Organosulfur Compounds Formed by Sulfur Ion Bombardment of Astrophysical Ice Analogs: Implications for Moons, Comets, and Kuiper Belt Objects

, , , , , , , , , , and

Published 2019 November 8 © 2019. The American Astronomical Society. All rights reserved.
, , Citation Alexander Ruf et al 2019 ApJL 885 L40 DOI 10.3847/2041-8213/ab4e9f

Download Article PDF
DownloadArticle ePub

You need an eReader or compatible software to experience the benefits of the ePub3 file format.

2041-8205/885/2/L40

Abstract

Carbon, hydrogen, nitrogen, oxygen, and sulfur are the main elements involved in the solid-phase chemistry of various astrophysical environments. Among these elements, sulfur chemistry is probably the least well understood. We investigated whether sulfur ion bombardment within simple astrophysical ice analogs (originating from H2O:CH3OH:NH3, 2:1:1) could trigger the formation of complex organosulfur molecules. Over 1100 organosulfur (CHNOS) molecular formulas (12% of all assigned signals) were detected in resulting refractory residues within a broad mass range (from 100 to 900 amu, atomic mass unit). This finding indicates a diverse, rich and active sulfur chemistry that could be relevant for Kuiper Belt objects (KBO) ices, triggered by high-energy ion implantation. The putative presence of organosulfur compounds within KBO ices or on other icy bodies might influence our view on the search of habitability and biosignatures.

Export citation and abstract BibTeX RIS

1. Introduction

Sulfur is of high interest in the context of (astro)chemical evolution and habitability. Several sulfur-bearing molecules have been observed in various astronomical environments. In the diffuse interstellar medium (ISM), various sulfur-bearing molecules, such as CS (Penzias et al. 1971), have been detected and the sulfur abundance has been observed to be close to the cosmic value (Sofia et al. 1994; Neufeld et al. 2015) whereas in dense molecular clouds, sulfur is found to be depleted (Prasad & Huntress 1982; Van Steenberg & Shull 1988; Jiménez-Escobar & Caro 2011; Vastel et al. 2018). A hypothesis suggested that the sulfur is locked in the form of OCS in icy grain mantles (Palumbo et al. 1997). A recent study has modeled that the "missing" sulfur is indeed trapped in the form of organosulfur molecules on grains (Laas & Caselli 2019). In protoplanetary disks, the planets' places of birth around young stars, CS or H2CS chemistry has been discussed (Semenov et al. 2018; Le Gal et al. 2019). Nevertheless, the number of sulfur molecules detected in disks is significantly lower than in the diffuse ISM, indicating a high reactivity of sulfur in the gas phase (Semenov et al. 2018). In the solar system, comet 67P/Churyumov–Gerasimenko has been extensively characterized regarding its sulfur contents. C-, H-, and S-bearing molecules were found to be the third most abundant species, next to CH and CHO compounds (Altwegg et al. 2017). Among all sulfur compounds in comet 67P/Churyumov–Gerasimenko, even fairly complex organosulfur compounds have been detected (e.g., CH3SH, methanethiol and C2H6S, ethanethiol, and/or dimethyl sulfide; Calmonte et al. 2016). On icy moons, as on the surface of Europa, the production of sulfuric acid and other sulfur compounds has been discussed (Carlson et al. 2002).

The reservoir(s) and evolution of organosulfur molecules, from the ISM toward their incorporation onto (proto)planetary systems, is poorly constrained. Radiation, as a ubiquitous source of energy in various astronomical environments, might be a potential trigger of organosulfur chemistry in space. For instance, energetic nuclei including sulfur are present in planetary radiation belts, solar wind or galactic and anomalous cosmic rays (GCR/ACR) (Mueller et al. 1991; Takashima et al. 1997; Von Steiger et al. 2000; Mauk et al. 2004; Paranicas et al. 2009). On Europa, the formation of H2SO4 has been supposed via radiolysis from energetic charged particle bombardment and is supported both by experiments (Strazzulla et al. 2007) and observations (Dalton et al. 2013). Next to the presented numerous observations of sulfur molecules in space, their chemistry, especially those of organosulfur, is not well understood yet (e.g., problem of sulfur depletion in dense clouds and star-forming regions but no sulfur depletion in diffuse clouds in the ISM; Calmonte et al. 2016; Le Gal et al. 2019).

Along with observations, laboratory experiments enable a better understanding of the chemical evolution of extraterrestrial ices (Herbst & Van Dishoeck 2009; Danger et al. 2013, 2016; Van Dishoeck 2014; Schlemmer et al. 2015; Öberg 2016; Fresneau et al. 2017). Sulfur chemistry in laboratory ice experiments has been mainly studied in two ways, (i) irradiation by nonsulfurous particles of sulfur-bearing ices (e.g., via UV photons (Chen et al. 2014), electrons (Maity & Kaiser 2013; Mahjoub et al. 2017; Poston et al. 2018)), or protons (Moore 1984; Moore et al. 2007; Ferrante et al. 2008; Strazzulla et al. 2009; Garozzo et al. 2010; Loeffler et al. 2011) and (ii) irradiation by S projectiles of non-sulfur-bearing ices (Strazzulla et al. 2007, 2009; Ding et al. 2013; Lv et al. 2013; Boduch et al. 2016). UV photons can induce the formation of more complex sulfur-bearing molecules (OCS or CS2) inside initial H2S ices (Chen et al. 2014). Also, electrons can trigger the formation of complex S molecules (small sulfur allotropes or even complex organosulfur compounds within H2S-bearing ices) (Mahjoub et al. 2017). Protons enable the formation of OCS out of initially bearing SO2 or H2S ices as well (Ferrante et al. 2008; Garozzo et al. 2010). The implantation of S ions inside pure water ices leads to the production of sulfuric acid (Strazzulla et al. 2007; Ding et al. 2013). Inside CO and CO2 ices, the bombardment of sulfur ions initiate the formation of SO2 (Lv et al. 2013). Furthermore, molecular dynamics simulations suggest the formation of complex organosulfur molecules via S ion bombardment of H2O:CO:NH3:CH3OH ices (Anders & Urbassek 2018, 2019). However, the formation of complex organosulfur molecules has never been experimentally demonstrated up to now.

In this study, the role of sulfur implantation into astrophysically relevant, realistic ice analogs (de Marcellus et al. 2015; Meinert et al. 2016) was tested. The resulting refractory residue was probed for the formation of organosulfur compounds via infrared spectroscopy (IR) and ultra-high-resolving electrospray ionization Fourier transform resonance cyclotron mass spectrometry (FT-ICR-MS). The sulfur-irradiated sample (S7+ ions) was compared to a reference sample which was processed with Argon (Ar7+ ions). FT-ICR-MS analyses enabled the first detection of organosulfur compounds within H2O:CH3OH:NH3 ices (2:1:1), implanted with sulfur ions. Their detection and chemical characterization is discussed in the context of S7+-irradiated ices of various astrophysical environments, particularly focusing on Kuiper Belt objects (KBO).

2. Methods

2.1. Formation of Ion-irradiated Ice Residue and IR In Situ Analysis

The ion beam used for irradiation was generated at the ARIBE low-energy line of the Grand Accélérateur National d'Ions Lourds (GANIL), Large Heavy Ion National Accelerator, facilities in Caen, France. For both Ar7+ and S7+, the ion beam was formed by ions at an energy of 105 keV, with a flux of ≈1 × 1011 cm−2 s−1. The current reaching the vacuum chamber was controlled by a Faraday cup. The main vacuum chamber contained three windows out of ZnSe that can be cooled down to 9 K and could hold one sample each. Ice samples were formed by preparing a gas mixture in a premixing chamber and depositing this vapor using a mobile needle, allowing target deposition onto a desired window. This device effectively enabled the generation and irradiation of three different deposited samples at similar vacuum conditions. Details on beam generation (Lv et al. 2012) and the IGLIAS device (Augé et al. 2018) have been described previously.

The IGLIAS setup also enabled in situ chemical analysis of the sample by a Brüker V70 Fourier Transform Infrared Spectrometer (FT-IR), under primary vacuum while it is exposed to the beam. IR spectra were acquired before deposition (as a reference background), during irradiation (one spectrum after a new layer was deposited and before it was exposed to the beam, Figure 5) and after warming up to room temperature (one spectrum of the residue at 300 K, Appendix A). A residue is defined here as the refractory remaining material from irradiated ices at 300 K.

Ices were formed with an initial gas mixture of H2O:CH3OH:NH3 (2:1:1). The quantity deposited corresponds roughly to 0.5 μm which is thicker than the penetration depths of 105 keV S7+ or Ar7+, calculated to be <0.3 μm (Ziegler et al. 2010). Thus, implantation of projectile ions into the ice could be ensured. The windows were kept at 10 K during deposition and irradiation. To increase the yield of formed residue, we deposited several layers of each sample. A new layer is deposited when the underneath irradiated layer reaches a steady state. The evolution during the irradiation is monitored by FT-IR spectroscopy on both methanol and ammonia infrared absorption bands. This procedure was repeated. In total, 15 layers were formed for the argon-irradiated sample (Ar7+ ions) and 10 layers for the sulfur-irradiated sample (S7+ ions). The experiment was repeated (technical duplicates) later generating two 15-layer samples to test for reproducibility (for both Ar7+-irradiated and S7+-irradiated). Both duplicates show reproducible results.

We performed SRIM simulations (SRIM, The Stopping and Range of Ions in Matter software; Ziegler et al. 2010) to calculate the effective volume of atom implantation. We assume a sample density of 1 g/cm−3. We find that sulfur ions stop on average at a depth of 0.21 ± 0.1 μm within the sample (2σ interval). Within the implanted volume, we estimate the signal-to-noise ratio (S/N) and S/C ratio to be 9E-4 at the end of the irradiation experiments (after 20 minutes). Even accounting for uncertainties on SRIM simulations and the sample density probably being below 1 g/cm−3, it is readily apparent that the amount of implanted sulfur is small compared to the elements it can react with.

We have calculated that the irradiated volume (from the surface of the sample to a depth of 0.31 μm) receives a dose of 65 MGy (about 11 eV/16 amu).

The residues, resulting from irradiated ices, were kept under argon atmosphere in a stainless steel vessel, to minimize oxidation prior to analysis (de Marcellus et al. 2015).

2.2. FT-ICR-MS Analysis

Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), ran in negative ionization mode, was used for in-depth molecular characterization of the organic matter formed within the residue, resulted from irradiated ices. High resolution mass spectrometry has been widely used for in-depth molecular characterization of extraterrestrial organic matter (Schmitt-Kopplin et al. 2010; Ruf et al. 2017, 2018, 2019; Danger et al. 2016; Fresneau et al. 2017). FT-ICR-MS represents the highest performance in mass resolving power and mass precision among all mass spectrometers.

The residue was dissolved in 50 μL methanol (extraction solvent, LC-MS grade; Fluka). This step was repeated four times. The complete residue got dissolved in methanol. Afterwards, 20 μL of the dissolved residue was diluted in 200 μL methanol. The solution was removed with a microsyringe, ready for flow injection into the ESI source. A solvent methanolic blank was measured in accordance to be able to detect the indigenous soluble organic matter in each ice sample.

The experimental study was performed on a high-field FT-ICR-MS from Bruker Daltonics with a 12-T magnet from Magnex. A time domain transient with four MWords was obtained and Fourier-transformed into a frequency domain spectrum. The frequency domain was afterward converted to a mass spectrum by the solariX control program of Bruker Daltonics. The ion excitations were generated in broadband mode (frequency sweep radial ion excitation) and 3000 scans were accumulated for each mass spectrum in a mass range of 147 to 1000 amu (atomic mass unit). Ions were accumulated for 300 ms before ICR ion detection. The pressure in the quadrupole/hexapole and ICR vacuum chamber was 3 × 10−6 mbar and 6 × 10−10 mbar, respectively. For CID-MS/MS, ions were accumulated for 3 s.

The electrospray ionization source (ESI, Apollo II; Bruker Daltonics) was operated in negative ionization mode. The methanolic solutions were injected directly into the ionization source by means of a microliter pump at a flow rate of 120 μL h−1. A source heating temperature of 200°C was maintained and no nozzle-skimmer fragmentation was performed in the ionization source. The instrument was previously externally calibrated by using arginine negative cluster ions (5 mg L−1 arginine in methanol).

Mass spectra with m/z from 147 to 1000 amu were calibrated externally and internally to preclude alignment errors. Subsequently, mass spectra were exported to peak lists at a signal-to-noise ratio ≥3. Mass resolving power was 400,000 at m/z = 400 with a mass accuracy of <200 ppb, enabling the separate detection of isobars differing by less than the mass of an electron (Ruf et al. 2017). Practically, this approach enables a direct assignment of molecular compositions with C, H, N, O, and S atoms (and isotopologues in natural abundance) for each individual exact mass (m/z value).

