has been covered in several reviews39'41^4 (see also
Refs. 1 and 2), it is worthwhile to review the recent results
because of the intense activity in this field. This is our pur-
pose in the present paper.

We should also point out some other acceleration pro-
cesses which could operate in a space plasma. These are the
statistical acceleration mechanisms. They operate if the scat-
tering centers undergo random motions, regardless of
whether these motions constitute a displacement of masses
of matter with a frozen-in magnetic field (magnetized
clouds)45 or wave motions of turbulent fluctuations13"15'34

(see also Ref. 1). All versions of the statistical mechanisms
have a common physical content. The fast particles and the
scattering centers in a sense constitute two distinct gases.
Since the scattering centers are macroscopic plasma vol-
umes, they correspond to an infinitely high temperature.
Their thermal contact with the fast particles through scat-
tering events results in a transfer of energy from the scatter-
ing centers to the particles, i.e., an acceleration of the parti-
cles. In other words, the acceleration process here is an
analog of the ordinary heating which occurs in a collisional
plasma. Interestingly, this analogy is quite general: The
heating in a plasma with collisions corresponds to an accel-
eration of fast particles in a plasma without collisions. As
confirmation of this statement we could also cite the Fermi
and friction4647 acceleration mechanisms. The efficiency of
statistical acceleration processes in specific space-physics
objects is a rather complicated question, since the efficiency
is determined primarily by the level and nature of the plasma
turbulence, about which we would usually have extremely
limited information. Furthermore, most of the energy in in-
terstellar space is in the form of motion of large volumes of
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matter, in particular, large-scale shock waves.42 For this rea-
son, the Fermi acceleration mechanism, through which en-
ergy of the directed motion of the medium is transferred
directly to fast particles, is preferable in many regards.

To avoid any misunderstanding, we should state that in
either case energy of a macroscopic volume of matter is
transferred to individual charged particles through an inter-
action of the particles with scattering centers. Consequently,
the role played by the turbulent field and the problem of
finding a theoretical description of it are of equal importance
to the two acceleration mechanisms. The physical reason
why the Fermi acceleration mechanism has a high efficiency
in many cases is that the same particle-scattering events
draw energy from the directed motion of the matter, and the
amount of this energy available in the case of a strong shock
wave is far greater than the energy of the random motions. In
this regard, the role played by the statistical mechanisms
may be a governing one in the formation of the population of
superthermal particles, which are then injected into the Fer-
mi acceleration process. This interpretation is supported, in
particular, by an analysis of experimental results obtained in
interplanetary space.

In taking up the theory of Fermi acceleration we note
that the term "cosmic rays" in the title of this paper is being
used in its broad sense: It is to be understood as synonymous
with "fast" or "accelerated particles".

2. LINEAR THEORY OF FERMI ACCELERATION

The transport of fast charged particles in a space plasma
can be described quite comprehensively and systematically
on the basis of a diffusion transport equation, because of the
random magnetic field.

The diffusion description method is applicable if the
angular distribution of the particles is rendered approxi-
mately isotropic by frequent events in which fast particles
are scattered by irregularities of the magnetic field. It then
becomes possible to restrict the analysis to the first two an-
gular moments in the expansion of the distribution function:

/ (r, p, 0 = / (r, p, t) -i- fa (r, p, t) Pap~l.

The isotropic part of the distribution function, AT, p, t),
satisfies the equation48"50

and the first moment is given by4

f-^rP 1L
dp

(2.1)

(2.2)

Here xtj is the particle diffusion tensor, u is the hydrodynam-
ic velocity of the plasma, and Q is the strength of the particle
source, which describes the creation (injection) and annihil-
ation (escape from the system) of particles. The creation
and annihilation may also result from any possible processes
which would change the energy of the particles, other than
an adiabatic process. An adiabatic change in the energy of
the particles is described by the third term on the right side of
the equation. That term shows that the energy of an individ-
ual particle, e, varies in accordance with the equations48"54

\ dt / ~ 3 P'
ds \ V

- d F / ^ " " ^ ^ ' (2.3)

where the angle brackets mean an average over a time inter-
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val much longer than the time scale between scattering
events.

It is specifically the use of Eq. (2.1) which has made it
possible to study and reach a correct understanding of a long
list of phenomena and processes involving cosmic rays in
interplanetary space.1'51'5255

A necessary condition for the applicability of transport
equation (2.1) is that the mean free path with respect to
scattering be small in comparison with the length scale
(/ = \u/Vu\) of the variations in the plasma velocity u. In
the case of discontinuous flows—in particular, a shock wave
represents a discontinuous flow for fast particles—this con-
dition breaks down. A detailed analysis shows that Eq. (2. ' )
must be supplemented with a boundary condition at the
shock front which relates the solutions of this equation on
the two sides of the front. For a quasiparallel shock wave,
with the regular magnetic field making a small angle with
the normal to the shock front, h, the boundary conditions
become particularly simple1'56'57:

/ l — /a. ZicAi — (2.4)

These conditions reflect the circumstance that the crossing
of the shock front by a particle does not change the momen-
tum of the particle, so the particle density n = 47r/?2/and the
normal component of the density of the directed flux, j a

= (4ir/3)p2vfa, must be continuous.
For an arbitrary orientation of the magnetic field, the

density of the particles has a jump at the front because of a
reflection of these particles by the front.57 Although there
are no fundamental difficulties in treating the general case,
we will restrict the analysis here to the mathematically
simpler case of quasiparallel shock waves.

The Fermi acceleration of particles by a shock wave
consists of a transfer of energy of the directed motion of the
plasma to fast particles, as we have shown. The fast particles
may in turn influence both the internal properties—the tur-
bulence level—and the structure of the shock front—the dis-
tribution of the hydrodynamic velocity u (r) . The problem of
finding the energy and spatial distributions of the acceler-
ated particles must therefore be solved simultaneously with
a determination of the self-consistent turbulence spectrum
and the structure of the shock front. Only when the energy
density of the accelerated particles is insignificant in com-
parison with the energy of the directed motion of the plasma
can the effect of the fast particles be ignored. This situation
may be realized, for example, if the number of accelerated
particles is small, because of a low rate of injection of ther-
mal particles into the acceleration process. The correspond-
ing version of the theory—the linear theory or the test-parti-
cle approximation—is presented in this section of the
review.

2.1. Acceleration by a plane shock wave

In the one-dimensional case with a plane shock wave,
which is propagating opposite the x axis in a homogeneous
medium, the particle distribution function depends on only
the coordinate x. The component xxx is thus the sole compo-
nent of the diffusion tensor which appears in Eq. (2.1); we
will accordingly adopt the simpler notation x.

Transport equation (2.1) takes the following form in
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the rest frame of the shock front, where it occupies the posi-
tion x = 0:

df
It

IL
dx

dx •• dx "-' dx 3 v / v ~ " ' dp r v ' ^ 2 ' 5 ^

where Au = ul — u2. Written in generalized form [Vu
= — Au8(x)], this equation already contains the bound-
ary conditions (2.4). However, since the solution of this
equation is sought separately in the region ahead of and be-
hind the shock front in real situations, we will write the
boundary conditions explicitly, also taking account of the
possible presence of a lumped source Q = Q08(x) at the
shock front. These conditions can be found by integrating
Eq. (2.5) over jcterm by term from — 8 to 8 and then letting
<5 go to zero:

u2

dx dp
Ik.
dp Q0-

(2.6)

As before, the subscripts 1 and 2 specify the quantities ahead
of and behind the front, and the values of the functions/, and
f2 and their derivatives are taken at the points x = — 0 and
x = + 0, respectively.

In real situations we would expect that the injection of
the particles would occur in one of two ways: Either the
injection occurs at the shock front, where the plasma is heat-
ed, and then the fastest particles become involved in the ac-
celeration process; or the fastest particles already present in
the unperturbed medium undergo acceleration. The first of
these possibilities is described by the lumped source
Q = QoS(x), and the second by the specification of the
boundary condition/,( — oo, p) =/x (/>), where/„ (p) is
the spectrum of fast particles in the unperturbed medium. If
we consider only these two possibilities, we can assume that
there are no sources of particles away from the shock front.
The steady-state solution of Eq. (2.5) will then have the
form

jjj dz. (2.7)

The requirement that the function be bounded is satisfied
with B2 = 0, and the boundary conditions at x = — oo and
x = 0 are satisfied with A, = / „ (p), B, =A2—Al. The
function/2(/>) =A2(p) and the function/, (x,p) along with
it can be found by using the second of conditions (2.6). Fora
monoenergetic source Qo = {N0/4irp2)ux8(p — p0) and for
a spectrum/„ = (VV̂  /4vp2)8(p — p0) in the unperturbed
medium, this condition becomes the equation

dp

Solving this equation and (2.7), we find

where q = iu^/Lu, and 0(x) is the unit step function
(Heaviside function). We thus see that the two injection
mechanisms operate additively. For arbitrary spectra of the
injected particles/, = Qo(p)/u, and/, {p), the distribution
function of the accelerated particles behind the shock front
takes the form

oo

h (P) = J (/o (/>') + /- (/>')) G (p, p') dp',
o

where

is the Green's function of the problem of the acceleration of
particles by a plane shock wave.

Expression (2.8) shows that an important aspect of
Fermi acceleration is the universal shape of the spectrum of
accelerated particles: the exponent y = q + 2in the density
expression n ~p ~ r,

V = (a + 2) (a - I)"1 (2.9)

is determined entirely by the extent of compression of the
matter at the shock front. In the case at hand, of quasiparal-
lel shock waves, in which the magnetic field is dynamically
inconsequential, 194° the extent of compression,

is determined by the adiabatic index of the medium, yg, and

( p Y/2

P\'
the sound velocity, and P^ is the thermal pressure in the
medium ahead of the front. For strong waves (Ma,>l)
which are propagating through a fully ionized plasma (yg

= 5/3) we would have a = 4 and thus y=2.
The universal—exclusive—shape of the spectrum of ac-

celerated particles over the entire momentum range from p0

to oo is of course a consequence of our idealized formulation
of the problem. In real situations, the finite dimensions of the
shock wave and the finite thickness of the shock front would
impose certain restrictions on the acceleration process.

The restrictions which stem from the finite dimensions
of the shock wave, R, can be described at a qualitative level in
the following way: If a particle, in the course of its accelera-
tion, goes a distance greater than R away from the front,
then it will have a small probability for returning to the front
and for continuing to be accelerated. This effect can be dealt
with approximately in the one-dimensional problem. For
this purpose, we add to the situation discussed above an ab-
sorbing surface, at a distance R ahead of the front. The
boundary condition/,( — <x,p) =0 (./„ =0) i s replaced
by/,( - R, p) = 0, and the steady-solution of Eq. (2.5)
becomes, instead of (2.8)

n

/ 2 ( /0exp(- \~

31

i
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(2.8)

p) h(p)

-R

with a spectral exponent
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u

a=[l-exp(- \^dx)]-\ (2>10)

We see that the presence of an absorbing boundary steepens
the spectrum since we have a > 1. If the diffusion coefficient
is a growing function of the momentum, as it essentially al-
ways is for fast particles, the steepening of the spectrum is
important in practice for particles with momenta p^pm,
wherepm is found from the relation gi=RUi/xx(pm) = 1.
Since the spectrum falls off rapidly aXp >pm, in this case, the
value ofpm represents a maximum momentum of the accel-
erated particles. The effect of a finite thickness of the shock
front can be studied by examining the acceleration by a
shock wave with a smooth velocity profile

u (x) = - 1 — »2 thf'

2.2. Rate of Fermi acceleration

The role played by one acceleration mechanism or an-
other under specific physical conditions depends on the effi-
ciency of the mechanism, which in turn depends on the rate
at which the accelerated particles acquire energy. As the
acceleration rate increases, a progressively smaller role is
played by competing processes, primarily the various types
of energy loss.

The rate of Fermi acceleration can be found by studying

the time evolution of the spectrum of accelerated particles.