Molecular formulas were assigned from exact m/z values by mass difference network analysis for each peak in batch mode by an in-house software tool (Tziotis et al. 2011) and validated via the senior-rule approach/cyclomatic number (Senior 1951). For formula assignment, 50.1% of all formulas have an error of ±0.1 ppm, 78.5% of all formulas have an error of ±0.2 ppm and 100% of formula assignments within ±0.5 ppm (Figure 8). Further details on the assignment of molecular formulas from FT-ICR-MS big data and their visualization in astrochemical context are given in previous studies (Schmitt-Kopplin et al. 2010; Ruf et al. 2018; Bischoff et al. 2019).

Data mining on organosulfur (CHNOS) compounds represent those m/z signals which were uniquely detected in the S7+-irradiated sample and absent in the Ar7+-irradiated sample. Double bond equivalent (DBE) was calculated according DBE = C −(H/2) + (N/2) + 1.

3. Results and Discussion

3.1. Detection of Organosulfur Compounds

IR spectra of S7+- and Ar7+-irradiated ices and residues show the presence of organic compounds which have also been previously observed in UV-irradiated ices (e.g., HNCO or H2CO; Figure 5, Table 1). Nevertheless, no significant difference between both irradiation sources, S7+ and Ar7+, could be deciphered with infrared spectroscopy, and neither organosulfur molecules could be identified in the S7+-irradiated sample.

On a coarse level, mass spectra from FT-ICR-MS analysis show similar features for Ar7+-irradiated and S7+-irradiated ices as well (Figures 1(A) and (B)). Nevertheless, the fine structure obtained with ultrahigh resolving power and ultrahigh mass accuracy, FT-ICR-MS unambiguously revealed the detection of organosulfur compounds in S7+-irradiated ices (Figures 1(C) and (D)). m/z signals which correspond to organosulfur compounds were absent in the Ar7+-irradiated reference sample (Figures 1(C) and (D)). Within one nominal mass, up to five organosulfur (CHNOS) signals are present as shown for two representative examples (m/z = 248 and m/z = 438, Figures 1(C) and (D)).

Figure 1.

Figure 1. FT-ICR-MS revealed the detection of organosulfur compounds. (A) Mass spectra show a large number of m/z signals over broad mass range, from 150 to 700 amu (atomic mass unit), for both the Ar7+- and S7+-irradiated ice sample. Over 1100 unique organosulfur signals (CHNOS) are distributed over that mass range as well (Figure 10, Table 3). The "CHNOS only" spectrum has been reconstructed from experimental data (only CHNOS-corresponding m/z values are plotted). Organosulfur signals were absent in the Ar reference spectrum. (B) A zoomed-in representation shows repetition of signal patterns. (C, D) Detailed nominal mass spectra of m/z = 248 and m/z = 438 highlight the need for ultra-high-mass resolution and ultra-high-mass accuracy to enable the unambiguous differentiation of CHNOS molecular formulas in the S7+-irradiated sample from non-sulfur-bearing ones in the Ar7+-irradiated sample.

Standard image High-resolution image

In general, the mass spectra of S7+- and Ar7+-irradiated refractory residues show dense m/z signal patterns over a broad mass range. From 30,000 experimental m/z signals, ranging from 100 to 900 amu (atomic mass unit), 9,616 molecular formulas, based on C, H, N, O, and S, could be unequivocally calculated (5.3% CHO, 82.6% CHNO, and 12.1% CHNOS, Figures 9 and 10). This high molecular diversity indicates a rich and active sulfur chemistry within these processed ices, triggered by high-energy ion implantation. m/z signals appear as regular patterns reflecting a pure chemosynthetic process as observed in UV photon-irradiated ices (Danger et al. 2013, 2016; Fresneau et al. 2017) or meteorites (Schmitt-Kopplin et al. 2010; Ruf et al. 2017, 2019; Figures 1(A) and (B)). Regular patterns are observed both for the global organic signature and for organosulfur (CHNOS) compounds (Figures 1(A) and (B)).

3.2. Characterization of Organosulfur Compounds

Atomic ratio plots, known as van Krevelen diagram (Van Krevelen 1950), were used to characterize in detail the detected organosulfur (CHNOS) compounds. H/C against O/C representation enables a first screening of complex mixtures with respect to chemical families (Kim et al. 2003; Wu et al. 2004; Danger et al. 2016; Ruf et al. 2018; Schmitt-Kopplin et al. 2019). Organosulfur compounds present in S7+-irradiated ices show a low degree of unsaturation and a significant degree of oxygenation (O/C > 0.5, H/C > 1.5, Figure 2). The degree of oxygenation of organosulfur compounds is inversely related with DBE (Figures 2 and 12).

Figure 2.

Figure 2. van Krevelen diagram (H/C against O/C) of organosulfur (CHNOS) compounds reveals information on different chemical families. Chemical compositions can be grouped according to the degree of unsaturation and relative oxygen amounts. The plotted CHNOS data correspond to m/z signals which are uniquely present in the S7+-irradiated ice but not in the Ar7+-irradiated ice sample. The bubble size scales with mass spectrometric intensity.

Standard image High-resolution image

Basically, three groups of compounds can be extracted (Figure 2). Group 1 (Figure 2, top right corner) basically consists of small mass molecules up to 400 amu. This group of compounds has high H/C and high O/C ratios with a small number of DBE. Group 2 (Figure 2, top left corner) bears molecules with high masses (mostly 500–800 amu). Their DBE is higher than those in group 1 (DBE > 8, Figure 12). In addition, this group of compounds is enriched in nitrogen counts, bearing up to 14 N atoms per molecular formula (Figure 11). Group 3 (Figure 2, bottom left corner) is characterized by high numbers of DBE within a mass range between 400 and 600 amu (Figures 2 and 12).

A large number of identified organosulfur compounds are saturated molecules, having an averaged DBE of 5.6 (Figure 3). Nevertheless, DBEs of up to 17 are observed, especially for high-mass molecules up to 900 amu (Figure 3 and 10). Compounds with high DBE have low H/C and low O/C ratios (Figure 12).

Figure 3.

Figure 3. Frequency distribution of organosulfur (CHNOS) compounds as a function of DBE, double bond equivalent. The detected organosulfur compounds have an averaged DBE of 5.6, representing a significant amount of saturated molecules.

Standard image High-resolution image

The number of atoms for every element varies for the identified organosulfur compounds (Figures 4 and 13). Almost all organosulfur (CHNOS) compounds bear one sulfur atom and only a few molecular formulas have up to five S atoms. The aforementioned high degree of oxygenation is directly related to the number of oxygen atoms. Most CHNOS formulas possess eight O atoms. This might be related to the partially oxidized carbon starting material (CH3OH, O/C = 1). This enables the formation of a complex organic molecules with a oxygen-rich carbon backbone (Theulé et al. 2013). These findings are in agreement with results from UV-irradiated ices (Danger et al. 2016). Nitrogen counts are also widespread, ranging mostly from 3 to 10 N atoms per CHNOS molecular formula. The carbon backbone counts indicate two local maxima in stability in C counts, for C = 9 and C = 25. Overall, the diversity in CHNOS formulas is related to a diversity in atom counts therein. The observed large diversity in atom counts indicates a rich and active sulfur chemistry.

Figure 4.

Figure 4. Frequency distribution of the number of molecular formulas as a function of the corresponding number of C, H, N, O, and S atoms in a CHNOS molecular formula. The observed large diversity in atom counts indicates a rich and active sulfur chemistry.

Standard image High-resolution image

On average, a stoichiometric formula of C13H23O7N6S is calculated, having a DBE (average) = 5.6, O/C (average) = 0.6 and H/C (average) = 1.8.

As observed from UV-irradiated ices (Danger et al. 2016), Ar7+-irradiated and S7+-irradiated ices (Figure 9), CHNO represents the major chemical family. This implies that pathways for CHNO formation in all cases are likely based on radical chemistry (Theulé et al. 2013; Butscher et al. 2017). Among the organosulfur (CHNOS) compounds observed in S7+-irradiated residues, almost all of them bear only one sulfur atom (Figures 4, 10, and 13) and all organosulfur species bear nitrogen atoms (only CHNOS and no CHOS compounds got detected, Figure 9). These findings indicate a selective mechanism of organosulfur formation that is not well understood yet. The irradiating agent, S7+ or Ar7+, might act chemically inert in a first step (similarly as UV photons), by breaking bonds and triggering radical and ion formation leading to precursor of complex CHNO compounds. Then CHNO precursors might selectively react with sulfur implemented in the water matrix forming CHNOS1 species. The low number of S in organosulfur compounds can be explained by low S/N and S/C ratios (9E-4) in the implantation zone (see "SRIM simulations," Methods Section 2.1). Thus, the likelihood of implanting a sulfur atom into more complex organic molecules is low. The test of this hypothesis is beyond this manuscript and is part of ongoing work.

3.3. Astrophysical Implications

Several astrophysical environments reflect parallels with the here presented experiments.

The icy surface of the Jovian satellite Europa is exposed to a bombardment of energetic electrons and ions, including sulfur (Paranicas et al. 2009). This flux is abundant in the 100 keV range which was used in the experiments presented here. A calculation, based on flux (Paranicas et al. 2009), shows that 20 to 30 minutes of exposure to the sulfur beam in the IGLIAS chamber correspond to a few days on Europa's surface in terms of fluence. However, neither methanol nor ammonia have been detected on Europa (Carlson et al. 2009) and the surface temperature of 80–130 K (Spencer et al. 1999) is noticeably higher than the temperature at which irradiation was performed in our experiments. Nevertheless, the parallel with Enceladus allows us to consider the putative presence of both ammonia and methanol within Europa's internal ocean (Hodyss et al. 2009; Waite et al. 2017); and micrometeoroid bombardment represents a possible source of organic matter being transported to its surface (Carlson et al. 2009). However, as CO2 represents the dominant form of carbon and the presence of NH3 is uncertain, one should be cautious about direct implications of the results discussed here to Europa.

Further from the Sun, trans-Neptunian objects (TNOs) and KBOs present surface temperatures closer to our experimental conditions (e.g., 44 K on Orcus: Barucci et al. 2008). Ammonia has been detected on several of these objects, e.g., on Charon (Brown & Calvin 2000; Grundy et al. 2016), on Orcus (Barucci et al. 2008), or on Quaoar (Jewitt & Luu 2004). Both ammonia and methanol are present in comets (Bockelée-Morvan et al. 2004; Altwegg et al. 2017) suggesting their presence in the material that has formed TNOs/KBOs. These objects are exposed to irradiation by solar wind including small quantities of sulfur at about 32 keV/nucleus (derived from the solar wind velocity; Von Steiger et al. 2000), an energy comparable to the one used in the experiments presented here. Using the S/O ratios measured in the solar wind at 1 au (von Steiger et al. 2010) and extrapolating to the flux at 50 au, the fluence used in our experiments is approximated to be reached in 2 Myr. This relatively short time (on astronomical timescales) indicates that icy surfaces of objects such as TNOs/KBOs, possibly rich in ammonia and methanol, may have endured the same transformation as our laboratory samples. Interestingly, 2 Myr is shorter than the predicted time of destruction of ammonia hydrates by solar wind (Cooper et al. 2004; Jewitt & Luu 2004). Thus, NH3 might still be stable enough to be further processed by sulfur ion bombardment to putatively form organosulfur compounds. This time is short enough that the building blocks of these bodies (e.g., small grains, ice) may interact with sulfur ions from solar wind before their accretion (assuming a similar composition of the solar wind at that time).

This is likely applicable to comets as well. The D/H ratio of comet 67P, for example, indicates a formation at a large distance from the Sun (Altwegg et al. 2015). So, ion implantation would have occurred at low temperatures. It should be noted that due to their formation beyond the H2S snowline, the aforementioned objects (TNOs/KBOs) are likely to include H2S, another putative source of sulfur chemistry. The presence of H2S is supported by comparisons between laboratory experiments and IR spectra of KBOs and Trojan asteroids (Poston et al. 2018).

It is critical to note that thermal processing might be a factor driving the formation of complex organosulfur compounds. The surfaces of a KBO or TNO is unlikely to have undergone such processes. However, some of these objects could later get closer to the Sun and lose the more volatile components of their external layers, as has been suggested for Ceres (De Sanctis et al. 2015), undergoing a more modest thermal processing than in our experiments. On the other hand, we may also consider thermal processing of the interior of these objects, combined with the possibility that most of the ice, not only on the surface, has been implanted with sulfur before the object accreted. Accretional heat and radiogenic heating could have provided thermal processing to relatively high temperatures, especially in the larger objects such as Pluto, Charon, or Triton. In the case of Triton tidal heating may also have been a contributor (Ross & Schubert 1990). Contemporary cryovolcanic activity (Jewitt & Luu 2004; Cook et al. 2007; Desch et al. 2009) could then bring possible organosulfur molecules to the surface. Future missions to KBO/TNOs, comets, or even Neptune (if observations of Triton are included) could uncover these compounds.