In Eq. (2.5) and in boundary conditions (2.6) it is conven-

ient to take Laplace transforms,4359"64 f(x, p, s)

Ax,p,t)e-sldt:
•r

9

dx dx dx
(2.14)

(2.11)

which varies from the value u, = u( — oo) to the value
u2 = u (oo ) over a length scale /.

In the steady state, with a constant diffusion coefficient,
Eq. (2.1) can be put in the following form through a change
of spatial variable58:

iu Of \ dl . p iff _ Q

du 3 5p '
(2.12)

where du/dx = — 2(«, — u)(u — u2)/l(ul — u2). The
particle source Q has been set equal to zero, and the accelera-
tion problem has been reduced to one of finding a solution
of Eq. (2.1) under the boundary condition f(u = u,, p)
= / » (/>)• As before, we can restrict the discussion to the

case of a monoenergetic spectrum of injected particles,
/„(/>) = (N<e /Avpi )8(p —p0), without any loss of genera-
lity.

The method of separation of variables with f(u, p)

= JT Fn {u)p~qn is used to reduce Eq. (2.1) to a Sturm-
n = 0

Liouville problem of seeking the eigenfunctions Fn and the
eigenvalues qn. The function Fo, which corresponds to the
smallest eigenvalue, q0, determines the behavior of the solu-
t ion^ u,p) at large momenta. This function has no nodes in
the interval («„ u2), so it can be sought in the form
Fo= (a, - u)a. Substituting f=Fop-"« into Eq. (2.12),
we find

a = ^ ;
3a3a /

We see that at large momenta the spectrum is a power spec-
trum, with an exponent which increases in magnitude with
increasing front thickness. The steepening of the spectrum is
important under the condition / Z x/u2. The complete solu-
tion of the problem, found by Laplace transforms, is given in
Ref. 58.

The limitations which are imposed by the finite dimen-
sions of the shock wave, R, and the finite thickness of the
shock front, /, can thus be summarized as follows: The parti-
cles which are effectively accelerated are those for which the
diffusion length L(p) = x,(p)/u, lies in the interval

(2.15)

where we have assumed that the particle source is "turned
on" at the time t = O-Q= (.No/4irpl)8(p-po)9(t). If
the diffusion coefficients xU2 do not depend on the coordi-
nate x , a solution of Eqs. (2.14), (2.15) is

7, (x, p, s) = i {-•!•] ' T-

f] (2.16)
where A, = [1 + (4sx,/«?)l/2 — 1, and/2(/>) is the steady-
state spectrum (2.8) at the shock front. The inverse trans-
formation can not be made in the general case. However, at
the long times r>x,/«?, of practical importance, it is a
straightforward matter to find the behavior of the solution.
In this case we can use the approximate expression 2s«,/uf,
for the quantities Anso that the inverse Laplace transforma-
tion can be made43'63:

P, t) =

P, t) =

where

"~ J Ul-u2 V ui • * " « ! / P

(2.17)

(2.18)

I'D

is the time required to accelerate a particle from a momen-
tum p0 to p. We thus see that at each time t a steady-state
universal spectrum/—/?" * is established in the momentum
region po<p Spm(t) at the shock front. The maximum mo-
mentum, determined by the relation t — fa (pm), increases in
time in accordance with the equation dpm/dt=pm/ra, so
the quantity

l ~ Ui-Uj ( u\ + Uj )
(2.19)

I < L ( p ) < R. (2.13)

has the meaning of a characteristic acceleration time.
Figure 2 illustrates the relation between approximate

results (2.17) and the exact result, found by taking the in-
verse Laplace transformation of expression (2.16) numeri-
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FIG. 2. Spectrum of particles accelerated by a shock wave with a degree of
compression a = 4 at various times t after the time of injection.

cally. Also shown here is the dynamics of the relaxation to a
steady-state spectrum. This figure shows the distribution
function of the accelerated particles at the front, /2(0,/>, t)
for the case of a strong shock wave (cr = 4) and with con-
stant diffusion coefficients xx = x2. The dashed lines are the
positions of pm(t). We see that the momentum region in
which the spectrum of the accelerated particles is approxi-
mately the steady-state spectrum f2(p) increases over time,
in accordance with expression (2.17). At each instant there
is a fairly smooth and extended region in the spectrum which
corresponds to p >pm (t).

The time evolution of the Fermi acceleration process
can also be studied in a random-walk model. All the basic
results which have been obtained by that method60'65"67

agree with the results reported above.
Competing processes such as statistical accelera-

tion62'68"70 and various types of energy loss71"73 can be taken
into account systematically on the basis of Eq. (2.1), if that
equation is supplemented with terms to describe these pro-
cesses. However, without resorting to the procedure of solv-
ing the transport equations, which is a fairly laborious task
in these cases, it is possible to determine the momentum re-
gion for which Fermi acceleration is the dominant mecha-
nism and in which we should not expect to find any changes
in the spectrum of accelerated particles. To do this it is suffi-
cient to compare the acceleration time ra with the scale time
r, = \p/{dp/dt),-.\, which determines the rate of change of
the momentum, {dp/dt >,, for the competing process.74 In
the region of particle momenta in which the relation ra 4, r,
holds, the Fermi-acceleration process proceeds without any
substantial changes. For statistical mechanisms, the charac-
teristic acceleration time1'2 TS~XU~2 is determined by the
random component of the velocity of the scattering centers,
u. Under the conditions prevailing in a space plasma, the role
of scatterihg centers is played primarily by the MHD turbu-
lence, for which we have u ~ ca. We thus find r a / r s ~ Ma f2,
which tells us that Fermi acceleration outweighs the statisti-
cal acceleration in the vicinity of strong shock waves, for
which the Mach number is large.

For relativistic electrons the basic types of loss in a
space plasma are the synchrotron and Compton losses.75

Since the rate of these losses increases rapidly with the ener-

gy, we would expect to find a sharp cutoff in the spectrum of
accelerated electrons at a certain energy pmc, at which the
rates of loss and Fermi acceleration would become compara-
ble.71'74 Estimates carried out for the shock waves from su-
pernovae yield2'74 pm c = 1013-1015 eV.

Both the electrons, on the one hand, and the protons
and nuclei of heavier elements, on the other, are subject to
energy losses through Coulomb collisions in a plasma. For
relativistic particles the Coulomb loss is slight in the space
medium and does not play an important role.75 The losses
may prove important for particles with an energy of the or-
der of the thermal energy of plasma. If the particles are in-
jected into the acceleration process directly from the ther-
mal distribution behind the shock front, the velocity of the
injected particles will be ^ «,, which is larger by a factor of
Ma, then the thermal velocity of the ions in the region ahead
of the shock front. Consequently, in the case of strong shock
wave (Ma, > 1) the time scale of the energy loss, due primar-
ily to collisions with electrons, can be found from76

where e and wc are the charge and mass of the electron, 7",
and iV, are the temperature and density of the plasma, L is
the Coulomb logarithm, and m; is the mass of the particle.
Using the values r , = 5-10"n erg (3-105 K) and Nx

= 3-10~3 cm"3 for the interstellar plasma—this so-called
corona phase fills 70% of the volume of the galactic disk77—
we find xx < w2 • 1012 cm2/s for protons from the condition ra

< rq. Using u, = Ma ,cs, and taking the sound velocity to be
cs ;= 200 km/s, we see that this relation holds for essentially
any Mach number, since in the galactic disk2 we would have
x~\027 cm2/s even at an energy ~ 1 GeV. It is not difficult
to show that incorporating the Coulomb loss in the region
behind the front of a strong shock would not introduce any
further limitations, especially since the perturbed nature of
the medium would apparently lead to a relation x24.xx.

The Coulomb energy loss is even smaller in the inter-
planetary plasma, where we would have1 T= 105 K, N = 1
cm"3, and cs = 50 km/s; the diffusion coefficient at energies
S 1 MeV would be x < 1021 cmVs.

We thus see that in a collisionless space plasma there is
the possibility of an injectionless regime of Fermi accelera-
tion: The absence of any significant energy loss would make
it possible to accelerate particles directly from thermal ener-
gies, without the need for a preliminary acceleration of these
particles.

2.3. Acceleration of particles by spherical shock waves

The results found in a study of Fermi acceleration by a
plane shock wave have a limited range of applicability. Un-
der actual conditions, the shock waves are not plane waves;
they instead have complex spatial and temporal characteris-
tics. It thus becomes necessary to study how the acceleration
process is influenced by the nonzero dimensions, the curva-
ture of the shock front, and the actual law of motion of the
front. There is yet another important circumstance, which
distinguishes the real wave from a plane wave in a funda-
mental way: Shock waves in space are formed primarily ei-
ther as the result of processes of an explosive nature at stars
(supernova explosions, chromospheric flares, etc.) or as the
result of the slowing of supersonic streams of plasma issuing
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from the surfaces of stars (stellar winds). Consequently, ei-
ther the region ahead of the shock front or behind the front
will consist of diverging plasma streams. The expansion of
the plasma (V«>0) leads to an adiabatic slowing of the
particles in accordance with the law (2.3), and this effect
may also have a strong influence on the spatial distribution
and spectrum of the accelerated particles.

When we move up to the three-dimensional case, the
computational difficulties increase inordinately. For this
reason, all the basic results which have been established to
date refer to the spherically symmetric case, in which the
transport equation (2.1) can be written in the form

df 1 d I „ d! \ df , 1 a , „ . p df ^
dt r% dr \ dr I dr ra dr v ; 3 dp ~ v

(2.20)

under the assumption that/ , x, u, Q depend on only the
single spatial coordinate r. In this case the boundary condi-
tions at the shock front (2.4), take the form

( a - 1 ) 2 l - p

dr dp

Oft U2

3 P~W

(2.21)

where Qo (r — R) is the part of the source Q which is lumped
in the region r = R.

2.3.1. Standing shock wave. The acceleration of charged
particles by a standing spherical shock wave is of research
interest because stellar winds may undergo a shock transi-
tion as a result of an interaction with the interstellar medi-
um.52'78 This question is particularly important because the
sun is a star which has a wind. The plasma velocity u can be
written as a function of the distance to the star, r, in the
following way5278:

(2.22)

where u2 = ux/a. An analytic solution of the steady-state
transport equation can be derived only in certain individual
cases, with a special choice of the diffusion coefficient79"81

x(r,p). The basic features of this problem can be analyzed
by specifying a cosmic-ray diffusion coefficient

(2-23)

This approach makes it possible to solve Eqs. (2.20) and
(2.21) and, without any particular difficultyt to find the
spectrum of accelerated particles with momentap>p0, i.e.,
with momenta above that (p0) of the particles injected at the
shock front:

p ) [ l - exp ( -

(2.24)

(2.25)

where
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^2/2) , gli2 = uiaR/xu2, and the amplitude
(y4) of the spectrum of accelerated particles is determined by
the rate of their injection.

The primary feature of the solution which is found—a
feature which is common to problems involving the accelera-
tion of cosmic rays by shock waves with nonzero dimen-
sions—is the fact that both the spatial distribution of the
accelerated particles and the shape of their spectrum are de-
termined by the values of the dimensionless parameters gl2.
The physical meaning of these quantities follows from the
circumstance that they primarily determine the extent at
which the moving scattering medium, with length scale R,
influences the spatial distribution of the cosmic rays. Specifi-
cally, if g< 1, the influence is slight, but if g> 1 it is govern-
ing. For this reason, the quantity g is called the "modulation
parameter."

The circumstance that the dimensions of the shock
wave are nonzero, which results in a further escape of parti-
cles from the vicinity of the shock front, and also the adiaba-
tic slowing in the region r < R reduce the acceleration effi-
ciency. This reduction is reflected in a steepening of the
spectrum of the accelerated particles. The role played by
these two factors is determined by the magnitudes of the
modulation parameters g, andg2, respectively. Regardless of
the values of these parameters, the spectrum of accelerated
particles is steeper than in the plane-wave case. As the pa-
rameter g, increases, the role played by the slowing de-
creases. The reason is that at g, > 1 the length scale of the
diffusive penetration of particles into the region r<R is
small: L = xx/ux4^R. The rate of adiabatic slowing here is
rad = |Vu/3|~'=;3.R/2«|, according to (2.3). In order to
compare this rate with the acceleration rate we need to allow
for the circumstance that the particles spend only a part ral

= 3xx/'Awt/j of the acceleration time ra [see (2.19) ] in re-
gion 1. Incorporating the factor T^/T^ leads to r~^
s [2x,/(<7 — \)RUX]T~\ which is considerably lower than
the acceleration rate T~ ' if x ,</?«,.

At £,> 1, the difference between the exponent in the
accelerated-particle spectrum,

q--=-

and that in the plane-wave case results from exclusively the
nonzero dimensions of the shock wave. It can be seen that
this effect can be described correctly at the qualitative level
in the one-dimensional problem with an absorbing boundary
[see (2.10)]. If both of the parameters g, andg2 have large
values, the exponent of the accelerated-particle spectrum, q,
becomes approximately the same as that in the plane-wave
case, 3cr/(cr— 1).
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The way in which the shape of the particle spectrum and
the spatial distribution of the particles depend on the modu-
lation parameters is illustrated by Fig. 3, which shows the
distribution function f(r,p) as a function of the particle mo-
mentum p/p0 for several values of the distance r/R and for
values of 0.1 and 10 of the modulation parameters gx = g2-
This figure clearly demonstrates the decrease in the relative
number of slowed particles (p<p0) with increasing gi2 and
the tendency of the shape of the accelerated-particle spec-
trum (P>p0) toward a plane-wave l i m i t , / ~ p 3 < 7 / ( < T l ) .

Although the applied value of solution (2.24), (2.25) is
limited because of the particular choice of diffusion coeffi-
cients in (2.23), it still gives a clear picture of the basic
aspects of the process of Fermi acceleration by a shock wave
of nonzero dimensions.

2.3.2. Traveling shock wave. The primary reason for the
interest in the acceleration of particles at the front of a travel-
ing shock wave is that the shock waves generated in super-
nova explosions are regarded as a probable source of galactic
cosmic rays.242'43

The important time variation makes this problem so
complicated that it is not possible to derive an exact solution
of transport equation (2.20). However, the basic features of
the Fermi acceleration of particles by a traveling shock wave
can be studied by working from approximate solutions

It is not difficult to see that a solution of this equation can be
written in the form

where the factor

a = exp 3
d«

(2.26)

(2.27)

reflects the adiabatic change in the energy of the particles,
and s{t) is the solution of the equation ds/dt = u(s, t) with
the boundary conditions s(tR ) = R(tR ), s(t) = r.

In the external region, r>R, where we have u = 0, the
solution of the transport equation

dt r- 8r \ Or I

with the boundary condition/,(/?, p, t) =fR(p, t) can be
written in the form

(2.28)

where the function fi(t) is the solution of the integral equa-
found for wave expansion laws R~t2'5 (Refs. 82 and 83) tion5

and R~tU2 (Ref. 63). We will treat this problem here by the
method of Refs. 84 and 85; although that method yields only
an approximate solution, it can be used for any expansion
law R(t). This method can be summarized by say ing that the
solution of transport equation (2.20) in the region ahead of
the shock front, fx{r,p, t), and that behind the shock front,
f2(r,p, t), are expressed in terms of the particle distribution
function at the shock front, fR (p, t) =/ l i 2 (R, p, t). This dis-
tribution function can then be found from boundary condi-
tion (2.21). It becomes a particularly simple matter to de-
rive a solution in the region r < R behind the shock front, if
we make the customary assumption that the particle diffu-
sion coefficient x-, is small. In real situations, this coefficient
may be small because the medium is highly perturbed in this
region. If we assumes, 4:RR, where R=dR /dt is the veloc-
ity of the shock front, we can ignore the diffusion term in
transport equation (2.21):

H(/) _,_ 1 (• R(t) — R (t1)
2*i ' 4 l ' n J 1*1 (t-t')Yr-

X exp \ — (2.29)

Using the method of steepest descent, we can easily solve this
equation for large values of the modulation parameter
gl=RR/xl:

(t) • x , ( I + - ^ - i - ) R (t) fn (I) -J- 0 ( - L ) . (2.30)

where b = dln/R /dln/J. We can then use the same method to
carry out the integration in expression (2.28). As a result,
we find, in the case g, > 1,

/, (r. p, t) - jR (p, t) ^r
ft-i-l — ( v - - I) v - '

(2.31)

FIG. 3. Spectra of particles accelerated by a standing spherical
shock wave (<7 = 4) at various distances r in the cases of (a)
weak and (b) strong modulation.

f',Po
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where v = dlnR /dint. Substitution of expressions (2.26)
and (2.31) into boundary condition (2.21) yields an equa-
tion forfR (/>, t):

Of,,

- u , 1 - - 6 -!- 2 —(v--l)v-1

gi - £ - ] / « = • • $ . ,

where g2 = Ru2/x2, u2 = ux/a, ux=R a n d Au = ux — u2.

As before, we restrict the analysis to the case of a monoener-
getic function Qo = uxN06(p — pa)/4irp2. We then find the
following solution of this equation, which holds within
terms ~ \/g:

4 i~ t\ -Vo(O? / I

d + 2-(v-l

(2.32)

where the parameter d = d\nN0/d\nR determines the time
dependence of the strength of the particle source.

Expressions (2.26), (2.31) and (2.32) thus show that
the distribution near the shock front of the accelerated parti-
cles for which the modulation parameter is large (gU2 > 1) is
the same as that for a plane wave. If the particle diffusion
coefficient depends on the momentum x(p) = xo(p/po)

a,
a>0'£fi,2 (A>) ̂  1> the conditiongX2 (p) S 1 corresponds to
the regionpo<,p Spm (/), where the quantitypm (t) is deter-
mined from the relation gx(pm) = 1 if we assume g2{p)
>g\(p) (x2<xl). It can be seen from expression (2.32)
that in the case of a constant injection rate (No = const,
d = 0) the exponent q increases significantly with increasing
momentum p near the point p=pm. In other words, the
spectrum steepens. The quantity pm thus represents a maxi-
mum momentum of the particles which have been acceler-
ated at the given time t. If, on the other hand, the injection
rate falls off quite rapidly with the time NQ~Rd, d < — 2
+ (v — 1) v~', then near the momentumpm we will observe

not a steepening but, on the contrary, a flattening of the
spectrum, as can be seen from (2.32). The explanation for
this effect runs as follows: Those particles which have
reached a momentum p >p0 by the time t are injected at the
time t' = t — At; this time is earlier than t by an amount At
which is of the order of the acceleration time ta [ see (2.18)].
Since the number of particles which are injected over the
time fa is N = AwR 2(O£?o(f)fa> and since the acceleration
time ?a is an increasing function of the momentum, the accel-
erated-particle spectrum will flatten out if N{t) is a decreas-
ing function of the time. The sign of the derivative dN /dt is
the same as the sign of the quantity d + 2 — (v— l )v~ ' . I t
then follows that atc?> — 2 + (v— 1 )v~' the accelerated-
particle spectrum will be steeper, and at d < — 2
+ (v — 1)v~ ' flatter, than in the plane-wave case. At the

same time, this result means that if the injection rate near the
front falls off sufficiently rapidly we should expect a signifi-
cant number of particles with momentap>pm(t), which
will have been accelerated at earlier times t' < t under the
conditionpm (f') >pm(t).

Let us examine in more detail the important case of an
expansion

2/5
(2.33)

which corresponds to the adiabatic stage of the evolution of
the shock waves from supernova explosions.32 The velocity
of the medium behind the shock front (r<R) can be taken to
be40

a — 1
IT* (2.34)

in this case. When the time dependence of the degree of com-
pression is taken into account cr = 4 / ( l + 3/Ma2),
Maj = R /cs, the expression which can be found for the par-
ticle distribution function behind the shock front from Eqs.
(2.26), (2.27) and (2.32) is quite complicated. In the
simpler case of large Mach numbers, Ma, > 1, we find

°(3+d)

where
-1/50

(2.35)

(2.36)

if we assume that the diffusion coefficient has a momentum
dependence x{(p) = xl0(p/p0)

a. At a constant injection
rate (d = 0), as can be seen from expression (2.35),the den-
sity of the accelerated particles falls off rapidly, in propor-
tion to (r/R)ia, because of the adiabatic slowing. A situation
of this sort may be realized if the injected particles are galac-
tic cosmic rays with a uniform density No in the region ahead
of the shock front.82'63

If, on the other hand, the particles are injected into the
acceleration process from a thermal distribution behind the
shock front, then we would expect that the rate of their injec-
tion would fall off with the time (d<0), since the plasma
temperature behind the front, r 2 ~ M a 2 , is a decreasing
function of the time. With d = — 3, for example, the density
of accelerated particles in the perturbed region does not de-
pend on the distance r, as can be seen from expression
(2.35). This case corresponds to the scaling solution of the
transport equation which has been taken up previously.83

In the region ahead of the front, the distribution of par-
ticles with momenta po<p Spm (t) is described by expres-
sions (2.31) and (2.32). Since the magnitude of the momen-
tum pm falls off over time, according to (2.36), there will be
a significant number of particles with momenta p>pm (t)
ahead of the front, as we have already mentioned. Their dis-
tribution can be found approximately by using expressions
(2.28)-(2.30). Here it is convenient to break up the integral
over t' in expression (2.28) into two parts, from t0 to tp and
from tp to t, where the time tp is determined by the relation
xx(p) = R(tp)R{tp). We will then solve the equation for
fi(r,p, t) by an iterative method, finding84

M *>» exp («^ exp (—s i r ) '
where

f)df,

and/;, is given by (2.32). We thus see that particles with
momenta p>pm(t) fill a region with a length scale Rp
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~ (x,f)1/2, which increases more rapidly then the size of the
shock wave:/? (f)~f2/5-

The presence of runaway accelerated particles—which
lead the shock front—is an important feature, which distin-
guishes the process of acceleration by a traveling wave from
the plane case. These particles may carry off a significant
fraction of the energy, so they may be an important factor
influencing the structure and dynamics of the shock wave.

2.4. Acceleration of particles by an ensemble of shock waves

The generation of particles of the highest energies is of
particular interest in connection with the problem of the ori-
gin of the galactic cosmic rays. As was shown above, the
particles which are accelerated by an individual shock wave
of nonzero dimensions begin to escape from the vicinity of
the shock front at a rapid pace once a certain maximum
momentum pm has been attained. If there is a certain number
of other waves in the system at this time, these particles may,
as they interact with these other waves, continue to acquire
energy. Such a process of repeated acceleration is possible if
the diffusion coefficient is small (g2 > 1) behind the front of
each shock wave, as before.83'8788

Working from very general considerations we can show
that the spectrum of the particles accelerated in this manner
will be the same as at the front of an individual shock wave.
As was shown in § 1, the universal shape of the spectrum of
accelerated particles is a consequence of two conditions: 1)
When the front is intersected twice, the increment in the
momentum of particle is Ap = (4/3) (Au/v)p. 2) The prob-
ability that a particle will return to the front from the region
ahead of the front is /*, = 1, while the probability that it will
return from the region behind the front is P2 = 1 — (4w2/u).
It is totally irrelevant whether the particle interacts with the
same front each time or with different fronts. Both these
conditions will hold if the relation g2 > 1 holds and also if the
characteristic time (r e) which the particles spend in the vol-
ume V containing the shock waves is much longer than the
acceleration time ra. To see which factors determine the
characteristic acceleration time in this case, we take a more
detailed look at this process.

For definiteness we assume that the shock waves ex-
pand in accordance withthescalinglaw(2.33).Ifwe further
assume that when a certain maximum dimension Rm is
reached the shock waves dissipate (more precisely, they
cease to have any effect on the cosmic rays), and new shock
waves form in their place, we can assume that the number of
shock waves in the system, Ns, remains constant. It is a sim-
ple matter to construct a steady-state equation for the den-
sity of accelerated particles, n, averaged over space. For this
purpose we multiply transport equation (2.1) term by term
by Airp2 and integrate over the entire volume of the system
( V). In the process we allow for the circumstance that the
distribution of cosmic rays between shock waves is approxi-
mately uniform by virtue of the conditions assumed here
(g\ < l> £2 ^ I) and that this distribution is described in the
perturbed region by expression (2.35) with d = 0:

4nR\Rk
oh-i -1

1 dpn
~T7 dp (2.38)

Here re is the average time spent by the particles in the sys-
tem. This time is limited by the escape of these particles by
diffusion across the boundary of volume V. Here also,

(2.39)

is the characteristic acceleration time due to
the collective effect of all Ns shock waves; r

= v D for simplicity we

have ignored possible effects of an intersection of shock
waves.