4. Conclusions

The formation of complex organosulfur molecules by sulfur ion bombardment within simple, realistic ice analogs was tested. H2O, CH3OH, and NH3 ices (2:1:1) were irradiated with S7+ ions at 105 keV at GANIL, Large Heavy Ion National Accelerator facilities in Caen, France. Sulfur-irradiated samples (S7+ ions) were compared to a reference sample which was processed similarly with argon (Ar7+ ions). Residues formed from ice processing were then analyzed by ultra-high-resolution mass spectrometry (FT-ICR-MS).

We unambiguously detected organosulfur compounds within sulfur-bombarded ices. Over 1100 organosulfur (CHNOS) molecular formulas (12% of all assigned signals) were observed within a broad mass range, from 100 to 900 amu (Figure 10, Table 3). On average, a stoechiometric formula of C13H23O7N6S is calculated, having an DBE (average) = 5.6, O/C (average) = 0.6 and H/C (average) = 1.8.

There are multiple instances in the outer solar system in which water ice with methanol and ammonia could be undergoing or have undergone sulfur implantation. These include icy moons, KBOs/TNOs/comets, and their original building blocks. The experiments presented here indicate that with later thermal processing, these objects could feature a large diversity of complex organosulfur molecules such as the ones detected in the present work. These compounds could have participated in prebiotic chemistry and could be accessible to detection by future space missions performing in situ measurements.

This work has been funded by CNRS (Programme National de Planétologie, P.N.P, INSU), Programme de Physique et Chimie du Milieu Interstellaire (PCMI, INSU), and the Centre National d'Etudes Spatiales (CNES, exobiology program). It was also supported by the French Agence Nationale de la Recherche (VAHIIA grant ANR-12-JS08-0001 and RAHIA SSOM grant ANR-16-CE29-0015) and from the Excellence Initiative of Aix-Marseille University—A*MIDEX, a French "Investissements d'Avenir programme."

Appendix A: IR Spectra

Supplementary figures and tables regarding the IR analysis. In the following, details on IR analysis are given. Spectra of both ices at 10 K (Figure 5, Table 1, Figure 6) and of residues at 300 K (Figure 7, Table 2) are shown.

Figure 5.

Figure 5. IR spectra of ices (H2O:CH3OH:NH3 ices, 2:1:1), taken at 10 K, one before irradiation (black), one after irradiation by argon (Ar7+ ions, magenta), and one after sulfur (S7+ ions, green), before warming up. Note that in the pre-irradiation case, only one layer has been deposited, while argon-irradiated and sulfur-irradiated represent 15 and 10 layers, respectively, which explains the difference in absorbance in water, methanol, and ammonia features.

Standard image High-resolution image
Figure 6.

Figure 6. Spectra of the first ice layer at 10 K, irradiated with S7+. From top to bottom: no irradiation, 3.3, 6.5, 16.3, 32.5, and 65.0 MGy. The features of CO2 at 2340 cm−1, of CO at 2140 cm−1, CH4 at 1304 cm−1, and OCN at 2169 cm−1 are evolving with irradiation.

Standard image High-resolution image
Figure 7.

Figure 7. IR spectra of the residue, taken at 300 K, after irradiation by argon (Ar7+ ions, magenta) and sulfur (S7+ ions, green). The residue resulted from irradiated H2O:CH3OH:NH3 ices (2:1:1).

Standard image High-resolution image

Table 1.  Spectral Features and their Attribution for the Ices Post-irradiation (Figure 5)

Position (cm−1) Assignment Species Source
2340 νas(CO2) CO2 (Gerakines et al. 1994)
2275 ν(NCO)/ ? HOCN/CO2 (Schutte et al. 1993; Signorell et al. 2006)
2169 ν(NCO) OCN (Hudson et al. 2001; Raunier et al. 2003)
2140   CO (Gerakines et al. 1996)
2089 ν(CN)and/or ν(13CO) HCN and/or CO (Maki & Blaine 1964)
1750-1700 ν(C=O) H2CO and other aldehydes (Bisschop et al. 2007)/(Bossa et al. 2009)
1723 ν(C=O) H2CO (Schutte et al. 1993)
1689 ν(C=O) HCOOH/NH2COOH? (Bisschop et al. 2007)/(Bossa et al. 2009)
1585 ν(CO-O) HCOO (Schutte et al. 1999) and ref. therein
1494 δ(CH) H2CO (Schutte et al. 1993)
1478   ${\mathrm{NH}}_{4}^{+}$ (Schutte et al. 1999) and ref. therein
1461   ${\mathrm{NH}}_{4}^{+}$ (Schutte et al. 1999) and ref. therein
1387 δ(CH) HCOO/HCOOH (Schutte et al. 1999) and ref. therein
1353 ν(CO-O) HCOO (Schutte et al. 1999) and ref. therein
1304   CH4 (Kerkhof et al. 1999)
660   CO2 (Colthup 1950)

Note. We only discuss here features that differ from the pre-irradiation spectrum (Figure 5, black label). All species assignments are tentative except the ones in bold.

Download table as:  ASCIITypeset image

Table 2.  Spectral Features and Their Attribution for the Residue at 300 K (Figure 7)

Position (cm−1) Assignment Species Source Difference between Spectras?
2338 ν(CO) CO2 (Gerakines et al. 1996) More pronounced in S-irr
2214   Alkynes? (Colthup 1950)  
2160 ν(NCO) OCN (Raunier et al. 2003) More pronounced in S-irr
1726   Carboxylic acids/aldehydes/imines (Colthup 1950)  
1669 ν(C=O) Amides/carbamic acid (Muñoz Caro & Schutte 2003)  
1589 ν(COO) HCOO (Schutte et al. 1999)  
1457 ν(CH) Alkanes (Colthup 1950), (Fresneau et al. 2017)  
1376 ν(CH) HCOO (Schutte et al. 1999)  
1341 ν(COO) HCOO (Schutte et al. 1999)  
1300   ?    
1228   ?    
1084   Ethylene glycol (Hudson et al. 2005)  
1050   Ethylene glycol (Hudson et al. 2005)  
887   Ethylene glycol (Hudson et al. 2005)  
820   ?    
767   HCOONH4+ ? (Muñoz Caro & Schutte 2003)  

Note. All species assignments are tentative except the ones in bold.

Download table as:  ASCIITypeset image

IR spectrum of ices at 10 K (before and after irradiation). A comparison between the spectra of the samples at 10 K after irradiation (Figure 5) shows no significant difference in the features present between the argon-irradiated sample (Ar7+ ions) and the sulfur-irradiated sample (S7+ ions). In addition to the expected features of remaining water, methanol and ammonia, the spectra show carbon monoxide and dioxide, formaldehyde, and ammonium ions. Some other features are attributable to nitrogenated molecules or ions such as HCN or OCN. These products are consistent with previous experiments on these type of ices.

IR spectrum of the residues at 300 K (after irradiation). A comparison between the spectra of the samples at 300 K (refractory residues) is given in Figure 7. Both spectra show similar IR features, assigned to formiate or methanoate ions and to chemical functions such as amides, carboxylic acids, imines, and alcanes, consistent with previous studies (Table 2). Of note, in the sulfur-irradiated sample (S7+ ions), the presence of CO2 and OCN features, more pronounced than in the argon-irradiated sample (argon-irradiated sample; Ar7+ ions), indicates a trapping of these molecules in the residue. We note that the sulfur-irradiated sample does not appear to display the features of sulfuric acid seen in previous experiments involving sulfur in water ice (Moore et al. 2007; Strazzulla et al. 2007). We attribute this to a much lower sulfur amount present in our experiments (each layer was subjected to a fluence of ≈1 × 1014 cm−2, to be compared to 3 × 1016 cm−2 in the experiments of Strazzulla et al. 2007), along with the presence of NH3 that makes sulfuric acid features at 1100 cm−1 difficult to distinguish. Other possible explanations include the lower temperature of our experiments (although the spectras during heating of the sample, not shown here, do not appear to present sulfuric acid features) or that in the presence of methanol and ammonia sulfur could be mostly incorporated into other products than sulfuric acid.