A solution of Eq. (2.39) is the power spectrum n
~p~r. Here we would have an exponent y = (T^/T)

+ (^a/^e) if all the shock waves were identically strong (ak

a), and we would have

l ^ - l J - ' + TaTe1 (2.40)

for the momentum region where we have ra < re—the same
as for the spectrum generated by an individual shock wave.

As the modulation parameter g2 is reduced, the distri-
bution of particles in the interior regions of the shock waves
becomes progressively more nearly uniform, in contrast
with (2.35). It is not difficult to see that this tendency leads
to a relative increase in the role of adiabatic slowing and thus
a decrease in the average acceleration rate. In the limiting
caseg2 = 0, for example, we have (Vuf) = 0, and there will
be no acceleration at all. Since there is also a slight modula-
tion of the distribution of particles in the interior region of a
shock wave in the case g2 41, there will also be some accel-
eration effect in this case. The effect will be essentially the
same as that studied in Refs. 89-91, where the acceleration
of particles by a supersonic turbulence was examined. For
that acceleration process the acceleration rate l / r a is a small
quantity of second order in the parameter R /v and signifi-
cantly lower in the case under discussion here—specifically
because of the weak modulation.

The maximum momentum of the particles accelerated
by the collective mechanism,

p m = min {pml, pmi}, g,. (pml) = 1, Te (jDm2) = Ta t

(2.41)

is set by either an increase in the rate at which particles es-
cape from the system (a decrease in the time spent in the
system, re, with increasing momentum) or a weakening of
the modulation by the shock waves of particles with large
momenta. A collective acceleration of particles will be im-
portant in those cases in which this value of pm turns out to
be greater than the maximum momentum of the particles
generated by an individual shock wave.

3. NONLINEAR MODELS OF FERMI ACCELERATION

The hard spectrum of the particles accelerated by a
strong shock wave is the reason why the energy calculated in
the linear approximation,

1 ill

E=An\ ep2fdp

(E is the kinetic energy of the particle), which is an increas-
ing function of the cutoff momentum pm, may formally ex-
ceed the total internal energy of the plasma. This circum-
stance corresponds to the fact that the accelerated particles,
which have an anisotropic distribution in the region ahead of
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the shock front may excite MHD waves. The effect would be
to increase the scattering properties of the medium and ulti-
mately to lead to an increase in the maximum momentum
pm. All these arguments indicate that a systematic theory for
Fermi acceleration should be definitely nonlinear. It should
include the solution of the problem of a self-consistent plas-
ma turbulence, and it should incorporate the modification of
the structure of the shock wave by the pressure of the accel-
erated particles. This modification will in turn influence the
acceleration process itself. No less important is the question
of the rate at which plasma particles are injected into the
acceleration process.

At present we are far from having a complete systematic
solution of these problems, because of their complexity. The
progress which has been made in this direction has resulted
primarily from the development of models which incorpo-
rate one aspect or another of this nonlinear problem at a
semiphenomenological level. Nevertheless, these models
have been useful in obtaining several important results of
fundamental value.

3.1. MHD structure of a shock wave in a gas with cosmic rays

The MHD description of the structure of a shock wave
incorporating the effect of accelerated particles is based on
the system of ordinary MHD equations which include, along
with the quantities characterizing the state of the thermal
plasma (the gas), macroscopic characteristics of the accel-
erated particles (the cosmic rays), specifically, the pressure

Pc = -T-\p*»fdp

the energy flux

and the pressure (Pw) and the energy flux (Fw ) of the plas-
ma turbulence which may be generated by cosmic-ray parti-
cles near the shock front. In the one-dimensional case of a
plane shock wave which is propagating along the field lines
of a regular magnetic field B, opposite the x axis, the MHD
equations in the rest frame of the shock front are30'92"96

dpu
dx = 0,

(3.1)

wherep, u,pg, and yg are the density, velocity, pressure, and
adiabatic index of the gas; and Eg, Ec, and Ew are the inter-
nal-energy density of the gas, that of the cosmic rays, and
that of the turbulence.

Equations relating the pressure and the energy flux of
the cosmic rays are found through a term-by-term integra-
tion of transport equation (2.1) over Awep2Ap. Here we use
expression (2.2) for the first moment of the distribution
function:

T o - l
">Pe J -^—

Y c - 1 dx (3.2)

where

Q = in [ eQp2 dp

is the density of the energy source of the cosmic rays; the
effective diffusion coefficient of the cosmic rays is given by

and is assumed in this theory to be a given positive-definite
constant; and w is the velocity of the scattering centers,
which has previously been assumed equal to the plasma ve-
locity u in all cases. If the primary type of plasma turbulence
is one consisting of Alfven waves, which are excited as the
result of an anisotropic distribution of cosmic rays ahead of
the shock front,3132 the velocity of the scattering centers
will instead be97 u — ca. Equations for the pressure P w

= SB 2/Sir and the energy flux of the Alfven waves have been
found in the quasilinear theory9495'98":

dt U dx - = U dx — / ' ,

(3.3)

where SB is the amplitude of the Alfven waves, and L is the
density of the energy sink which describes the damping of
the Alfven waves.

The comparatively simple form of MHD equations
(3.1)—(3.3) is a consequence of the assumption that the par-
ticles of the gas and the cosmic rays have quite distinct ener-
gies. Specifically because the cosmic-ray particles have ener-
gies much higher than the thermal particles we can ignore
their contribution to the density/?. For the same reason, even
if the injection of the cosmic rays is from the thermal plasma,
the energy source Q is usually ignored. In the steady state,
Eqs. (3.1) reflect the conservation of the fluxes of mass,
momentum, and energy, respectively, and are actually a gen-
eralization of the Rankine-Hugoniot relations:

pu = const,
pu*+/>g+Pc w = const,

, = const. (3.4)

The limiting case in which the plasma ahead of the front
is cold [Pgi =Pg ( — oo X Pcl ] is a particularly graphic case
for tracing the nature of the modification of a shock wave by
cosmic rays. If we ignore the dynamics of the Alfven turbu-
lence, it turns out that we can derive a steady-state solution
ofEqs. (3.1) and (3.2) in analytic form. It can be shown that
these equations reduce to an equation for the velocity:

The solution of this equation,9

th- (3.6)
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describes a smooth transition from the value K( — oo) = «,
to u{ oo) = u2 = u,/a over a length scale L~x/uu where

Tez-j., 2 I"1

a = Vc

is the degree of compression of the matter at the shock front,
and Ma, = piU2

t/ycPc is the Mach number. All the internal
energy of the plasma behind the shock front is that of the
cosmic rays; Pc2 = P2 = Pc] [ 1 4- Ma2 yc (a — 1 )/a ] .

In the general case of arbitrary values of the parameters
of the medium ahead of the front (Pgl, Pcl, and Ma, ),92"3

and when we take the dynamics of the turbulent field SB into
account,94'95 we find that the structure of the shock wave is
more complex. In addition to the region in which all the
parameters vary smoothly over a length scale L ~ x/u, (the
prefront), there is a thermal front. As in the ordinary hydro-
dynamic theory which ignores viscosity and thermal con-
ductivity,19'20 the thermal front is a discontinuity in the be-
havior of the gas parameters"/?, u, and Pg as functions of x.
Their values on the two sides of the discontinuity are related
by Rankine-Hugoniot relations, (3.4), in which the param-
eters of the cosmic rays are everywhere continuous. In con-
trast with (3.5), the equation for u to which system (3.1 ) -
(3.3) reduces in the steady state is given in the general case
by94

du (Ul —u)<P(u) , , - .

where the function <I> depends on the parameters of the medi-
um ahead of the shock front: Pgl, Pcl, Pwl, and Ma,.
Whether the structure of the shock wave has a discontin-
uity—a thermal front—depends on the relation between u „
< u,—the root of the equation <t>(«) = 0 —and u., the val-
ue at which the cosmic-ray pressure reaches a maximum and
at which the derivative dPc /dw vanishes. The meaning of the
quantity u. is also determined by the circumstance that the
cosmic-ray pressure Pc(u) satisfies the equation94

where

J-
plays the role of the sound velocity when there is an Alfven
turbulence in the medium.100 At the point «., where the
pressure Pc reaches a maximum, the plasma velocity u is
comparable to the local sound velocity. If u. < u ^ , there is

~ - - " Pc

FIG. 4. Schematic diagrams of the cases of (a) a smooth and (b) a mixed
structure of a shock wave modified by cosmic-ray pressure.

no thermal front, and the shock wave has a smooth struc-
ture: a smooth transition from the value u, to u2 = u x over a
distance L~x/u{. The gas flow behind the shock front re-
mains supersonic: u2>cs. In the case «, >M0O , a thermal
front necessarily appears in the structure of the shock wave;
it is a jump in the function u(x) at some point x0 from the
value us>u. to u2<uao. Figure 4 shows schematic dia-
grams of the cases of smooth and mixed structures of the
shock wave.

The relations between MS and u „ and between us and u2

depend on the parameters K = Pcl_(Pci + P%x)"~' and Ma,
and on the nature of the function L, which determines the
damping of the Alfven waves. An important point is that the
function L actually determines the degree of validity of Eqs.
(3.3): If the damping is slight, the amplitude of the Alfven
waves in the prefront region may reach large values
SB/Bkl. If so, the quasilinear theory used in deriving Eqs.
(3.3) would become inapplicable.

Since the nonlinear theory of Alfven waves is far from
completion, it is interesting to note the studies of the MHD
structure of a shock wave which have been carried out for the
case of strong damping, in which the amplitude of the Alfven
waves is limited to a level SB /B < 1 and in which a balance
between the generation rate and the damping rate,
L = cadPc/dx, is struck at each point (in a case with shock
waves which are not too strong, with Mach numbers
Ma, S 10, nonlinear Landau damping limits the growth of
the turbulence at the level SB/BSl; (Ref. 90). The work
performed by the pressure gradient of the cosmic rays is ex-
pended in this case on heating the gas. Consequently, the gas
may be heated substantially not only as it crosses the thermal
front but also in the prefront region, where its state is de-
scribed by the equation94

vB-i
up
V g - 1 i x pvg

The additional heating of the gas lowers the acceleration
efficiency, i.e., lowers the fraction of the energy which is
transferred to the cosmic-ray particles. Nevertheless, the ac-
celeration efficiency remains quite high, as is shown by nu-
merical solutions of Eqs. (3.1)—(3.3). This high efficiency
can be seen in the example in Fig. 5, which shows results
of calculations95 of a, Pg2(Pc\ + P

g\
and

FIG. 5. The gas pressure Pg2, the cosmic-ray pressure Pcl, and the degree
of compression a behind a shock front as functions of the Mach number
Ma, (MT) (Ref. 95).
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Pc2(Pa +Pg\ +Pil*])~l for the case with K = 0.5 and
P= 8irPgl /B

2 = 1. It can be seen from this figure that more
than half of the pressure behind the shock front is that of
accelerated particles when the Mach numbers are £ 10. Cal-
culations were carried out for y = 4/3, so the degree of com-
pression, a=p2/pi, approaches the limiting value a = 7 at
large Mach numbers.

The results of the calculations of Refs. 95 and 96, which
are shown in Fig. 6 as plots of K as a function of Ma, for
various values of the parameter /3, show the particular values
of the parameters K and Ma, for which there is a thermal
front [the region under the A:(Ma,) curve] in the structure
of the shock wave and for which values there is no such front
[ the region above the curve of k (Ma,) ]. With K = 0.5 and
/3 = 1, for example, a solution with a thermal front prevails
at essentially all Mach numbers under 50.

Analysis shows102 that when viscosity effects are taken
into account the discontinuous solutions of the system of
MHD equations are found to be continuous solutions, in
which the actual thickness of the thermal front is determined
by the viscosity coefficients.

The MHD approach, which can be generalized to the
case of a magnetic field of arbitrary orientation,103 has thus
revealed several important aspects of the acceleration of cos-
mic rays by shock waves. This approach has demonstrated
that a substantial part (in some cases all) of the internal
energy of the plasma in shock waves must be in the cosmic
rays. This approach has also revealed features of the process
by which Alfven waves are excited and damped near a shock
front and their effect on the acceleration efficiency.

On the other hand, the MHD approach has some draw-
backs, as has been mentioned in the literature. This theory
contains no information about the spectrum of the cosmic
rays, /(/>). Furthermore—a particularly serious matter—it
does not contain such an important parameter as the cutoff
momentum pm This theory does answer the question of
what fraction of the energy in a shock wave is carried by the
cosmic rays, but it is of course incapable of resolving the
question of whether this particular fraction would be possi-
ble at a specific finite value of/>m. The importance of this
matter (which was pointed out, in particular, by Bulanov
and Sokolov104) can be seen especially clearly in the follow-
ing example. Magnetohydrodynamic calculations92 show

FIG. 6. Curves of K(M{), which separate regions in the plane of
K= P,.[/{Pti + Pci) and M, which correspond to a smooth structure
[K>K(MI)] and a discontinuous structure [K<K(Mt)] of shock
waves95 (AJf, is the number Ma,).

that at sufficiently large Mach numbers Ma, the pressure has
a finite value at the shock front even if there are no cosmic
rays ahead of the shock wave (/*,., = 0). The meaning of this
solution is that a vanishingly small number of cosmic rays
may contain a finite amount of energy because of their hard
spectrum, which stretches up to infinity. However, it is clear
that a situation of this sort could not be realized at an arbi-
trarily large but finite cutoff momentumpm. For this reason,
the question of the efficiency of Fermi acceleration under the
conditions prevailing in real systems, with a finite pm, must
be studied by approaches in which this quantity is explicitly
present.

3.2. Kinetic model of Fermi acceleration

The collective nature of the processes by which parti-
cles are scattered in a collisionless plasma is the reason why
the scattering of fast particles is a quasielastic process. The
elementary event of scattering in the frame of reference mov-
ing with the scattering center occurs in an elastic manner.
The physical reason for this circumstance is that the scatter-
ing center is a conglomerate of a large number of thermal
particles, so the change in its energy in the course of the
scattering is negligibly small.

In order to describe by a common approach not only the
acceleration process but also the process in which the plasma
particles are heated at the thermal front, followed by the
injection of some fraction of these particles into the accelera-
tion regime, we can assume that the nature of the motion of
the thermal particles in a collisionless plasma is the same as
that of the fast particles.105'109 Although we could hardly
claim anything approaching a rigorous basis for this as-
sumption, it does allow an internally noncontradictory mod-
eling of the process of Fermi acceleration in the case in which
the injection occurs directly from the thermal distribution of
particles, without a supplemental acceleration of these parti-
cles. For the sake of simplicity we can assume that the parti-
cle scattering events occur isotropically. In this case the
propagation of plasma particles is described by the single
parameter r: the mean time between scattering events. This
quantity is related directly to the level of plasma turbulence.
Restricting the discussion (as before) to the case in which
the regular magnetic field is perpendicular to the front, we
can write a Boltzmann equation for the distribution of non-
relativistic particles (v-4c) in the one-dimensional, steady-
state case:

v\i.-g- =• S t f, ( J.O)

where fi is the cosine of the angle between the particle veloc-
ity vector v and the x axis. Here we are ignoring possible
charge-separation effects in the plasma, so the self-consis-
tent structure of the shock wave is determined entirely by the
pressure of the ions of the predominant species—protons in a
space plasma. Using these assumptions regarding the nature
of the scattering events, and ignoring the random motions of
the scattering centers, which have a definite velocity u (x) at
each point x, we can write a collision integral in the form

St /' = [</'> 8 (pm-p')-f]-r\ (3.9)

where the primes mean the local frame of reference, moving
with the scattering centers, and the angle brackets mean an
average over fi:
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Collision integral (3.9) shows that upon reaching the mo-
mentum pm the particles leave the system. Transforming to
the local frame of reference (r' = r, v' = v — u) on the left
side of Eq. (3.8), and dropping the primes, we
nnd105,106,112,113

~P'-l^ • (3.10)

Collision integral (3.9) generally does not satisfy the
necessary condition that the resultant momentum and the
energy of the particles be conserved in each scattering event.
It is not difficult to see that these conditions hold if105106

(3.11)

This condition, as a supplement to kinetic equation (3.10),
serves to find the self-consistent velocity profile u{x).

Since the fast particles have a diffusion coefficient
which increases with the energy,1'2 x = rv2'3, we will take a
look at the case of a constant value of r, which is the simplest
case from the computational standpoint. In this case, self-
consistency condition (3.11) is equivalent to the vanishing
of the flux density of matter,/

Multiplying Eq. (3.\0) by 2wmp2,2tr(p{i + m/u)p2 and
irm [ (vfi + fi)2 + v1 (1 — fi2) ] in succession; integrating
over p, ft, and x, where m is the mass of the ions of the pre-
dominant species); and using (3.11), we find the integral
relations

pu = p^j —

= piu*, + Pt-qm,

(3.12)

(3.13)

(3.14)

where

P ---

oo

4nm ( j /p2 dp) ,

are the fluxes of matter, momentum, and energy, respective-
ly, which are carried out of the system by particles with a
momentum p>pm.

The adiabatic index y in this nonrelativistic case must
be set equal to 5/3. Since the thermal plasma and the acceler-
ated particles are described by the same distribution func-
tion in this case, in contrast with the situation in a hydrody-
namic description, we find that Eqs. (3.12)—(3.14) are the
same as MHD equations (3.4). The only distinction is that
in the MHD equations we usey = 0 and Pxx = P = Pg + Pc,
since the anisotropy of the thermal particles is ignored, the
cosmic-ray pressure is assumed isotropic, and the contribu-
tion of the cosmic rays to the mass balance equation is as-
sumed small because of the insignificant number of cosmic
rays.

According to (3.12)—(3.14), we thus have a shock
wave with emission. A model of this sort is completely ade-
quate for treating the cases of real waves of finite dimensions,
which we discussed above, and in which the accelerated par-
ticles may rapidly leave the vicinity of the shock wave once
they attain a certain momentum pm. We also note that Eqs.
(3.12)—(3.14) are balance equations and are general in na-
ture. Their validity is totally independent of the degree of
validity of the model approach which we are outlining here
and which is based on the use of a collision integral in the
form in (3.9). Only the specific form of the quantities j m ,
qm, and Fm is an attribute of this model.

As in any wave with emission, the degree of compres-
sion a is determined by not only the Mach number Ma, but
also the fluxes j m 2 , qm2, and Fm2. Setting x = oo in Eqs.
(3.12)-(3.14),we find the following expression for the de-
gree of compression a= ul/u2 in the case of large cutoff
momenta,pm ^>muu in which the mass fluxy'm and the mo-
mentum flux qm carried off by the particles can be ig-
nored107-110-111'85:

F —• 2nm
oo

j /p» dp)

are the density of matter, a component of the pressure ten-
sor, and the densities of the directed flux of matter and of
energy, respectively. In addition,

Pi"?
(Vi-DMaf

(3.15)

This expression holds in the general case of arbitrary values
of Y\ and y2 by virtue of the general applicability of Eqs.
(3.14), which we have just noted.

For a numerical study of the structure of the shock
wave on the basis of Eq. (3.10), it is convenient to reduce
this equation to the integral equation112113
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f(x, p, u )=

x6

exp l — (x—

(3.16)

where p . = wCv2 + 2vAu/x + AM2)1 / 2 , AM = u(x) — u(x'),
and/(x,p) = (f(x,p,n)). The plasma velocity profile in this
expression is found from Eq. (3.13):

u (x) = U l - [Pxx (x) - P J (Plux) (3.17)

where we are ignoring the momentum loss qm

~Piu\{mUi/pm), which is small, qm </?,M2, if the cutoff
momentum is sufficiently large: pm >WM,. Specifying the
Mach number Ma,, specifying a Maxwellian distribution
function/, (p) corresponding to a pressure P, for the plasma
particles ahead of the shock front, and solving Eq. (3.16)
jointly with (3.15) and (3.17) by iterative method, we can
find a self-consistent velocity profile u(x) and a distribution
function/(*,/?, //) (Refs. 112 and 113). A model similar in
physical content has been implemented by the Monte Carlo
method.107-109-111114115

Some characteristic features of the self-consistent struc-
ture of a shock wave are illustrated by Fig. 7, which shows
results calculated112113116 on the velocity profile u(x) and
the particle density n2(p) = 4ffp2/2(/?) of the plasma behind
the shock front of a wave with a fixed degree of compression
a = 3.5. This value is realized at a Mach number Ma, = 4.58
if we ignore the energy flux (Fm2) carried off by particles
escaping from the system. As in the case of the MHD de-
scription, the structure of the shock wave is characterized by
two length scales. The extended region of a smooth variation
in the velocity u(x), over a distance L~x(pm)/«,—thepre-
front—stems from the pressure of the fast accelerated parti-

cles with velocities v > w,. These particles penetrate in a dif-
fusive process into the incoming flow and slow it down.1O5122

The extent to which the wave is modified by the pressure of
the fast particles, which might be characterized by the plas-
ma velocity drop and the prefront («, — «s ) /«„ and by the
length L, increases with increasing cutoff momentum pm.
This tendency prevents an extreme increase in the pressure
of the accelerated particles and is a factor which regulates
the amount of energy which is expended on the acceleration
of these particles.

In addition to the prefront there is a region in which the
velocity u(x) varies sharply: a thermal front. In contrast
with the MHD case, the thermal front here has a nonzero
thickness / ~ r « , . Most of the plasma particles are therma-
lized over this thickness.

The self-consistent spectrum of accelerated particles,
n2(p), no longer has a universal shape over the entire mo-
mentum range mu, 5/></7m. The reason for this nature of the
spectrum is that particles with momenta/? <pm penetrate a
distance x{p)~x{p)/ul<L into the prefront region. They
thus "feel" the velocity drop in the shock wave,
AM = u{x(p)) — u2. Consequently, if the spectrum of accel-
erated particles is again written in a power-law form,
n ~p ~~y, the exponent will be a function of the momentum:
y(p) = (<TP + 2)/(o-p — 1), wherecrp = u(x(p))/u2\sthe
effective degree of compression for particles with momen-
tum p. Only the very end of the spectrum (p~pm) has a
shape which is approximately universal.

The density of accelerated particles, «2 (p), falls off with
increasing cutoff momentum pm. The energy density of these
particles,

(p) dp

FIG. 7. a: Self-consistent profile of the plasma velocity in a shock wave,
u(x). b: Spectrum of plasma particles behind the shock front. 1—Cutoff
momentum/),,, = 13 mu,; 2—pm = 21 mu,; Dashed lines—Non-self-con-
sistent calculation of Z. The dashed line in part b corresponds to/>~2 2 .

remains approximately constant at about half the total inter-
nal energy of the plasma.

The distribution of impurity ions, whose contribution
to the total pressure in the plasma is small because their
density is small, can be found in the linear approximation
with the velocity profile u (x) determined by the pressure of
the ions of the predominant species. Since the mean free path
of the fast particles with respect to scattering, A = TV, is an
increasing function of the rigidity R =p/Ze (Ze is the ion
charge), ions with a large ratio A /Z (of the atomic weight A
to the atomic number Z) will subsequently penetrate into
the prefront region. As a result, their spectrum, plotted with
the energy per nucleon, e/A, as the independent variable,
will become flatter. As a further consequence, as the shock
wave propagates through a plasma in which the impurity
ions are not fully ionized the spectrum of the accelerated
particles will become enriched in the nuclei of heavy ele-
ments.107108114117 This is what is usually seen experimental-
ly.