Table 3.  List of Detected Organosulfur (CHNOS) Molecular Formulas

m/z (exp) Error (ppm) Molecular Ion Formula Intensity/Arbitrary Units H/C O/C
147.05974 0.119 C5H12N2OS- 5.05E+06 2.4 0.2
161.00264 −0.016 C4H6N2O3S- 8.10E+06 1.5 0.75
163.0183 −0.077 C4H8N2O3S- 9.97E+06 2 0.75
164.01356 −0.143 C3H7N3O3S- 7.28E+06 2.33 1
166.01796 −0.039 C4H9NO4S- 1.94E+07 2.25 1
172.0186 0.125 C5H7N3O2S- 3.70E+06 1.4 0.4
173.00264 −0.014 C5H6N2O3S- 4.23E+06 1.2 0.6
175.01831 −0.129 C5H8N2O3S- 1.36E+07 1.6 0.6
175.06592 −0.083 C5H12N4OS- 6.07E+06 2.4 0.2
176.99757 −0.099 C4H6N2O4S- 1.27E+07 1.5 1
178.01797 −0.093 C5H9NO4S- 7.47E+06 1.8 0.8
178.0292 −0.076 C4H9N3O3S- 1.37E+07 2.25 0.75
179.01321 −0.042 C4H8N2O4S- 2.31E+07 2 1
180.03361 −0.036 C5H11NO4S- 1.19E+07 2.2 0.8
181.02887 −0.097 C4H10N2O4S- 2.72E+07 2.5 1
188.01354 −0.019 C5H7N3O3S- 1.07E+07 1.4 0.6
189.03394 −0.013 C6H10N2O3S- 1.16E+07 1.67 0.5
189.9928 0.008 C4H5N3O4S- 6.09E+06 1.25 1
190.02921 −0.124 C5H9N3O3S- 1.47E+07 1.8 0.6
191.01322 −0.092 C5H8N2O4S- 3.06E+07 1.6 0.8
192.00848 −0.148 C4H7N3O4S- 1.64E+07 1.75 1
192.03364 −0.19 C6H11NO4S- 7.62E+06 1.83 0.67
192.04484 −0.018 C5H11N3O3S- 1.20E+07 2.2 0.6
193.02887 −0.091 C5H10N2O4S- 3.72E+07 2 0.8
193.0401 −0.075 C4H10N4O3S- 9.04E+06 2.5 0.75
193.06529 −0.272 C6H14N2O3S- 4.64E+06 2.33 0.5
194.01289 −0.111 C5H9NO5S- 1.62E+07 1.8 1
194.02412 −0.095 C4H9N3O4S- 5.39E+07 2.25 1
195.04452 −0.09 C5H12N2O4S- 3.78E+07 2.4 0.8
196.02854 −0.11 C5H11NO5S- 3.29E+07 2.2 1
201.03395 −0.062 C7H10N2O3S- 4.86E+06 1.43 0.43
202.0292 −0.067 C6H9N3O3S- 1.47E+07 1.5 0.5
203.04961 −0.111 C7H12N2O3S- 6.61E+06 1.71 0.43
204.00843 0.105 C5H7N3O4S- 1.67E+07 1.4 0.8
205.02886 −0.037 C6H10N2O4S- 2.34E+07 1.67 0.67
205.04011 −0.119 C5H10N4O3S- 9.80E+06 2 0.6
206.0241 0.007 C5H9N3O4S- 2.96E+07 1.8 0.8
206.06049 −0.017 C6H13N3O3S- 8.91E+06 2.17 0.5
207.01937 −0.094 C4H8N4O4S- 2.44E+07 2 1
207.0445 0.012 C6H12N2O4S- 2.88E+07 2 0.67
207.05574 −0.022 C5H12N4O3S- 1.43E+07 2.4 0.6
208.03976 −0.041 C5H11N3O4S- 4.63E+07 2.2 0.8
209.02378 −0.06 C5H10N2O5S- 5.78E+07 2 1
209.03499 0.05 C4H10N4O4S- 3.81E+07 2.5 1
209.06013 0.108 C6H14N2O4S- 1.80E+07 2.33 0.67
210.00776 0.112 C5H9NO6S- 1.64E+07 1.8 1.2
210.04417 −0.007 C6H13NO5S- 1.79E+07 2.17 0.83
211.03941 0.036 C5H12N2O5S- 3.94E+07 2.4 1
212.02343 0.017 C5H11NO6S- 2.41E+07 2.2 1.2
216.04484 −0.016 C7H11N3O3S- 1.26E+07 1.57 0.43
216.11761 −0.016 C9H19N3OS- 4.44E+06 2.11 0.11
217.00368 0.094 C5H6N4O4S- 4.80E+06 1.2 0.8
217.02889 −0.173 C7H10N2O4S- 9.44E+06 1.43 0.57
217.04011 −0.113 C6H10N4O3S- 9.67E+06 1.67 0.5
218.02409 0.053 C6H9N3O4S- 2.30E+07 1.5 0.67
218.06049 −0.016 C7H13N3O3S- 1.57E+07 1.86 0.43
219.00813 −0.057 C6H8N2O5S- 9.04E+06 1.33 0.83
219.01934 0.048 C5H8N4O4S- 1.42E+07 1.6 0.8
219.04449 0.057 C7H12N2O4S- 1.94E+07 1.71 0.57
219.05572 0.071 C6H12N4O3S- 1.04E+07 2 0.5
220.00337 −0.016 C5H7N3O5S- 1.80E+07 1.4 1
220.02853 −0.052 C7H11NO5S- 7.25E+06 1.57 0.71
220.03975 0.007 C6H11N3O4S- 4.60E+07 1.83 0.67
221.02377 −0.011 C6H10N2O5S- 3.28E+07 1.67 0.83
221.03499 0.048 C5H10N4O4S- 5.46E+07 2 0.8
221.06011 0.192 C7H14N2O4S- 1.78E+07 2 0.57
222.01899 0.119 C5H9N3O5S- 4.42E+07 1.8 1
222.04418 −0.052 C7H13NO5S- 1.10E+07 1.86 0.71
222.05539 0.052 C6H13N3O4S- 4.34E+07 2.17 0.67
223.00299 0.191 C5H8N2O6S- 1.79E+07 1.6 1.2
223.03942 −0.011 C6H12N2O5S- 4.68E+07 2 0.83
223.05063 0.092 C5H12N4O4S- 3.68E+07 2.4 0.8
224.02344 −0.029 C6H11NO6S- 1.44E+07 1.83 1
224.03464 0.118 C5H11N3O5S- 6.53E+07 2.2 1
224.05978 0.172 C7H15NO5S- 1.06E+07 2.14 0.71
225.01865 0.144 C5H10N2O6S- 6.43E+07 2 1.2
225.05505 0.078 C6H14N2O5S- 5.44E+07 2.33 0.83
226.03907 0.06 C6H13NO6S- 2.77E+07 2.17 1
227.03433 0.011 C5H12N2O6S- 1.80E+07 2.4 1.2
228.05475 −0.072 C6H15NO6S- 9.55E+06 2.5 1
229.04007 0.068 C7H10N4O3S- 9.27E+06 1.43 0.43
230.02405 0.224 C7H9N3O4S- 1.00E+07 1.29 0.57
230.06052 −0.146 C8H13N3O3S- 1.03E+07 1.63 0.38
231.01933 0.089 C6H8N4O4S- 1.11E+07 1.33 0.67
231.03058 0.015 C5H8N6O3S- 2.75E+07 1.6 0.6
231.04448 0.097 C8H12N2O4S- 7.78E+06 1.5 0.5
231.05569 0.197 C7H12N4O3S- 1.60E+07 1.71 0.43
232.03974 0.05 C7H11N3O4S- 3.33E+07 1.57 0.57
233.02376 0.032 C7H10N2O5S- 1.59E+07 1.43 0.71
233.03498 0.088 C6H10N4O4S- 2.44E+07 1.67 0.67
233.06016 −0.032 C8H14N2O4S- 1.42E+07 1.75 0.5
233.07136 0.109 C7H14N4O3S- 1.19E+07 2 0.43
234.01899 0.113 C6H9N3O5S- 3.38E+07 1.5 0.83
234.03026 −0.045 C5H9N5O4S- 8.38E+06 1.8 0.8
234.05539 0.049 C7H13N3O4S- 5.57E+07 1.86 0.57
235.00307 −0.16 C6H8N2O6S- 7.38E+06 1.33 1
235.01425 0.066 C5H8N4O5S- 1.46E+07 1.6 1
235.03941 0.032 C7H12N2O5S- 3.82E+07 1.71 0.71
235.05064 0.045 C6H12N4O4S- 7.32E+07 2 0.67
235.07582 −0.074 C8H16N2O4S- 8.59E+06 2 0.5
235.087 0.151 C7H16N4O3S- 4.47E+06 2.29 0.43
235.99828 0.006 C5H7N3O6S- 7.28E+06 1.4 1.2
236.02347 −0.155 C7H11NO6S- 7.20E+06 1.57 0.86
236.03466 0.028 C6H11N3O5S- 8.58E+07 1.83 0.83
236.04588 0.083 C5H11N5O4S- 2.02E+07 2.2 0.8
236.07106 −0.036 C7H15N3O4S- 3.54E+07 2.14 0.57
237.01868 0.011 C6H10N2O6S- 3.75E+07 1.67 1
237.02988 0.15 C5H10N4O5S- 7.56E+07 2 1
237.05504 0.116 C7H14N2O5S- 5.48E+07 2 0.71
237.06629 0.044 C6H14N4O4S- 6.48E+07 2.33 0.67
238.01389 0.174 C5H9N3O6S- 3.65E+07 1.8 1.2
238.03904 0.183 C7H13NO6S- 1.27E+07 1.86 0.86
238.0503 0.069 C6H13N3O5S- 9.16E+07 2.17 0.83
239.03432 0.052 C6H12N2O6S- 7.70E+07 2 1
239.04555 0.065 C5H12N4O5S- 4.86E+07 2.4 1
239.07071 0.031 C7H16N2O5S- 5.86E+07 2.29 0.71
240.01836 −0.048 C6H11NO7S- 1.70E+07 1.83 1.17
240.02956 0.09 C5H11N3O6S- 3.77E+07 2.2 1.2
240.04489 −0.223 C9H11N3O3S- 5.39E+06 1.22 0.33
240.0547 0.14 C7H15NO6S- 1.42E+07 2.14 0.86
240.06597 −0.015 C6H15N3O5S- 2.76E+07 2.5 0.83
241.02234 −0.056 C8H10N4OS2- 4.76E+06 1.25 0.13
241.04008 0.023 C8H10N4O3S- 6.84E+06 1.25 0.38
241.04995 0.135 C6H14N2O6S- 2.96E+07 2.33 1
242.03399 0.035 C6H13NO7S- 1.03E+07 2.17 1.17
242.06045 0.151 C9H13N3O3S- 5.57E+06 1.44 0.33
243.05571 0.105 C8H12N4O3S- 1.13E+07 1.5 0.38
244.03974 0.047 C8H11N3O4S- 1.48E+07 1.38 0.5
245.02379 −0.092 C8H10N2O5S- 6.39E+06 1.25 0.63
245.03498 0.084 C7H10N4O4S- 2.14E+07 1.43 0.57
245.07132 0.267 C8H14N4O3S- 1.18E+07 1.75 0.38
246.01901 0.026 C7H9N3O5S- 1.02E+07 1.29 0.71
246.05538 0.087 C8H13N3O4S- 3.46E+07 1.63 0.5
247.01423 0.144 C6H8N4O5S- 8.15E+06 1.33 0.83
247.03941 0.03 C8H12N2O5S- 1.65E+07 1.5 0.63
247.05067 −0.079 C7H12N4O4S- 3.83E+07 1.71 0.57
247.08698 0.225 C8H16N4O3S- 9.11E+06 2 0.38
248.03465 0.067 C7H11N3O5S- 4.23E+07 1.57 0.71
248.04587 0.119 C6H11N5O4S- 2.65E+07 1.83 0.67
248.07102 0.127 C8H15N3O4S- 4.65E+07 1.88 0.5
248.08227 0.058 C7H15N5O3S- 2.60E+07 2.14 0.43
249.01869 −0.03 C7H10N2O6S- 1.19E+07 1.43 0.86
249.02989 0.102 C6H10N4O5S- 3.71E+07 1.67 0.83
249.05506 0.03 C8H14N2O5S- 2.88E+07 1.75 0.63
249.06627 0.122 C7H14N4O4S- 7.23E+07 2 0.57
250.01393 0.006 C6H9N3O6S- 2.58E+07 1.5 1
250.02516 0.018 C5H9N5O5S- 1.22E+07 1.8 1
250.05032 −0.014 C7H13N3O5S- 1.06E+08 1.86 0.71
250.06153 0.078 C6H13N5O4S- 3.95E+07 2.17 0.67
250.99791 0.149 C6H8N2O7S- 6.73E+06 1.33 1.17
251.00918 0.002 C5H8N4O6S- 9.77E+06 1.6 1.2
251.01655 0.094 C7H12N2O4S2- 6.54E+06 1.71 0.57
251.03433 0.01 C7H12N2O6S- 4.57E+07 1.71 0.86
251.04555 0.062 C6H12N4O5S- 1.12E+08 2 0.83
251.0707 0.07 C8H16N2O5S- 3.09E+07 2 0.63
251.08195 0.002 C7H16N4O4S- 5.37E+07 2.29 0.57
252.0184 −0.204 C7H11NO7S- 8.13E+06 1.57 1
252.02958 0.006 C6H11N3O6S- 6.87E+07 1.83 1
252.04078 0.137 C5H11N5O5S- 3.73E+07 2.2 1
252.05479 −0.224 C8H15NO6S- 8.80E+06 1.88 0.75
252.06595 0.065 C7H15N3O5S- 8.64E+07 2.14 0.71