Since the amount of energy which is expended on the
acceleration and thus the extent of the modification of the
shock waves depend on the rate at which thermal particles
are injected into the acceleration process, it is worthwhile to
study this dependence. The reason is that the injection rate
incorporated in this model (and according to which about
1 % of the particles are accelerated) naturally does not re-
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fleet the entire variety of possibilities which may actually
exist.

The extent to which a shock wave is modified by the
accelerated particles (cosmic rays) can be studied as a func-
tion of the prespecified rate at which these particles are in-
jected at the thermal front85 by working from the diffusive
transport equation for the cosmic rays, (2.1). The validity of
this equation in this case results from the fairly large dimen-
sions of the prefront.118105106

Solving this nonlinear problem becomes a substantially
simpler process if the spatial distribution of the cosmic rays
is described in the simplified form110-123-'25:

(x, P) = /, (?) e ix + x (3.18)

where x(p) > 0 is the distance over which cosmic rays with
momentum p penetrate from the thermal front into the pre-
front region. The meaning of this approximation can be out-
lined as follows: At each point in the prefront x < 0, the dy-
namics of the medium is determined primarily by the
pressure of the cosmic rays from a narrow interval of mo-
menta near p(x), in which we have x (p)zz L(p) = \x\. Spe-
cifically, cosmic rays with smaller momenta, for which the
diffusion length is small (L < \x\), do not contribute to the
cosmic-ray pressure at the point x. [Here we are assuming
that the diffusion coefficient of the cosmic rays x(p), and
thus the diffusion length L ~ x/u, are increasing functions of
the momentum.] The contribution of particles with large
momenta, for which the relation L(p) > \x\, can also be ig-
nored since the magnitude of the gradient of their pressure at
the point x is far lower than that for particles with
L(p) = \x\. The limiting expression of this "partitioning" is
Eq. (3.18), which shows that at each point x in the prefront
the cosmic-ray pressure gradient results from particles
which have a definite momentump(x). Analysis shows that
this approximation does not lead to any substantial errors if
the diffusion coefficient of the cosmic rays increases rapidly
with the energy.

If the cutoff energy em is relativistic (£m >mc2), the
effective value of the adiabatic index y2 in expression (3.15)
for the degree of compression a is determined by the relation
between the pressure of the relativistic particles, P[T

2'» and
that of the nonrelativistic particles, P2 — Pin, behind the
shock front:

(3.19)

Here we have allowed for the circumstance that the adiaba-
tic indices are 5/3 and 4/3 for the nonrelativistic and relativ-
istic particles, respectively.

Since the diffusion approximation is valid for describ-
ing only sufficiently fast particles, the distribution function
of the cosmic rays at some minimum energy es must be
joined with a thermal distribution. The joining procedure is
equivalent to specifying the rate at which the particles are
injected into the acceleration process at the thermal front. It
is clear from general considerations that the energy of the
injected particles, es, should be a few times the characteristic
thermal energy of the plasma particles behind the shock
front. It can be taken to be mu\, where us is that value of the
plasma velocity which separates the prefront ( « , > « > M S )

from the thermal front (US>M>M2)-

The steady-state, one-dimensional transport equation

for the cosmic rays can be used jointly with integral relations
(3.12)—(3.14) (for the prefront region, the pressure Pxx

= P = Pc + Pg can be assumed to be isotropic, while the
pressure of the thermal plasma, P%, can be assumed to vary
in accordance with the adiabatic law), expression (3.15),
and relations (3.18) and (3.19) to determine a self-consis-
tent profile of the plasma velocity in the prefront
[« ,>M(X)>M S ], the spectrum of the cosmic rays, and the
fraction of the internal energy in the shock wave which is the
energy of the accelerated particles (Pc2 /P2) at given values
of the Mach number Ma,, the velocity of the shock front
(u,), and the injection rate.

The interrelationship between the acceleration effi-
ciency and the injection rate is illustrated by Fig. 8, which
shows the pressure of the relativistic accelerated protons,
P l'2\ behind the front of a strong shock wave as a function of
the pressure of the injected particles, £P lnj [the partial pres-
sure $P = dP /d lg e is related to the distribution function by
& = (4w/3)p3ef)], for Ma, = 10, «, = 3 10K cm/s, and
cutoff energies of 10'2 and 10'5 e V (Ref. 85).Weseethatthe
pressure P^ increases rapidly with increasing injection
pressure, and at £Pini > 10~4/3,«2 the relativistic particles
are responsible for a substantial fraction of the total pres-
sure. There are accordingly grounds for speaking in terms of
two injection regimes: a "saturation" regime and a "nonsat-
uration" regime. The saturation regime refers to the injec-
tion which results in the transfer of a substantial fraction
( £: 10%) of the energy in the shock wave to accelerated
particles. In the case above, the saturation regime corre-
sponds to a pressure of the injected particles which is greater
than S?*nj = 10"4/9i"2- Although the definition of :^*nj is
slightly arbitrary, the introduction of this quantity does
make it possible to formulate in a quantitative way a mini-
mum requirement which an injection mechanism must meet
if the Fermi acceleration is to be highly efficient. It is impor-
tant to note that the quantity & *nj depends only weakly on
the cutoff energy em, as can be seen from Fig. 8. This circum-
stance is a manifestation of the self-regulating properties of
the acceleration mechanism.

The shape of the cosmic-ray spectrum is shown in Fig.
9. This figure shows the exponent of the proton spectrum,
y = — dlnn/dln/j, at energies in the relativistic region, for
protons which have been accelerated by shock waves with
various Mach numbers.111 The injection rate was deter-
mined by the circumstance that the spectrum of the acceler-

FIG. 8. The pressure (P'.") of the relativistic particles accelerated by a
strong shock wave (Ma, = 10) as a function of the partial pressure of the
injected particles.
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FIG. 9. Exponent in the differential energy spectrum of the accelerated
protons, y, as a function of the kinetic energy s for shock waves with
various Mach numbers Ma, (Ref. 111).

ated particles was joined with the spectrum of the thermal
particles calculated from Eq. (3.8). This situation corre-
sponds to a partial pressure 8? inj x 10 ~ 2/j t wf of the injected
particles,'l6 so that we are in the saturation injection regime.
It can be seen from this figure that for Mach numbers
Ma, > 4, which correspond to a degree of compression a > 4,
the exponent of the spectrum depends strongly on the ener-
gy. The spectrum is hardest at the highest energies, e~em,
where we have y < 2. The partial pressure of the cosmic rays,
& 2, is characterized by a minimum in the region me2 <e
< em in this case.

Moderate Mach numbers Ma, s; 3 correspond, as Fig. 9
shows, to an essentially constant spectral exponent over the
entire energy range e> 10 GeV. The acceleration efficiency
increases with increasing Mach number; at Ma, = 10 the
relativistic accelerated particles contain half the total inter-
nal pressure behind the shock front. We can thus draw the
important conclusion that the Fermi acceleration process is
characterized by a high efficiency and by self-regulating
properties—in the case of strong shock waves, a change in
the injection rate over a broad range causes no significant
change in the amount of energy which is transferred to the
accelerated particles.

The self-consistent spectrum of cosmic rays and the
modified plasma velocity profile «(x) are established as the
result of a competition among three physical effects. On the
one hand, the cosmic rays produced by the shock wave in-
crease the effective viscosity of the medium, ultimately in-
creasing the thickness of the shock front. A thickening of the
front reduces the efficiency of the acceleration of cosmic
rays, as was shown in Subsection 2.1. On the other hand, the
presence of relativistic particles among the cosmic rays re-
duces the effective adiabatic index of the medium and there-
by increases the degree of compression of matter in the shock
wave. The spectrum of the cosmic rays becomes harder, and
the acceleration becomes more efficient. The same conse-
quences result from the removal of energy from the system
by the particles which reach the limiting energy em.

In summary, the existing Fermi-acceleration models
which incorporate the reaction of the accelerated cosmic
rays on the structure of the shock wave are based on an ex-
tremely simple form of the description of the interaction of
the cosmic rays with the medium. The problem of generating
a detailed description of the turbulence near the shock front,

which ultimately determines the nature of the motion of the
cosmic rays, is thus relegated to a secondary place in these
models. A microscopic description of the self-consistent tur-
bulence which is generated by the cosmic-ray particles ahead
of the shock front reveals the multifaceted nature of this
problem126"129 even in the quasilinear approximation. When
the results of these two approaches will be combined in an
organic way, we can expect substantial progress in research
on the modification of a shock wave by the cosmic rays
which it accelerates.

Nevertheless, we would like to emphasize that from this
point of view the simplified nonlinear models of Fermi accel-
eration have revealed several important aspects of the accel-
eration process in its nonlinear stage which depend only
slightly on the fine details of the interaction of the cosmic
rays with the medium. We are thinking primarily of the na-
ture of the modification of a plasma flow by the cosmic-ray
pressure at various injection rates, the self-regulating prop-
erty of the Fermi-acceleration process, and the particular
features of the chemical composition of the accelerated par-
ticles. It is also important to emphasize that experiments can
be carried out today to test theoretical predictions of this
sort.

4. COSMIC RAYS AT SHOCK FRONTS

The discovery of this efficient particle-acceleration pro-
cess—Fermi acceleration by shock waves—was a powerful
stimulus to the development of theoretical research on var-
ious aspects of this process. Although the models which have
recently been developed for this process contain some phe-
nomenological elements, they do make quantitative predic-
tions regarding this very complex problem. The extensive
results available from experiments which have been carried
out in interplanetary space make it possible to test the theo-
retical ideas.

4.1. Acceleration of cosmic rays by interplanetary shock
waves

The numerous measurements which have been carried
out in interplanetary space show that an increase in the in-
tensity of particles with superthermal energies is essentially
always observed near the fronts of shock waves. Experi-
ments show that the spectrum of accelerated particles near a
shock front can usually be described by a power law, and the
particle intensity increases exponentially toward the front.
Both these features are characteristic of the Fermi accelera-
tion process, as we showed above. Exceptional cases are the
increases in the intensity of fast particles which are observed
near the fronts of quasiperpendicular shock waves. These
events are characterized by a soft spectrum and a large an-
isotropy. They are caused by an acceleration of particles by
the electric field130-25 E = - [uB]/c.

Particularly extensive measurements have been carried
out near the bow shock which arises as the supersonic
streams of solar wind flow around the earth's magneto-
sphere.131 A detailed comparison of the theory of Fermi ac-
celeration derived for this case taking into account the shock
wave geometry 107,109,120,132 with experimental results show
that the set of observational facts—the spectrum of acceler-
ated particles, their angular distribution, their spatial distri-
bution, and the extent to which the shock wave is modified—
is described well by the theory.
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Analysis of several experiments has shown69133 136 that
the spectra of the accelerated particles which are observed
near the fronts of interplanetary shock waves formed by
chromospheric flares at the sun have shapes corresponding
to those predicted by the theory of Fermi acceleration.
Further evidence for the validity of the theory comes from a
comparison of calculations137 of the spectral and spatial
characteristics of the accelerated particles and of the MHD
turbulence which they produce with experimental data. A
typical proton spectrum measured at the front of an inter-
planetary shock wave138 is shown in Fig. 10, which is taken
from Ref. I l l ; this figure is a plot of the differential intensity
oVAte as a function of the energy e. This experiment shows
that ~\% of the particles are subjected to acceleration. Al-
though the maximum energy of the accelerated particles is
low, these particles have about 25% of the total internal en-
ergy of the plasma. The smooth transition from the thermal
part of the spectrum (e < 200 eV) to the spectrum of acceler-
ated particles (e>200 eV) indicates that the acceleration
process begins directly from a thermal distribution. Specifi-
cally this principle is embodied in the kinetic model of Fermi
acceleration.1O5-116 A comparison of calculations carried out
on the basis of this model111 with experimental results re-
veals good agreement. This agreement indicates that al-
though the structural description of the thermal front of-
fered by the kinetic model is very schematic this model not
only gives a correct description of the Fermi-acceleration
process but also reflects the general features of the most typi-
cal aspects of the process by which particles are injected into
the acceleration regime.

Fermi acceleration is also invoked as a possible mecha-
nism for the generation of solar cosmic rays, which are emit-
ted during solar chromospheric flares.98139"141 Although
there are only limited possibilities for a detailed comparison
of theory with experiment in this area, many features of the
spectrum of solar cosmic rays can be described by the theory
of Fermi acceleration.141

In summary, a detailed comparison of the theory with
measurements carried out in interplanetary space shows
that the mechanism of Fermi acceleration offers a good ex-

planation for the generation of fast particles at the fronts of
shock waves. The basic features which follow from this com-
parison—in particular—the high efficiency of the Fermi-ac-
celeration process—can be utilized in problems involving
the application of this process to remote objects, for which
direct measurements are presently impossible.

4.2. Low-energy galactic cosmic rays

The origin of high-energy galactic cosmic rays, with e Z
1 GeV/nucleon, which carry most of the total energy of
these cosmic rays, is not the only unresolved question; the
origin of the low-energy part of the spectrum of galactic cos-
mic rays which is observed near the earth, with e<20 MeV/
nucleon, is also unknown. The suggestions of both galactic
and solar origins for these particles run into significant diffi-
culties (see Ref. 1 and the bibliography there). The idea that
this part of the galactic cosmic rays might be generated in an
interaction of the solar wind with the interstellar medium
dates back a long way. 142~144 Since this region should contain
a strong shock wave at a distance R = 50-100 AU from the
sun, according to the present understanding,52'78 the idea of a
Fermi acceleration of background galactic cosmic rays is
extremely attractive.145146 The reason for this attraction is
that estimates show145 that particles could be accelerated to
energies e~ 10 MeV in this region. The analytic solution of
this problem which we discussed back in Subsection 2.3
showed that particles which are moving away from a shock
front, where they are accelerated, into the inner part of the
heliosphere are subject to a modulating effect of the solar
wind, in particular, an adiabatic slowing. Since the extent of
this effect depends strongly on the particle diffusion coeffi-
cient, the only way to determine the role played by Fermi
acceleration in the generation of low-energy galactic cosmic
rays is to work from diffusion coefficients with values which
do not go beyond the limits established by experiments.

The results of a numerical solution of steady-state
transport equation (2.20) for a spherically symmetric model
of the solar wind, u(r<R) =uvu(r>R) = («,/4)(/J /r)2,
are shown in Fig. 11 as a plot of the expected proton intensity
dJ/de at the earth's orbit (r = 1 AU) as a function of the
energy e (Refs. 147 and 148). The value u, = 500 km/s was
used for the velocity of the solar wind, and the value R = 50
AU was used for the radius of the shock wave. The rate of
injection of protons with an energy E0 = pi/2m = 1 keV at
the shock front was chosen to make the energy density of the
accelerated particles,

E

equal to 5% of the total internal energy of the plasma behind
the shock front, E2 = (9/S)plu

2
1. In this case, the linear ap-

proximation can be used. The diffusion coefficient which
was used,

FIG. 10. Differential intensity of ions at the front of the interplanetary
shock wave on 27 August 1978, with the kinetic energy as the independent
variable."1 Points—Experimental values"8; line—calculated from a ki-
netic model."1

x4(r, p)- 6,5- lO*2 (^V)° ' 3 ( i - ) 0 ' "cmVs (x*<*i),

has a spatial profile which does not contradict the results of
observations taken in the region 1 AU<r<6AU (Ref. 149),
although the values of x] and r = 1 AU for energies e S 10
MeV are slightly greater than the values observed in the
quiet solar wind.'50
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FIG. 11. Differential intensity of galactic cosmic rays near the earth's
orbit, with the kinetic energy per nucleon as the independent variable.
Points—Calculationl47 of the intensity of protons accelerated by a spheri-
cal shock wave of radius R = 50 AU; all other symbols—experimental
values obtained during periods quiet in terms of solar activity.'"

Shown for comparison in the same figure are the results
of measurements of the intensity of galactic cosmic rays dur-
ing periods quiet in terms of solar activity, as summarized in
Ref. 151. Although the calculation was based on a highly
simplified model of the solar wind, the relationship between
theory and experiment here permits the conclusion that the
Fermi acceleration of particles by a standing shock wave
bounding the heliosphere can provide the observed intensity
of galactic cosmic rays with energies £ S 20 MeV/nucleon. A
final resolution of this problem will require further studies
incorporating the actual geometry of the interplanetary
magnetic field, which is one of the primary factors determin-
ing the nature of the propagation of cosmic rays in the helio-
sphere. On the theoretical side, it would be desirable to coor-
dinate the solution of this problem with an identification of
the role played by a shock wave as a modulating factor for
galactic cosmic rays of higher energies, e 2 100 MeV/nu-
cleon.

4.3. Cosmic rays and supernovae

According to the present understanding, supernovae
occur on the average once every 10-30 yr in our galaxy. In a
supernova event, some 1O50—3 • 10s2 erg is released in the
form of the kinetic energy of the part of the star which is
ejected as a result of the explosion. The result is the produc-
tion of a strong shock wave in the surrounding interstellar
medium. The shock wave propagates at a velocity ~ 104

km/s (Refs. 2, 40, 75, and 152).
Research on the acceleration of charged particles by the

shock waves from supernovae is of considerable interest pri-
marily because supernovae are regarded as the most likely
source of the galactic cosmic rays on the basis of energy con-
siderations.75'2 They are capable of replenishing the loss of
energy residing in the galactic cosmic rays due to their es-

cape from the galaxy, — 3-1040 erg/s, if the acceleration
mechanism results in the transfer of at least 1 % of the energy
released in the explosion to accelerated particles. In this con-
nection it is natural to attempt to apply the Fermi accelera-
tion mechanism, with its high efficiency. Here are the basic
problems which can be singled out in the study of the process
of Fermi acceleration of particles in supernova remnants,
regarded as a possible source of galactic cosmic rays: a) the
shape of the energy spectrum of the accelerated particles
which go into interplanetary space; b) the efficiency of the
acceleration; c) the maximum energy of the accelerated par-
ticles.

In the linear approximation, the spectrum N(p) (the
total number of particles with momentum p) of the cosmic
rays accelerated by a shock wave throughout its existence tf

can be found on the basis of the equations in Subsection 2.2 if
we know the expansion law R(t) and injection rate N0(t).
Here the cosmic-ray density corresponding to the time tf,at
which the Mach number is Ma, (tf) = 1, should be integrat-
ed over the volume occupied by the cosmic rays:

= 4n V n(r, ap, (4.1)

where the factor a{r) describes the change caused in the
momentum of the cosmic rays by the relaxation of the medi-
um behind the shock front to the state of the interstellar
medium. If we assume that the relaxation for the cosmic rays
occurs adiabatically, we find that this factor is determined
by the ratio of Pg(r,tj-), the pressure in the medium
which is the location of the cosmic rays at the time tf, and Pm

— a— (Pg/Pm)us, the pressure in the interstellar medi-
um.153"155 Studies of the shape of the cosmic-ray spectrum
N(p) which have been carried out by slightly different meth-
ods153"155 with an expansion scaling law R(t) = R0(t /t0)

215

have demonstrated the following features of this spectrum:
1) The spectrum of cosmic rays generated by a shock wave
during its existence is described by a power function p ~ r,
where the exponent y remains in the interval 2.1-2.3 for a
wide momentum range mc<p <pmf, regardless of the value
of the injection momentum p0 < me and regardless of the
particular time dependence adopted for the injection power,
N0(t) (calculations were carried out for N0~R ~d, where
d = 0-2). 2) The early stages of the expansion, correspond-
ing to Mach numbers Ma > 8, contribute only insignificantly
to the overall cosmic-ray spectrum N(p) (except nearpm ),
because of geometric factors. For this reason, the contribu-
tion from the stage of free expansion {R~t), which preceeds
the adiabatic expansion in the evolution of the shock wave
from a supernova, can be ignored. 3) The later stages in the
adiabatic expansion, which correspond to Mach numbers
Ma, 5 2, contribute significantly to the overall cosmic-ray
spectrum N(p) only in a narrow region near the injection
momentum p0 because of the soft spectrum of the particles
which are accelerated in this period. 4) The spectrum N(p)
is dominated by the stages corresponding to Mach numbers
2 < Ma, S 5 (a = 2.3-3.6).

We note, however, that all these studies153 155 have ig-
nored an important circumstance: the presence of runaway
particles. As was shown in Subsection 2.3, ahead of the
shock front at each instant there are particles with momenta
Pm (O </></?m (?o) m addition to the particles with momenta

46 Sov. Phys. Usp. 31 (1), January 1988 E. G. Berezhko and G. F. Krymskir 46



Po<pSpm (t). The latter particles are being accelerated in
the given stage. The former particles were accelerated in ear-
lier stages of the expansion, and the velocity of their diffusive
propagation exceeds the velocity of the shock front, R (/), at
the time t. The overall spectrum of these particles, N(p), can
be calculated by using expression (2.37), but there is a
simpler approach. The number of runaway particles can be
found from the expression

pm (tp), tp). (4.2)

where n is the density of particles at time tp, when the cutoff
momentumpm has the value/?, and V~R 3 is the volume
occupied by the particles with a momentum pm. Since the
density of accelerated particles at large Mach numbers
Ma> 1 is n~N0(t)p~2, where N0(t) determines the rate of
injection at the shock front [see (2.35)], we find N(p)
~N0(tp)R

 3p~2- We thus see that if the particle injection
rate varies in accordance with N0~R ~3 the spectrum of the
runaway particles will have the universal form84'85 N(p)
~p~2. An injection law N0~R ~3 has a completely clear
physical meaning: For an adiabatic expansion law
(R ~3 ~ R 2) it corresponds to a situation in which the accel-
erated particles acquire a fixed fraction of the energy p^R 2/2
of the flow of the medium which is incident on the shock
front. In this case, generalizing the results of Refs. 153-155,
we note that the spectrum of cosmic rays generated by the
shock wave from a supernova has a power-law form N(p)
~p ~ r with an exponent which lies in the interval 2 < y S 2.3
for the momentum region mc^p Spm, where the maximum
momentum pm corresponds to the initial stage of the adiaba-
tic expansion and is found from the relation xx(pm)
XR(to)R{to))~

l = 1. This shape of the cosmic-ray spec-
trum, considered along with the energy dependence of the
time which these cosmic rays spend in the galaxy, corre-
sponds well to the observed spectrum of cosmic rays in the
energy range 1010-1015 eV (Ref. 2, for example).

Although we know almost nothing about the actual in-
jection processes which can operate at shock fronts in the
interstellar medium, it is interesting to examine the resultant
cosmic-ray spectrum N(p) which would be formed under
conditions of a saturated injection. Only under this condi-
tion can a substantial fraction of the total energy of the shock
wave be transferred to the cosmic-ray particles. Such a sub-
stantial transfer would be necessary if we are taking superno-
vae to be the primary source of the galactic cosmic rays.
Furthermore, the results of measurements carried out in in-
terplanetary space make the saturation injection regime look
extremely realistic.

In the saturation injection regime, the spectrum of ac-
celerated particles at the shock front at each instant does not
have a power-law shape/? ~ r with a single value of y, in con-
trast with the linear case, as was shown in Subsection 3.2.
The problem of determining the resultant cosmic-ray spec-
trum N{p) accordingly becomes slightly more complicated.
However, one can assume that the same geometric factors
which operate in the linear case will cause the cosmic-ray
spectrum N(p) to be dominated by those stages in the evolu-
tion of the shock wave which correspond to a degree of com-
pression <7~3.6, except at low momenta/? < me and at large
momenta p ~pm • Calculations carried out on the basis of a
kinetic model (Fig. 9) show that with a~ 3.5 and em — 1015

eV the saturation injection regime corresponds to the accel-
erated-particles spectrum n(e) ~e ~ r in which the exponen-
tremains nearly constant over the entire range of relativistic
energies at the value y~2.3. About 7% of the total internal
pressure corresponds to relativistic particles. It was also
shown that at large Mach numbers Ma, > 1 the partial pres-
sure £P (pm ), of the particles with the maximum momentum
pm, varies only slightly with pm. This result means
that the density of these particles can be described by
n (Pm ) ~P\R 2Pm

2- It then follows from expression (4.2) that
the spectrum of runaway particles is a power-law spectrum
N(p) ~p~v with y~2. Shock waves from supernovae can
thus provide a spectrum of galactic cosmic rays with the
necessary shape and the necessary amplitude.