253.0136 −0.01 C6H10N2O7S- 3.40E+07 1.67 1.17
253.02479 0.16 C5H10N4O6S- 4.40E+07 2 1.2
253.04997 0.049 C7H14N2O6S- 5.25E+07 2 0.86
253.06121 0.022 C6H14N4O5S- 8.22E+07 2.33 0.83
253.08636 0.03 C8H18N2O5S- 1.43E+07 2.25 0.63
254.03396 0.152 C7H13NO7S- 1.26E+07 1.86 1
254.04523 0.006 C6H13N3O6S- 5.19E+07 2.17 1
255.02925 −0.01 C6H12N2O7S- 3.03E+07 2 1.17
255.04046 0.08 C5H12N4O6S- 2.33E+07 2.4 1.2
255.05579 −0.214 C9H12N4O3S- 8.57E+06 1.33 0.33
256.03976 −0.033 C9H11N3O4S- 6.68E+06 1.22 0.44
256.04966 −0.045 C7H15NO7S- 1.71E+07 2.14 1
256.06087 0.045 C6H15N3O6S- 1.39E+07 2.5 1
257.03503 −0.115 C8H10N4O4S- 8.53E+06 1.25 0.5
257.04494 −0.165 C6H14N2O7S- 1.06E+07 2.33 1.17
258.05538 0.083 C9H13N3O4S- 1.65E+07 1.44 0.44
258.06665 −0.06 C8H13N5O3S- 1.41E+07 1.63 0.38
259.05066 −0.037 C8H12N4O4S- 3.38E+07 1.5 0.5
260.03465 0.063 C8H11N3O5S- 2.06E+07 1.38 0.63
260.04588 0.075 C7H11N5O4S- 2.14E+07 1.57 0.57
260.07107 −0.071 C9H15N3O4S- 2.71E+07 1.67 0.44
260.08229 −0.021 C8H15N5O3S- 1.53E+07 1.88 0.38
261.02994 −0.094 C7H10N4O5S- 2.29E+07 1.43 0.71
261.04117 −0.082 C6H10N6O4S- 5.57E+06 1.67 0.67
261.05505 0.067 C9H14N2O5S- 1.45E+07 1.56 0.56
261.06632 −0.075 C8H14N4O4S- 4.95E+07 1.75 0.5
262.01391 0.082 C7H9N3O6S- 1.12E+07 1.29 0.86
262.05034 −0.09 C8H13N3O5S- 5.19E+07 1.63 0.63
262.06155 −0.002 C7H13N5O4S- 4.75E+07 1.86 0.57
262.08675 −0.185 C9H17N3O4S- 2.69E+07 1.89 0.44
263.04555 0.059 C7H12N4O5S- 7.66E+07 1.71 0.71
263.07069 0.105 C9H16N2O5S- 1.92E+07 1.78 0.56
263.08197 −0.074 C8H16N4O4S- 4.88E+07 2 0.5
264.0296 −0.07 C7H11N3O6S- 4.80E+07 1.57 0.86
264.04081 0.017 C6H11N5O5S- 3.89E+07 1.83 0.83
264.06599 −0.089 C8H15N3O5S- 9.44E+07 1.88 0.63
264.07717 0.112 C7H15N5O4S- 3.95E+07 2.14 0.57
265.02484 −0.036 C6H10N4O6S- 3.96E+07 1.67 1
265.05 −0.066 C8H14N2O6S- 4.66E+07 1.75 0.75
265.06122 −0.017 C7H14N4O5S- 1.29E+08 2 0.71
265.08641 −0.16 C9H18N2O5S- 1.68E+07 2 0.56
265.09761 −0.036 C8H18N4O4S- 1.35E+07 2.25 0.5
266.00884 0.024 C6H9N3O7S- 1.83E+07 1.5 1.17
266.02012 −0.152 C5H9N5O6S- 8.59E+06 1.8 1.2
266.03398 0.07 C8H13NO7S- 1.00E+07 1.63 0.88
266.04522 0.043 C7H13N3O6S- 1.22E+08 1.86 0.86
266.05648 −0.058 C6H13N5O5S- 7.34E+07 2.17 0.83
266.08162 −0.013 C8H17N3O5S- 5.40E+07 2.13 0.63
267.02927 −0.084 C7H12N2O7S- 4.16E+07 1.71 1
267.04049 −0.036 C6H12N4O6S- 9.23E+07 2 1
267.05171 0.013 C5H12N6O5S- 1.23E+07 2.4 1
267.06564 −0.028 C8H16N2O6S- 4.85E+07 2 0.75
267.07686 0.021 C7H16N4O5S- 1.00E+08 2.29 0.71
268.0245 −0.013 C6H11N3O7S- 4.58E+07 1.83 1.17
268.03573 −0.002 C5H11N5O6S- 2.24E+07 2.2 1.2
268.04385 −0.285 C15H11NO2S- 7.57E+06 0.73 0.13
268.04974 −0.341 C8H15NO7S- 1.24E+07 1.88 0.88
268.06088 0.006 C7H15N3O6S- 7.93E+07 2.14 0.86
268.07208 0.129 C6H15N5O5S- 1.87E+07 2.5 0.83
269.04493 −0.121 C7H14N2O7S- 3.69E+07 2 1
269.05613 0.002 C6H14N4O6S- 4.46E+07 2.33 1
269.08132 −0.139 C8H18N2O6S- 3.03E+07 2.25 0.75
270.01906 −0.161 C9H9N3O5S- 5.82E+06 1 0.56
270.02891 0.013 C7H13NO8S- 1.10E+07 1.86 1.14
270.03024 0.035 C8H9N5O4S- 5.93E+06 1.13 0.5
270.04015 −0.013 C6H13N3O7S- 2.59E+07 2.17 1.17
270.06662 0.054 C9H13N5O3S- 7.01E+06 1.44 0.33
270.07653 0.006 C7H17N3O6S- 1.76E+07 2.43 0.86
271.05068 −0.109 C9H12N4O4S- 1.57E+07 1.33 0.44
271.06058 −0.12 C7H16N2O7S- 1.31E+07 2.29 1
272.03472 −0.197 C9H11N3O5S- 7.77E+06 1.22 0.56
272.04589 0.035 C8H11N5O4S- 1.33E+07 1.38 0.5
272.05584 −0.16 C6H15N3O7S- 8.60E+06 2.5 1.17
272.08233 −0.167 C9H15N5O3S- 1.48E+07 1.67 0.33
273.0663 0.002 C9H14N4O4S- 3.59E+07 1.56 0.44
274.05033 −0.049 C9H13N3O5S- 2.47E+07 1.44 0.56
274.06157 −0.075 C8H13N5O4S- 3.09E+07 1.63 0.5
275.03433 0.009 C9H12N2O6S- 9.40E+06 1.33 0.67
275.04561 −0.162 C8H12N4O5S- 4.04E+07 1.5 0.63
275.08197 −0.071 C9H16N4O4S- 4.35E+07 1.78 0.44
276.0296 −0.067 C8H11N3O6S- 1.83E+07 1.38 0.75
276.04083 −0.056 C7H11N5O5S- 2.41E+07 1.57 0.71
276.06596 0.024 C9H15N3O5S- 4.87E+07 1.67 0.56
276.07723 −0.11 C8H15N5O4S- 5.54E+07 1.88 0.5
277.02486 −0.106 C7H10N4O6S- 1.66E+07 1.43 0.86
277.05 −0.063 C9H14N2O6S- 1.79E+07 1.56 0.67
277.06125 −0.125 C8H14N4O5S- 9.00E+07 1.75 0.63
277.09767 −0.251 C9H18N4O4S- 2.75E+07 2 0.44
278.00881 0.131 C7H9N3O7S- 7.55E+06 1.29 1
278.04525 −0.067 C8H13N3O6S- 6.21E+07 1.63 0.75
278.05648 −0.056 C7H13N5O5S- 7.89E+07 1.86 0.71
278.08164 −0.085 C9H17N3O5S- 6.45E+07 1.89 0.56
278.09289 −0.146 C8H17N5O4S- 4.21E+07 2.13 0.5
279.02925 −0.009 C8H12N2O7S- 1.32E+07 1.5 0.88
279.0405 −0.07 C7H12N4O6S- 8.68E+07 1.71 0.86
279.05172 −0.023 C6H12N6O5S- 1.48E+07 2 0.83
279.06565 −0.063 C9H16N2O6S- 3.49E+07 1.78 0.67
279.0769 −0.124 C8H16N4O5S- 1.04E+08 2 0.63
280.02449 0.023 C7H11N3O7S- 3.98E+07 1.57 1
280.03577 −0.145 C6H11N5O6S- 3.09E+07 1.83 1
280.06087 0.041 C8H15N3O6S- 1.27E+08 1.88 0.75
280.07211 0.016 C7H15N5O5S- 8.59E+07 2.14 0.71
280.0973 −0.12 C9H19N3O5S- 3.21E+07 2.11 0.56
281.01977 −0.087 C6H10N4O7S- 1.99E+07 1.67 1.17
281.04486 0.133 C8H14N2O7S- 4.11E+07 1.75 0.88
281.05616 −0.105 C7H14N4O6S- 1.20E+08 2 0.86
281.06739 −0.094 C6H14N6O5S- 3.28E+07 2.33 0.83
281.08126 0.08 C9H18N2O6S- 3.23E+07 2 0.67
281.09252 −0.016 C8H18N4O5S- 6.69E+07 2.25 0.63
282.04016 −0.048 C7H13N3O7S- 6.44E+07 1.86 1
282.05141 −0.108 C6H13N5O6S- 4.88E+07 2.17 1
282.07652 0.041 C8H17N3O6S- 7.61E+07 2.13 0.75
283.02412 0.15 C7H12N2O8S- 2.22E+07 1.71 1.14
283.0354 −0.016 C6H12N4O7S- 4.95E+07 2 1.17
283.06055 −0.009 C8H16N2O7S- 3.41E+07 2 0.88
283.07176 0.072 C7H16N4O6S- 5.92E+07 2.29 0.86
283.09694 −0.026 C9H20N2O6S- 9.89E+06 2.22 0.67
284.03462 0.164 C10H11N3O5S- 5.53E+06 1.1 0.5
284.04458 −0.058 C8H15NO8S- 8.69E+06 1.88 1
284.05583 −0.118 C7H15N3O7S- 3.61E+07 2.14 1
284.06702 0.033 C6H15N5O6S- 1.90E+07 2.5 1
284.09215 0.111 C8H19N3O6S- 1.23E+07 2.38 0.75
285.0398 0.044 C7H14N2O8S- 1.52E+07 2 1.14
285.05105 −0.016 C6H14N4O7S- 2.52E+07 2.33 1.17
285.06635 −0.174 C10H14N4O4S- 1.63E+07 1.4 0.4
285.07625 −0.184 C8H18N2O7S- 1.27E+07 2.25 0.88
286.05036 −0.152 C10H13N3O5S- 9.31E+06 1.3 0.5
287.04562 −0.19 C9H12N4O5S- 1.91E+07 1.33 0.56
287.09314 0.152 C9H16N6O3S- 1.50E+07 1.78 0.33
288.02963 −0.168 C9H11N3O6S- 9.35E+06 1.22 0.67
288.04083 −0.054 C8H11N5O5S- 1.54E+07 1.38 0.63
288.06594 0.092 C10H15N3O5S- 2.24E+07 1.5 0.5
288.07722 −0.071 C9H15N5O4S- 4.31E+07 1.67 0.44
289.0612 0.054 C9H14N4O5S- 5.63E+07 1.56 0.56
289.07249 −0.144 C8H14N6O4S- 3.09E+07 1.75 0.5
290.04524 −0.029 C9H13N3O6S- 3.13E+07 1.44 0.67
290.05648 −0.053 C8H13N5O5S- 5.23E+07 1.63 0.63
290.08161 0.022 C10H17N3O5S- 3.86E+07 1.7 0.5
290.09287 −0.071 C9H17N5O4S- 5.15E+07 1.89 0.44
291.04049 −0.033 C8H12N4O6S- 4.39E+07 1.5 0.75
291.05176 −0.16 C7H12N6O5S- 1.91E+07 1.71 0.71
291.07685 0.053 C9H16N4O5S- 9.15E+07 1.78 0.56
291.08808 0.064 C8H16N6O4S- 3.79E+07 2 0.5
292.02451 −0.046 C8H11N3O7S- 1.60E+07 1.38 0.88
292.03573 −0.002 C7H11N5O6S- 2.71E+07 1.57 0.86
292.0609 −0.063 C9H15N3O6S- 6.86E+07 1.67 0.67
292.0721 0.05 C8H15N5O5S- 1.06E+08 1.88 0.63
292.09728 −0.046 C10H19N3O5S- 3.48E+07 1.9 0.5
292.10848 0.067 C9H19N5O4S- 2.78E+07 2.11 0.44
293.04488 0.06 C9H14N2O7S- 1.75E+07 1.56 0.78
293.05614 −0.032 C8H14N4O6S- 1.13E+08 1.75 0.75
293.06741 −0.159 C7H14N6O5S- 4.95E+07 2 0.71
293.08128 0.009 C10H18N2O6S- 1.88E+07 1.8 0.6
293.0925 0.053 C9H18N4O5S- 7.88E+07 2 0.56
294.04017 −0.08 C8H13N3O7S- 5.26E+07 1.63 0.88
294.05141 −0.104 C7H13N5O6S- 9.19E+07 1.86 0.86
294.07654 −0.029 C9H17N3O6S- 9.49E+07 1.89 0.67
294.0878 −0.121 C8H17N5O5S- 8.88E+07 2.13 0.63
295.03541 −0.049 C7H12N4O7S- 5.34E+07 1.71 1
295.0466 0.097 C6H12N6O6S- 1.65E+07 2 1