The maximum momentum/* m in the resultant spectrum
of cosmic rays generated by a shock wave from a supernova
is determined by the initial stage of the adiabatic expansion
and can be found from the relation xt (pm ) = R(ta)R(t0).
As usual, it is being assumed here that the value of the diffu-
sion coefficient in the internal region does not impose any
restriction on the value of/>m, i.e., that we have x2 <xt be-
cause the medium behind the shock front is highly per-
turbed. Using typical values40152155 for the initial velocity,
R(t0) = 4-108 cm/s, and for the radius of the initial stage of
the adiabatic expansion, R{t0) = 30 pc, for the shock wave
of a type II supernova propagating through a homogeneous
medium with a density iVg = 3-10~3 cm"3, we find the val-
ue x, (pm ) = 3.6-1028 cm2/s for the diffusion coefficient cor-
responding to the maximum momentum of the cosmic rays.
Assuming a diffusion coefficient

pc. 0.3
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3 GeV/nucleon'
for the galactic disk, as is predicted by the diffusion mod-
el2156 for the propagation of cosmic rays in our galaxy, on
the basis of measurements of the chemical composition of
the galactic cosmic rays, we find/?mc = 2 • 1012 eV/nucleon
(Ref. 157).

Near the shock front, where the cosmic rays generate an
MHD turbulence,31 the diffusion coefficient x should be less
than the mean value xd. Theoretically, the lower limit on x is
xmin = pBv/3. This value corresponds to the maximum mo-
mentum pmc = 3-1015 eV/nucleon if we take B = 3-10"" G
as a typical value of the interstellar magnetic field. There has
been no detailed study of the extent to which the generation
of an MHD turbulence by cosmic-ray particles ahead of a
shock front might lower the diffusion coefficient. The esti-
mates which have been made158 are based on the assumption
that the pressure of the cosmic rays at the shock front, Pc2,
does not exceed the pressure of the interstellar magnetic
field, B 2/Sv. Such a situation would be unlikely, since in the
interstellar medium we would have2 Pcl~B2/Srr, even
ahead of the shock front.

The limitation imposed on the maximum momentum
pm by the quasilinear theory of Alfven turbulence can be
found by using the results of Ref. 31. Bell31 solved the prob-
lem of the acceleration of particles (cosmic rays) by a paral-
lel plane shock wave on the basis of a self-consistent diffu-
sion coefficient

4 B2/8n

whose value is determined by the energy density (Ew) of the

E. G. Berezhko and G. F. KrymskiT 47



Alfven waves which are interacting resonantly with the cos-
mic-ray particles. These waves are in turn excited in the re-
gion ahead of the shock front as a result of the anisotropic
angular distribution of the cosmic rays. In the quasilinear
approximation, the corresponding growth rate is

The self-consistent distribution of cosmic rays ahead of the
shock front (x < 0) is then described by the expressions

2V

M*. P) = /

^ . ( P ) <=a P B ' (4.3)

where SP = {Aw/7>)pAvf(p) is the partial ( in terms of \np)
pressure of the cosmic rays (in Subsection 3.2 we used a
pressure which was partial in terms of lne; in the relativistic
region, these quantities are the same). We thus see that a
self-consistent turbulence can lead to an acceleration of cos-
mic rays by a shock wave of nonzero dimensions R if the
condition x0 < R holds. Although expressions (4.3) were de-
rived in the approximation linear in the cosmic-ray pressure,
it can also be used for estimates in cases in which the cosmic
rays contain a substantial fraction of the total energy in the
shock wave, since the modification of the shock wave by the
cosmic-ray pressure could not substantially influence the ex-
citation of Alfven waves. Under conditions of unsaturated
injection in a strong shock wave, as was shown in Subsection
3.2, the partial pressure of the relativistic accelerated parti-
cles goes through a minimum at a certain energy. If the
shock wave is strong, it is a simple matter to find an approxi-
mate expression for the minimum pressure: SP min s (6/
a)irzpiu]/ln2(pm/mc). Using this expression, we can re-
write the condition xo4R as

Using some typical values for the interstellar medium
[ca ~ 107 cm/s, M, = 4- 108 cm/s, R(t0) = 1020 cm, a = 4,
and 5 = 3 1 0 " 6 G] , we find/7mc^2-l07 me2. We thus see
that the quasilinear theory does not impose any restrictions
on the maximum momentum of the cosmic rays in compari-
son with the momentum which would correspond to the
minimum permissible diffusion coefficient, pBc/3. At the
same time, this circumstance means that under conditions of
saturated injection the Alfven turbulence would become de-
finitely nonlinear, and we would need to seek more reliable
estimates on the basis of a nonlinear theory.

To what extent could the maximum energy of the cos-
mic rays be increased by a collective supplemental accelera-
tion of these cosmic rays by the ensemble of all the shock
waves from supernovae which simultaneously exist in the
galaxy? To answer this question, we seek the time scale of the
collective acceleration according to expression (2.39),
which in this case takes the form

= F o - l WR At.

Since we do not know the actual time dependence of the
degree of compression a, which is determined by the cosmic-
ray pressure in addition to everything else, we ignore the
difference between the factor (cr — l ) / ( c r+ 1) and unity,
finding

" ~ 5VgN(tt)v ' < « >

where KSN(ff) = (4v/3)R 3(?f) = (4;r/3)/{ 3(r0)Ma3(f0).
The maximum energy of the cosmic rays can be estimated
from ra = re (/?m). We use the results of the diffusion model
for the propagation of cosmic rays in the galaxy. That model,
which on the basis of measurements of the chemical compo-
sition of the galactic cosmic rays, predicts1592 that the vol-
ume occupied by the galactic cosmic rays is V= 5 • 1068 cm3

and that the time spent in the galaxy by galactic cosmic rays
with an energy £ 3 GeV/nucleon is

A G e V / n u c l e o n \ -u .3
T . - B - I O "

pc

Also adopting v = 1/10 yr ' as the frequency of superno-
vae, we findpmc = 3 • 104 GeV/nucleon. Using some results
from the homogeneous model for the propagation of galactic
cosmic rays,160'159 F=2.5-1067 cm3 and r e = 2 - 1 0 7 (3
GeV/pc) ~03 yr, we Mdpmc = 105 GeV/nucleon.

According to the customary terminology, the collective
mechanism is a version of interstellar acceleration since the
cosmic rays are subjected to the acceleration throughout the
time which they spend in the galaxy. It has been assumed
that the existing results from measurements of the chemical
composition of the galactic cosmic rays refute such models
for the origin of galactic cosmic rays.16M63-2 However, it was
recently established164 that a systematic analysis of the inho-
mogeneities in the distribution of the sources of cosmic rays
and of the interstellar gas in the galaxy leads to the opposite
conclusion: that an interstellar acceleration does not contra-
dict observations.

It can thus be concluded that under some assumptions
regarding the nature of the injection of particles into the
acceleration regime and the propagation of the galactic cos-
mic rays in the galaxy—whose validity of course (requires
further refinement—the process of acceleration of cosmic
rays by shock waves from supernovae can result in genera-
tion of galactic cosmic rays at energies up to 1014-3-1015

eV/nucleon. We note that in this connection that a galactic
origin of the cosmic rays, at least at energies up to 1017 eV,
causes no particular doubt today. Accordingly, the estimate
of the upper limit on the energy given here, which should
probably be regarded as on the optimistic side in view of the
uncertainties in the parameter values which we have used,
forces us to conclude that the Fermi mechanism does not
meet the requirements which it would have to meet in order
to explain the generation of cosmic rays at the very highest
energies. At present it is totally unclear whether this diffi-
culty can be overcome through a further development of the
theory or whether the mechanism of Fermi acceleration
must be rejected as a possible source of the galactic cosmic
rays, despite all its attractive features.

We have restricted the discussion above to those cases
in which the present state of the theory and the present state
of the experimental work allow a comparison of the two in a
most comprehensive way; the list of possible applications of
the Fermi acceleration process is of course much longer. The
shock waves which arise as matter accretes on compact as-
trophysical objects,165 the shock waves at the boundary
between the galactic wind and the intergalactic medium,166

and the shock waves in quasars and in the cores of active
galaxies167—these are all examples of entities in which Fermi
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acceleration could play an important role. The necessary re-
search here is still in an initial stage, and we do not rule out
the possibility that some of these objects will contribute sub-
stantially to the observed spectrum of high-energy galactic
cosmic rays.

5. CONCLUSION

Studies of the Fermi acceleration of charged particles
by shock waves clearly constitute progress along the path
toward an understanding of the acceleration processes
which operate in space plasmas. At the moment, Fermi ac-
celeration is the best-developed mechanism. It is capable of
making substantive predictions which can be tested by ob-
servations. The development of the theory of Fermi accel-
eration has made it possible to explain a long list of phenom-
ena observed in interplanetary space in which charged
particles are accelerated near the fronts of shock waves. The
quantitative predictions of the theory agree well with the
existing measurements.

The results of research on astrophysical applications of
this process, despite the existing difficulties, can also be re-
garded a bit optimistically as a step down the path to the
solution of the important problem of the origin of the galac-
tic cosmic rays. As has been shown, the Fermi acceleration
of particles by shock waves from supernovae would be capa-
ble of forming a spectrum of cosmic rays with the necessary
shape and the necessary amplitude over a wide energy range.
Further progress in this direction can be expected in the so-
lution of two important problems which are of fairly general
significance for the theory of Fermi acceleration.

The first of these problems, and also the more compli-
cated, and the one which has been studied less, is that of the
injection of thermal particles into the acceleration process.
At the moment we have nothing in the way of a solidly based
theoretical prediction of the extent to which particles could
be accelerated directly from their thermal distribution be-
hind a shock front without a supplemental acceleration.
Furthermore, we have no corresponding predictions of
which plasma parameters determine the number of injected
particles. Here it would be particularly important to deter-
mine the possibilities of the saturated injection regime. In
this case, when the rate at which particles are injected into
the acceleration process exceeds a certain minimum value
the accelerated particles will acquire a substantial fraction
(about half) of the total energy of the plasma in the shock
wave, by virtue of the self-regulating properties of the Fermi-
acceleration process. Judging from the information which
has been obtained in interplanetary space, the saturated-in-
jection regime can be regarded as realistic, although it is not
clear to what extent it can occur in the interstellar medium.
Another circumstance which makes this point so important
is that it is apparently only under the condition of saturated
injection that acceleration by shock waves from supernovae
would be capable of providing an energy at the scale required
for the galactic cosmic rays.

The second important problem is generating a system-
atic description of the development of plasma turbulence
ahead of a shock front by accelerated particles under condi-
tions such that these particles carry a substantial fraction of
the total energy in the shock wave. This problem is compli-
cated, in particular, by the circumstance that the MHD tur-
bulence can reach a nonlinear level, according to estimates.

In addition to the Alfven turbulence, which is the type usual-
ly discussed, there might be an excitation of long-wavelength
perturbations of other types in the prefront region.168-170-84 A
study of the dynamics of plasma turbulence, which ranks
along with the cosmic rays as an important factor in deter-
mining the structure of a shock wave, would also be of im-
portance to the problem of the origin of cosmic rays. An
increase in the extent to which the medium ahead of the
shock front is perturbed results in a decrease in the cosmic-
ray diffusion coefficient in this region. Under the conditions
corresponding to shock waves of nonzero dimensions, this
decrease in the diifusion coefficient would promote an in-
crease in the maximum energy of the accelerated particles.

In conclusion we wish to stress that a study of the Fer-
mi-acceleration process is also important for the physics of
collisionless shock waves, since the high efficiency of this
process qualifies the accelerated particles as a factor which
would substantially influence the dynamics and structure of
the shock wave.

We wish to thank V. K. Elshin and A. A. Turpanov for
assistance in the writing of this paper.
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