295.06057 −0.076 C9H16N2O7S- 3.25E+07 1.78 0.78
295.07182 −0.134 C8H16N4O6S- 1.27E+08 2 0.75
295.08304 −0.09 C7H16N6O5S- 2.89E+07 2.29 0.71
296.01947 −0.198 C7H11N3O8S- 2.22E+07 1.57 1.14
296.03069 −0.154 C6H11N5O7S- 1.65E+07 1.83 1.17
296.05578 0.056 C8H15N3O7S- 8.21E+07 1.88 0.88
296.06705 −0.069 C7H15N5O6S- 8.25E+07 2.14 0.86
296.09221 −0.096 C9H19N3O6S- 4.99E+07 2.11 0.67
297.03985 −0.126 C8H14N2O8S- 2.70E+07 1.75 1
297.05108 −0.116 C7H14N4O7S- 7.23E+07 2 1
297.06228 −0.005 C6H14N6O6S- 2.99E+07 2.33 1
297.06637 −0.234 C11H14N4O4S- 7.63E+06 1.27 0.36
297.0762 −0.008 C9H18N2O7S- 3.31E+07 2 0.78
297.08746 −0.099 C8H18N4O6S- 6.92E+07 2.25 0.75
298.03506 0.005 C7H13N3O8S- 3.55E+07 1.86 1.14
298.0463 −0.018 C6H13N5O7S- 2.85E+07 2.17 1.17
298.06158 −0.102 C10H13N5O4S- 1.15E+07 1.3 0.4
298.07148 −0.112 C8H17N3O7S- 4.39E+07 2.13 0.88
298.08267 0.032 C7H17N5O6S- 2.30E+07 2.43 0.86
299.04556 0.018 C10H12N4O5S- 1.02E+07 1.2 0.5
299.05546 0.008 C8H16N2O8S- 1.90E+07 2 1
299.06672 −0.082 C7H16N4O7S- 2.95E+07 2.29 1
300.05075 −0.128 C7H15N3O8S- 1.86E+07 2.14 1.14
300.06196 −0.052 C6H15N5O7S- 1.90E+07 2.5 1.17
300.07724 −0.135 C10H15N5O4S- 2.35E+07 1.5 0.4
301.06123 −0.048 C10H14N4O5S- 2.60E+07 1.4 0.5
301.99439 0.227 C6H13N3O5S3- 6.19E+06 2.17 0.83
302.05649 −0.084 C9H13N5O5S- 2.90E+07 1.44 0.56
303.04049 −0.031 C9H12N4O6S- 1.75E+07 1.33 0.67
303.07689 −0.081 C10H16N4O5S- 5.15E+07 1.6 0.5
303.08813 −0.104 C9H16N6O4S- 3.71E+07 1.78 0.44
304.06087 0.038 C10H15N3O6S- 2.81E+07 1.5 0.6
304.07212 −0.018 C9H15N5O5S- 6.70E+07 1.67 0.56
305.05615 −0.064 C9H14N4O6S- 6.05E+07 1.56 0.67
305.06743 −0.218 C8H14N6O5S- 3.99E+07 1.75 0.63
306.04014 0.021 C9H13N3O7S- 2.40E+07 1.44 0.78
306.05141 −0.1 C8H13N5O6S- 5.35E+07 1.63 0.75
306.07656 −0.093 C10H17N3O6S- 5.61E+07 1.7 0.6
306.08776 0.015 C9H17N5O5S- 1.04E+08 1.89 0.56
307.03543 −0.112 C8H12N4O7S- 3.51E+07 1.5 0.88
307.07183 −0.161 C9H16N4O6S- 1.23E+08 1.78 0.67
307.08306 −0.151 C8H16N6O5S- 7.49E+07 2 0.63
308.03065 −0.018 C7H11N5O7S- 1.40E+07 1.57 1
308.05584 −0.141 C9H15N3O7S- 6.47E+07 1.67 0.78
308.06703 −0.002 C8H15N5O6S- 1.18E+08 1.88 0.75
308.07826 0.008 C7H15N7O5S- 1.83E+07 2.14 0.71
308.0922 −0.06 C10H19N3O6S- 6.57E+07 1.9 0.6
308.10345 −0.115 C9H19N5O5S- 7.63E+07 2.11 0.56
308.11735 −0.054 C12H23NO6S- 3.28E+07 1.92 0.5
309.05109 −0.144 C8H14N4O7S- 9.45E+07 1.75 0.88
309.06234 −0.199 C7H14N6O6S- 5.53E+07 2 0.86
309.07621 −0.04 C10H18N2O7S- 2.34E+07 1.8 0.7
309.08743 0.002 C9H18N4O6S- 1.10E+08 2 0.67
310.03507 −0.027 C8H13N3O8S- 3.35E+07 1.63 1
310.04634 −0.147 C7H13N5O7S- 6.10E+07 1.86 1
310.07147 −0.076 C9H17N3O7S- 9.80E+07 1.89 0.78
310.08271 −0.098 C8H17N5O6S- 1.01E+08 2.13 0.75
311.03038 −0.223 C7H12N4O8S- 3.37E+07 1.71 1.14
311.05549 −0.088 C9H16N2O8S- 2.32E+07 1.78 0.89
311.06667 0.082 C8H16N4O7S- 1.02E+08 2 0.88
311.07791 0.059 C7H16N6O6S- 4.21E+07 2.29 0.86
312.05076 −0.155 C8H15N3O8S- 5.75E+07 1.88 1
312.06197 −0.082 C7H15N5O7S- 6.13E+07 2.14 1
312.08712 −0.075 C9H19N3O7S- 4.34E+07 2.11 0.78
313.04602 −0.19 C7H14N4O8S- 6.14E+07 2 1.14
313.05728 −0.276 C6H14N6O7S- 2.34E+07 2.33 1.17
313.08232 0.081 C8H18N4O7S- 3.38E+07 2.25 0.88
313.11877 −0.126 C9H22N4O6S- 1.89E+07 2.44 0.67
314.06638 −0.059 C8H17N3O8S- 2.46E+07 2.13 1
314.07763 −0.113 C7H17N5O7S- 2.71E+07 2.43 1
315.07684 0.081 C11H16N4O5S- 3.39E+07 1.45 0.45
315.08816 −0.195 C10H16N6O4S- 3.48E+07 1.6 0.4
316.01005 0.185 C7H15N3O5S3- 1.15E+07 2.14 0.71
316.07213 −0.049 C10H15N5O5S- 4.92E+07 1.5 0.5
317.05612 0.033 C10H14N4O6S- 3.38E+07 1.4 0.6
317.09252 −0.014 C11H18N4O5S- 5.29E+07 1.64 0.45
317.10377 −0.068 C10H18N6O4S- 4.13E+07 1.8 0.4
318.05139 −0.033 C9H13N5O6S- 3.21E+07 1.44 0.67
318.07657 −0.121 C11H17N3O6S- 3.14E+07 1.55 0.55
319.03543 −0.108 C9H12N4O7S- 1.65E+07 1.33 0.78
319.04666 −0.099 C8H12N6O6S- 1.68E+07 1.5 0.75
319.0718 −0.061 C10H16N4O6S- 8.22E+07 1.6 0.6
319.08307 −0.177 C9H16N6O5S- 7.62E+07 1.78 0.56
319.10815 0.049 C11H20N4O5S- 5.19E+07 1.82 0.45
320.05589 −0.292 C10H15N3O7S- 3.72E+07 1.5 0.7
320.06708 −0.158 C9H15N5O6S- 9.79E+07 1.67 0.67
320.10343 −0.048 C10H19N5O5S- 9.50E+07 1.9 0.5
321.05102 0.079 C9H14N4O7S- 6.06E+07 1.56 0.78
321.06225 0.089 C8H14N6O6S- 5.50E+07 1.75 0.75
321.0875 −0.216 C10H18N4O6S- 1.27E+08 1.8 0.6
321.09873 −0.207 C9H18N6O5S- 8.74E+07 2 0.56
322.03502 0.129 C9H13N3O8S- 1.81E+07 1.44 0.89
322.04628 0.045 C8H13N5O7S- 4.81E+07 1.63 0.88
322.07153 −0.259 C10H17N3O7S- 7.34E+07 1.7 0.7
322.08274 −0.188 C9H17N5O6S- 1.57E+08 1.89 0.67
322.11903 0.107 C10H21N5O5S- 4.61E+07 2.1 0.5
323.06677 −0.231 C9H16N4O7S- 1.31E+08 1.78 0.78
323.07797 −0.128 C8H16N6O6S- 1.03E+08 2 0.75
323.10307 0.032 C10H20N4O6S- 9.03E+07 2 0.6
324.05078 −0.211 C9H15N3O8S- 5.12E+07 1.67 0.89
324.06202 −0.233 C8H15N5O7S- 1.19E+08 1.88 0.88
324.07322 −0.131 C7H15N7O6S- 2.50E+07 2.14 0.86
324.08708 0.051 C10H19N3O7S- 7.70E+07 1.9 0.7
324.09833 −0.002 C9H19N5O6S- 1.10E+08 2.11 0.67
325.046 −0.122 C8H14N4O8S- 6.26E+07 1.75 1
325.05727 −0.235 C7H14N6O7S- 4.39E+07 2 1
325.07117 −0.177 C10H18N2O8S- 2.38E+07 1.8 0.8
325.08239 −0.137 C9H18N4O7S- 1.15E+08 2 0.78
325.09358 −0.005 C8H18N6O6S- 5.14E+07 2.25 0.75
326.02996 0.051 C8H13N3O9S- 2.19E+07 1.63 1.13
326.0412 0.029 C7H13N5O8S- 3.18E+07 1.86 1.14
326.0664 −0.118 C9H17N3O8S- 6.34E+07 1.89 0.89
326.07768 −0.262 C8H17N5O7S- 9.97E+07 2.13 0.88
326.10276 −0.041 C10H21N3O7S- 3.75E+07 2.1 0.7
327.05038 −0.008 C9H16N2O9S- 1.57E+07 1.78 1
327.06159 0.063 C8H16N4O8S- 6.52E+07 2 1
327.07279 0.164 C7H16N6O7S- 4.94E+07 2.29 1
328.04562 0.02 C8H15N3O9S- 3.13E+07 1.88 1.13
328.0569 −0.123 C7H15N5O8S- 5.14E+07 2.14 1.14
328.0722 −0.261 C11H15N5O5S- 2.85E+07 1.36 0.45
329.0562 −0.211 C11H14N4O6S- 1.71E+07 1.27 0.55
329.06741 −0.141 C10H14N6O5S- 2.23E+07 1.4 0.5
329.07723 0.093 C8H18N4O8S- 2.85E+07 2.25 1
331.02098 0.083 C7H16N4O5S3- 8.73E+06 2.29 0.71
331.07176 0.062 C11H16N4O6S- 4.11E+07 1.45 0.55
331.08301 0.011 C10H16N6O5S- 5.63E+07 1.6 0.5
332.06702 0.029 C10H15N5O6S- 5.01E+07 1.5 0.6
332.07822 0.128 C9H15N7O5S- 2.60E+07 1.67 0.56
332.10344 −0.077 C11H19N5O5S- 8.17E+07 1.73 0.45
333.05107 −0.074 C10H14N4O7S- 2.69E+07 1.4 0.7
333.06231 −0.095 C9H14N6O6S- 3.87E+07 1.56 0.67
333.0874 0.092 C11H18N4O6S- 7.46E+07 1.64 0.55
334.04628 0.043 C9H13N5O7S- 2.74E+07 1.44 0.78
334.0827 −0.061 C10H17N5O6S- 1.21E+08 1.7 0.6
335.06671 −0.043 C10H16N4O7S- 8.51E+07 1.6 0.7
335.07791 0.055 C9H16N6O6S- 9.80E+07 1.78 0.67
335.10307 0.031 C11H20N4O6S- 9.44E+07 1.82 0.55
335.11437 −0.169 C10H20N6O5S- 7.49E+07 2 0.5
336.05074 −0.085 C10H15N3O8S- 2.79E+07 1.5 0.8
336.06199 −0.135 C9H15N5O7S- 9.30E+07 1.67 0.78
336.0871 −0.01 C11H19N3O7S- 5.68E+07 1.73 0.64
336.09833 −0.001 C10H19N5O6S- 1.43E+08 1.9 0.6
337.04596 0.001 C9H14N4O8S- 4.21E+07 1.56 0.89
337.05722 −0.079 C8H14N6O7S- 4.47E+07 1.75 0.88
337.08242 −0.221 C10H18N4O7S- 1.29E+08 1.8 0.7
337.09363 −0.153 C9H18N6O6S- 1.27E+08 2 0.67
338.06635 0.034 C10H17N3O8S- 4.99E+07 1.7 0.8
338.07759 0.013 C9H17N5O7S- 1.40E+08 1.89 0.78
338.08884 −0.037 C8H17N7O6S- 5.17E+07 2.13 0.75
338.10275 −0.01 C11H21N3O7S- 4.98E+07 1.91 0.64
338.11402 −0.12 C10H21N5O6S- 8.91E+07 2.1 0.6
339.06166 −0.146 C9H16N4O8S- 8.54E+07 1.78 0.89
339.07291 −0.196 C8H16N6O7S- 9.22E+07 2 0.88
339.098 −0.013 C10H20N4O7S- 8.89E+07 2 0.7
339.10921 0.055 C9H20N6O6S- 5.23E+07 2.22 0.67
340.05689 −0.09 C8H15N5O8S- 7.39E+07 1.88 1
340.06808 0.037 C7H15N7O7S- 2.06E+07 2.14 1
340.08201 0.004 C10H19N3O8S- 5.99E+07 1.9 0.8
340.09325 −0.016 C9H19N5O7S- 9.13E+07 2.11 0.78
341.04084 0.104 C8H14N4O9S- 3.60E+07 1.75 1.13
341.05208 0.084 C7H14N6O8S- 2.18E+07 2 1.14
341.07726 0.001 C9H18N4O8S- 7.30E+07 2 0.89
341.08852 −0.078 C8H18N6O7S- 5.96E+07 2.25 0.88
342.06135 −0.215 C9H17N3O9S- 3.39E+07 1.89 1
342.07257 −0.177 C8H17N5O8S- 6.76E+07 2.13 1
342.08379 −0.139 C7H17N7O7S- 2.90E+07 2.43 1
342.08779 −0.075 C12H17N5O5S- 3.01E+07 1.42 0.42
343.0566 −0.217 C8H16N4O9S- 4.66E+07 2 1.13
343.06784 −0.238 C7H16N6O8S- 3.21E+07 2.29 1.14
344.06711 −0.234 C11H15N5O6S- 3.11E+07 1.36 0.55
344.07698 −0.155 C9H19N3O9S- 2.23E+07 2.11 1
345.08739 0.117 C12H18N4O6S- 3.84E+07 1.5 0.5
345.09865 0.039 C11H18N6O5S- 6.37E+07 1.64 0.45
346.08273 −0.146 C11H17N5O6S- 7.26E+07 1.55 0.55
346.09396 −0.137 C10H17N7O5S- 4.46E+07 1.7 0.5
347.06671 −0.042 C11H16N4O7S- 3.83E+07 1.45 0.64
347.07795 −0.062 C10H16N6O6S- 6.55E+07 1.6 0.6
347.10304 0.117 C12H20N4O6S- 5.80E+07 1.67 0.5
348.06197 −0.073 C10H15N5O7S- 4.58E+07 1.5 0.7
348.09833 −0.001 C11H19N5O6S- 1.11E+08 1.73 0.55
348.10961 −0.136 C10H19N7O5S- 6.18E+07 1.9 0.5
349.08237 −0.07 C11H18N4O7S- 8.40E+07 1.64 0.64
349.0936 −0.062 C10H18N6O6S- 1.22E+08 1.8 0.6
350.0776 −0.016 C10H17N5O7S- 1.13E+08 1.7 0.7
350.08885 −0.064 C9H17N7O6S- 7.01E+07 1.89 0.67
350.11399 −0.03 C11H21N5O6S- 1.07E+08 1.91 0.55
351.06168 −0.198 C10H16N4O8S- 6.32E+07 1.6 0.8
351.0729 −0.161 C9H16N6O7S- 8.97E+07 1.78 0.78
351.09799 0.016 C11H20N4O7S- 1.00E+08 1.82 0.64
351.10921 0.053 C10H20N6O6S- 1.08E+08 2 0.6
352.05686 −0.001 C9H15N5O8S- 5.96E+07 1.67 0.89
352.08197 0.118 C11H19N3O8S- 4.53E+07 1.73 0.73
352.09323 0.041 C10H19N5O7S- 1.43E+08 1.9 0.7
352.10452 −0.121 C9H19N7O6S- 6.70E+07 2.11 0.67
353.04087 0.016 C9H14N4O9S- 2.11E+07 1.56 1
353.05208 0.081 C8H14N6O8S- 2.66E+07 1.75 1
353.07729 −0.084 C10H18N4O8S- 9.30E+07 1.8 0.8
353.08856 −0.188 C9H18N6O7S- 1.24E+08 2 0.78
354.06134 −0.179 C10H17N3O9S- 3.24E+07 1.7 0.9
354.07257 −0.171 C9H17N5O8S- 1.04E+08 1.89 0.89
354.08381 −0.191 C8H17N7O7S- 5.49E+07 2.13 0.88
354.09767 −0.024 C11H21N3O8S- 4.15E+07 1.91 0.73
354.10889 0.013 C10H21N5O7S- 8.20E+07 2.1 0.7
355.05656 −0.097 C9H16N4O9S- 5.41E+07 1.78 1
355.06782 −0.173 C8H16N6O8S- 6.95E+07 2 1
355.08305 −0.103 C12H16N6O5S- 1.73E+07 1.33 0.42
355.09289 0.058 C10H20N4O8S- 6.75E+07 2 0.8
355.10412 0.066 C9H20N6O7S- 6.33E+07 2.22 0.78
356.05183 −0.156 C8H15N5O9S- 3.79E+07 1.88 1.13
356.07696 −0.094 C10H19N3O9S- 3.80E+07 1.9 0.9
356.08818 −0.058 C9H19N5O8S- 7.78E+07 2.11 0.89
356.09938 0.035 C8H19N7O7S- 2.94E+07 2.38 0.88
357.07219 −0.041 C9H18N4O9S- 5.05E+07 2 1
357.08342 −0.032 C8H18N6O8S- 5.23E+07 2.25 1
357.09863 0.094 C12H18N6O5S- 3.54E+07 1.5 0.42
358.05623 −0.108 C9H17N3O10S- 2.03E+07 1.89 1.11
358.06747 −0.127 C8H17N5O9S- 3.91E+07 2.13 1.13
359.07799 −0.171 C11H16N6O6S- 3.93E+07 1.45 0.55
359.08782 0.015 C9H20N4O9S- 2.46E+07 2.22 1
360.06194 0.012 C11H15N5O7S- 2.06E+07 1.36 0.64
360.09833 −0.001 C12H19N5O6S- 6.78E+07 1.58 0.5
360.10961 −0.132 C11H19N7O5S- 5.56E+07 1.73 0.45
361.09355 0.079 C11H18N6O6S- 8.19E+07 1.64 0.55
362.07767 −0.209 C11H17N5O7S- 6.41E+07 1.55 0.64
362.08891 −0.228 C10H17N7O6S- 5.73E+07 1.7 0.6
363.07284 0.01 C10H16N6O7S- 5.50E+07 1.6 0.7
363.09798 0.043 C12H20N4O7S- 6.49E+07 1.67 0.58
363.10926 −0.087 C11H20N6O6S- 1.18E+08 1.82 0.55
364.05692 −0.166 C10H15N5O8S- 3.06E+07 1.5 0.8
364.09326 −0.043 C11H19N5O7S- 1.19E+08 1.73 0.64
364.1045 −0.062 C10H19N7O6S- 8.94E+07 1.9 0.6
365.07723 0.084 C11H18N4O8S- 6.31E+07 1.64 0.73
365.08846 0.092 C10H18N6O7S- 1.21E+08 1.8 0.7
365.11359 0.152 C12H22N4O7S- 7.21E+07 1.83 0.58
365.12488 −0.004 C11H22N6O6S- 8.97E+07 2 0.55
366.07253 −0.056 C10H17N5O8S- 8.86E+07 1.7 0.8
366.08378 −0.102 C9H17N7O7S- 6.65E+07 1.89 0.78
366.09764 0.059 C12H21N3O8S- 3.56E+07 1.75 0.67
366.10893 −0.097 C11H21N5O7S- 1.29E+08 1.91 0.64
366.12015 −0.061 C10H21N7O6S- 6.62E+07 2.1 0.6
367.06781 −0.14 C9H16N6O8S- 6.73E+07 1.78 0.89
367.09291 0.001 C11H20N4O8S- 8.60E+07 1.82 0.73
367.10414 0.01 C10H20N6O7S- 1.19E+08 2 0.7
368.0518 −0.069 C9H15N5O9S- 3.32E+07 1.67 1
368.07691 0.045 C11H19N3O9S- 2.97E+07 1.73 0.82
368.08814 0.053 C10H19N5O8S- 1.13E+08 1.9 0.8
368.09937 0.061 C9H19N7O7S- 7.25E+07 2.11 0.78
369.07215 0.069 C10H18N4O9S- 5.42E+07 1.8 0.9
369.08339 0.05 C9H18N6O8S- 9.72E+07 2 0.89
370.05616 0.085 C10H17N3O10S- 1.33E+07 1.7 1
370.06739 0.093 C9H17N5O9S- 5.89E+07 1.89 1
370.07862 0.101 C8H17N7O8S- 3.75E+07 2.13 1
370.1038 0.026 C10H21N5O8S- 6.47E+07 2.1 0.8
371.05139 0.136 C9H16N4O10S- 2.14E+07 1.78 1.11
371.06264 0.09 C8H16N6O9S- 3.08E+07 2 1.13
371.08776 0.177 C10H20N4O9S- 4.43E+07 2 0.9
371.09901 0.131 C9H20N6O8S- 5.90E+07 2.22 0.89
372.08303 0.12 C9H19N5O9S- 5.16E+07 2.11 1
373.07824 0.224 C8H18N6O9S- 2.05E+07 2.25 1.13
373.09352 0.157 C12H18N6O6S- 4.47E+07 1.5 0.5
375.07291 −0.177 C11H16N6O7S- 2.92E+07 1.45 0.64
375.10924 −0.031 C12H20N6O6S- 8.50E+07 1.67 0.5
376.09322 0.065 C12H19N5O7S- 7.05E+07 1.58 0.58
377.07727 −0.025 C12H18N4O8S- 2.89E+07 1.5 0.67
377.0885 −0.017 C11H18N6O7S- 8.31E+07 1.64 0.64
377.09973 −0.009 C10H18N8O6S- 3.41E+07 1.8 0.6
378.07253 −0.054 C11H17N5O8S- 5.02E+07 1.55 0.73
378.08377 −0.073 C10H17N7O7S- 5.65E+07 1.7 0.7
378.10891 −0.041 C12H21N5O7S- 1.07E+08 1.75 0.58
379.0678 −0.109 C10H16N6O8S- 4.39E+07 1.6 0.8
379.09287 0.107 C12H20N4O8S- 5.68E+07 1.67 0.67
379.1041 0.115 C11H20N6O7S- 1.36E+08 1.82 0.64
380.08821 −0.133 C11H19N5O8S- 1.04E+08 1.73 0.73
380.09947 −0.204 C10H19N7O7S- 1.02E+08 1.9 0.7
380.12453 0.038 C12H23N5O7S- 8.49E+07 1.92 0.58
380.13576 0.046 C11H23N7O6S- 4.73E+07 2.09 0.55
381.07221 −0.091 C11H18N4O9S- 4.35E+07 1.64 0.82
381.08345 −0.109 C10H18N6O8S- 9.82E+07 1.8 0.8
381.09468 −0.101 C9H18N8O7S- 3.67E+07 2 0.78
381.1085 0.159 C12H22N4O8S- 6.36E+07 1.83 0.67
381.11973 0.167 C11H22N6O7S- 1.01E+08 2 0.64
382.0674 0.064 C10H17N5O9S- 5.40E+07 1.7 0.9
382.0786 0.15 C9H17N7O8S- 4.79E+07 1.89 0.89
382.10377 0.103 C11H21N5O8S- 1.03E+08 1.91 0.73
382.11504 0.007 C10H21N7O7S- 8.17E+07 2.1 0.7
383.0627 −0.069 C9H16N6O9S- 3.12E+07 1.78 1
383.08784 −0.038 C11H20N4O9S- 5.78E+07 1.82 0.82
383.09912 −0.161 C10H20N6O8S- 1.11E+08 2 0.8
383.11036 −0.179 C9H20N8O7S- 3.65E+07 2.22 0.78
384.08311 −0.092 C10H19N5O9S- 8.04E+07 1.9 0.9
384.09437 −0.163 C9H19N7O8S- 6.55E+07 2.11 0.89
384.11944 0.051 C11H23N5O8S- 5.11E+07 2.09 0.73
385.06708 0.027 C10H18N4O10S- 2.89E+07 1.8 1
385.07837 −0.121 C9H18N6O9S- 5.77E+07 2 1
386.06229 0.128 C9H17N5O10S- 2.55E+07 1.89 1.11
386.07352 0.136 C8H17N7O9S- 1.73E+07 2.13 1.13
386.09866 0.167 C10H21N5O9S- 5.20E+07 2.1 0.9
386.10992 0.097 C9H21N7O8S- 2.90E+07 2.33 0.89
387.08265 0.234 C10H20N4O10S- 2.69E+07 2 1
387.09391 0.164 C9H20N6O9S- 3.19E+07 2.22 1
388.09316 0.218 C13H19N5O7S- 3.37E+07 1.46 0.54
388.10444 0.097 C12H19N7O6S- 4.68E+07 1.58 0.5
389.08847 0.06 C12H18N6O7S- 4.28E+07 1.5 0.58
389.0997 0.068 C11H18N8O6S- 2.73E+07 1.64 0.55
390.07258 −0.181 C12H17N5O8S- 2.41E+07 1.42 0.67
390.10882 0.191 C13H21N5O7S- 6.00E+07 1.62 0.54
390.12007 0.147 C12H21N7O6S- 7.81E+07 1.75 0.5
391.06788 −0.311 C11H16N6O8S- 2.29E+07 1.45 0.73
391.10416 −0.042 C12H20N6O7S- 9.79E+07 1.67 0.58
392.08821 −0.129 C12H19N5O8S- 6.02E+07 1.58 0.67
392.09946 −0.172 C11H19N7O7S- 8.35E+07 1.73 0.64
392.12447 0.19 C13H23N5O7S- 7.73E+07 1.77 0.54
393.08338 0.073 C11H18N6O8S- 6.67E+07 1.64 0.73
393.09465 −0.022 C10H18N8O7S- 3.47E+07 1.8 0.7
393.10849 0.179 C13H22N4O8S- 4.46E+07 1.69 0.62
393.11982 −0.067 C12H22N6O7S- 1.24E+08 1.83 0.58
393.13109 −0.162 C11H22N8O6S- 5.30E+07 2 0.55
394.06747 −0.115 C11H17N5O9S- 3.05E+07 1.55 0.82
394.0787 −0.108 C10H17N7O8S- 3.52E+07 1.7 0.8
394.10379 0.049 C12H21N5O8S- 8.88E+07 1.75 0.67
394.11504 0.006 C11H21N7O7S- 1.04E+08 1.91 0.64
395.08786 −0.087 C12H20N4O9S- 4.31E+07 1.67 0.75
395.09912 −0.156 C11H20N6O8S- 1.17E+08 1.82 0.73
395.11038 −0.224 C10H20N8O7S- 6.00E+07 2 0.7
395.13542 0.059 C12H24N6O7S- 6.93E+07 2 0.58
396.08303 0.112 C11H19N5O9S- 6.24E+07 1.73 0.82
396.09427 0.095 C10H19N7O8S- 7.74E+07 1.9 0.8
396.11945 0.024 C12H23N5O8S- 7.21E+07 1.92 0.67
396.13069 0.006 C11H23N7O7S- 6.57E+07 2.09 0.64
397.07836 −0.092 C10H18N6O9S- 5.88E+07 1.8 0.9
397.10354 −0.162 C12H22N4O9S- 4.63E+07 1.83 0.75
397.11473 −0.054 C11H22N6O8S- 9.81E+07 2 0.73
398.07353 0.107 C9H17N7O9S- 2.32E+07 1.89 1
398.09868 0.112 C11H21N5O9S- 6.97E+07 1.91 0.82
398.10994 0.044 C10H21N7O8S- 7.77E+07 2.1 0.8
399.0828 −0.149 C11H20N4O10S- 3.00E+07 1.82 0.91
399.09405 −0.192 C10H20N6O9S- 7.53E+07 2 0.9
399.10527 −0.159 C9H20N8O8S- 3.36E+07 2.22 0.89
400.07797 0.049 C10H19N5O10S- 3.65E+07 1.9 1
400.08925 −0.069 C9H19N7O9S- 3.68E+07 2.11 1
400.11436 0.036 C11H23N5O9S- 4.33E+07 2.09 0.82
401.07319 0.121 C9H18N6O10S- 1.86E+07 2 1.11
403.10409 0.133 C13H20N6O7S- 4.42E+07 1.54 0.54
403.11532 0.14 C12H20N8O6S- 3.86E+07 1.67 0.5
404.09935 0.105 C12H19N7O7S- 4.51E+07 1.58 0.58
404.18033 −0.306 C24H27N3OS- 1.15E+08 1.13 0.04
405.11975 0.107 C13H22N6O7S- 8.26E+07 1.69 0.54
406.10382 −0.026 C13H21N5O8S- 5.45E+07 1.62 0.62
406.11511 −0.166 C12H21N7O7S- 9.77E+07 1.75 0.58
407.09912 −0.151 C12H20N6O8S- 7.76E+07 1.67 0.67
407.11038 −0.217 C11H20N8O7S- 6.03E+07 1.82 0.64
408.08306 0.036 C12H19N5O9S- 3.65E+07 1.58 0.75
408.09436 −0.129 C11H19N7O8S- 6.36E+07 1.73 0.73
408.11948 −0.05 C13H23N5O8S- 6.77E+07 1.77 0.62
408.13073 −0.092 C12H23N7O7S- 9.58E+07 1.92 0.58
409.07835 −0.065 C11H18N6O9S- 3.58E+07 1.64 0.82
409.1035 −0.06 C13H22N4O9S- 3.50E+07 1.69 0.69
409.11477 −0.15 C12H22N6O8S- 1.04E+08 1.83 0.67
409.12604 −0.241 C11H22N8O7S- 6.37E+07 2 0.64
410.09875 −0.062 C12H21N5O9S- 6.44E+07 1.75 0.75
410.11002 −0.152 C11H21N7O8S- 9.73E+07 1.91 0.73
411.08268 0.147 C12H20N4O10S- 2.19E+07 1.67 0.83
411.09395 0.057 C11H20N6O9S- 7.16E+07 1.82 0.82
411.10522 −0.033 C10H20N8O8S- 4.81E+07 2 0.8
411.11912 0.013 C13H24N4O9S- 3.00E+07 1.85 0.69
411.1304 −0.101 C12H24N6O8S- 7.32E+07 2 0.67
411.14164 −0.118 C11H24N8O7S- 2.98E+07 2.18 0.64
412.08922 0.006 C10H19N7O9S- 4.68E+07 1.9 0.9
412.11434 0.084 C12H23N5O9S- 5.76E+07 1.92 0.75
412.1256 0.018 C11H23N7O8S- 6.89E+07 2.09 0.73
413.07323 0.021 C10H18N6O10S- 2.15E+07 1.8 1
413.10964 −0.04 C11H22N6O9S- 6.97E+07 2 0.82
414.09368 −0.098 C11H21N5O10S- 3.99E+07 1.91 0.91
414.10497 −0.235 C10H21N7O9S- 5.07E+07 2.1 0.9
414.12011 0.042 C14H21N7O6S- 2.72E+07 1.5 0.43
417.11972 0.176 C14H22N6O7S- 3.93E+07 1.57 0.5
418.11509 −0.114 C13H21N7O7S- 5.50E+07 1.62 0.54
419.11032 −0.068 C12H20N8O7S- 3.46E+07 1.67 0.58
420.09431 −0.006 C12H19N7O8S- 3.40E+07 1.58 0.67
420.13075 −0.137 C13H23N7O7S- 7.58E+07 1.77 0.54
420.17519 −0.163 C24H27N3O2S- 1.45E+08 1.13 0.08
421.07845 −0.3 C12H18N6O9S- 1.88E+07 1.5 0.75
421.08967 −0.27 C11H18N8O8S- 1.66E+07 1.64 0.73
421.11472 −0.027 C13H22N6O8S- 6.60E+07 1.69 0.62
421.12591 0.075 C12H22N8O7S- 6.32E+07 1.83 0.58
422.09871 0.034 C13H21N5O9S- 3.84E+07 1.62 0.69
422.10994 0.041 C12H21N7O8S- 7.54E+07 1.75 0.67
422.14628 0.148 C13H25N7O7S- 6.72E+07 1.92 0.54
423.09408 −0.252 C12H20N6O9S- 5.43E+07 1.67 0.75
423.10532 −0.268 C11H20N8O8S- 4.90E+07 1.82 0.73
423.13041 −0.122 C13H24N6O8S- 8.44E+07 1.85 0.62
423.14164 −0.115 C12H24N8O7S- 5.92E+07 2 0.58
424.08924 −0.041 C11H19N7O9S- 3.86E+07 1.73 0.82
424.11433 0.105 C13H23N5O9S- 5.07E+07 1.77 0.69
424.1256 0.018 C12H23N7O8S- 8.62E+07 1.92 0.67
425.10965 −0.062 C12H22N6O9S- 7.58E+07 1.83 0.75
425.12093 −0.173 C11H22N8O8S- 6.60E+07 2 0.73
425.14597 0.091 C13H26N6O8S- 4.70E+07 2 0.62
426.09372 −0.189 C12H21N5O10S- 3.59E+07 1.75 0.83
426.10497 −0.229 C11H21N7O9S- 6.81E+07 1.91 0.82
426.14125 0.018 C12H25N7O8S- 5.19E+07 2.08 0.67
427.08894 −0.121 C11H20N6O10S- 3.50E+07 1.82 0.91
427.12525 0.055 C12H24N6O9S- 5.92E+07 2 0.75
427.13645 0.132 C11H24N8O8S- 3.55E+07 2.18 0.73
428.12051 0.029 C11H23N7O9S- 5.62E+07 2.09 0.82
429.10454 −0.003 C11H22N6O10S- 4.09E+07 2 0.91
430.11509 −0.11 C14H21N7O7S- 3.49E+07 1.5 0.5
431.1353 0.333 C15H24N6O7S- 4.06E+07 1.6 0.47
432.13068 0.029 C14H23N7O7S- 6.01E+07 1.64 0.5
433.126 −0.135 C13H22N8O7S- 5.78E+07 1.69 0.54
434.11002 −0.144 C13H21N7O8S- 5.78E+07 1.62 0.62
434.14625 0.213 C14H25N7O7S- 7.45E+07 1.79 0.5
435.10529 −0.192 C12H20N8O8S- 4.07E+07 1.67 0.67
435.13033 0.065 C14H24N6O8S- 7.48E+07 1.71 0.57
435.14162 −0.065 C13H24N8O7S- 7.93E+07 1.85 0.54
435.18616 −0.321 C24H28N4O2S- 1.26E+08 1.17 0.08
436.11445 −0.173 C14H23N5O9S- 4.37E+07 1.64 0.64
436.1257 −0.212 C13H23N7O8S- 1.03E+08 1.77 0.62
436.13696 −0.274 C12H23N9O7S- 5.16E+07 1.92 0.58
437.10964 −0.038 C13H22N6O9S- 7.23E+07 1.69 0.69
437.14598 0.065 C14H26N6O8S- 7.46E+07 1.86 0.57
437.15725 −0.019 C13H26N8O7S- 5.83E+07 2 0.54
437.16535 −0.148 C23H26N4O3S- 1.30E+08 1.13 0.13
438.0936 0.09 C13H21N5O10S- 3.29E+07 1.62 0.77
438.10491 −0.086 C12H21N7O9S- 7.11E+07 1.75 0.75
438.11617 −0.147 C11H21N9O8S- 3.59E+07 1.91 0.73
438.13002 0.01 C14H25N5O9S- 5.30E+07 1.79 0.64
438.14129 −0.074 C13H25N7O8S- 1.02E+08 1.92 0.62
439.10005 0.163 C11H20N8O9S- 3.75E+07 1.82 0.82
439.12521 0.145 C13H24N6O9S- 8.54E+07 1.85 0.69
439.13647 0.083 C12H24N8O8S- 8.34E+07 2 0.67
440.10927 0.044 C13H23N5O10S- 4.72E+07 1.77 0.77
440.12052 0.006 C12H23N7O9S- 9.47E+07 1.92 0.75
440.13179 −0.078 C11H23N9O8S- 4.57E+07 2.09 0.73
441.10458 −0.094 C12H22N6O10S- 6.30E+07 1.83 0.83
441.1158 −0.065 C11H22N8O9S- 6.21E+07 2 0.82
441.14089 0.076 C13H26N6O9S- 6.15E+07 2 0.69
442.09979 −0.006 C11H21N7O10S- 4.40E+07 1.91 0.91
442.1362 −0.062 C12H25N7O9S- 6.54E+07 2.08 0.75
443.12007 0.267 C12H24N6O10S- 4.83E+07 2 0.83
444.11547 −0.073 C11H23N7O10S- 3.49E+07 2.09 0.91
446.10996 −0.006 C14H21N7O8S- 3.05E+07 1.5 0.57
447.1303 0.131 C15H24N6O8S- 4.52E+07 1.6 0.53
448.12552 0.195 C14H23N7O8S- 6.81E+07 1.64 0.57
448.1702 −0.365 C25H27N3O3S- 1.04E+08 1.08 0.12
449.10961 0.03 C14H22N6O9S- 3.64E+07 1.57 0.64
449.1209 −0.097 C13H22N8O8S- 6.07E+07 1.69 0.62
449.15711 0.293 C14H26N8O7S- 6.54E+07 1.86 0.5
450.10483 0.094 C13H21N7O9S- 4.38E+07 1.62 0.69
450.14118 0.172 C14H25N7O8S- 9.26E+07 1.79 0.57
450.1494 −0.219 C24H25N3O4S- 6.12E+07 1.04 0.17
450.15257 −0.177 C13H25N9O7S- 5.18E+07 1.92 0.54
451.12529 −0.037 C14H24N6O9S- 6.92E+07 1.71 0.64
451.13654 −0.074 C13H24N8O8S- 9.35E+07 1.85 0.62
452.12046 0.138 C13H23N7O9S- 8.05E+07 1.77 0.69
452.13172 0.079 C12H23N9O8S- 4.96E+07 1.92 0.67
452.1568 0.238 C14H27N7O8S- 6.91E+07 1.93 0.57
452.17628 −0.211 C23H27N5O3S- 7.22E+07 1.17 0.13
453.11585 −0.173 C12H22N8O9S- 6.07E+07 1.83 0.75
453.14098 −0.125 C14H26N6O9S- 6.65E+07 1.86 0.64
453.15224 −0.184 C13H26N8O8S- 7.38E+07 2 0.62
454.09971 0.171 C12H21N7O10S- 3.92E+07 1.75 0.83
454.12486 0.175 C14H25N5O10S- 3.50E+07 1.79 0.71
454.13613 0.094 C13H25N7O9S- 8.16E+07 1.92 0.69
454.14742 −0.032 C12H25N9O8S- 4.54E+07 2.08 0.67
455.12009 0.216 C13H24N6O10S- 5.86E+07 1.85 0.77
455.13134 0.179 C12H24N8O9S- 6.70E+07 2 0.75
456.1154 0.082 C12H23N7O10S- 5.15E+07 1.92 0.83
456.12673 −0.13 C11H23N9O9S- 3.08E+07 2.09 0.82
457.09937 0.183 C12H22N6O11S- 2.29E+07 1.83 0.92
457.11074 −0.117 C11H22N8O10S- 2.79E+07 2 0.91
457.13586 −0.047 C13H26N6O10S- 4.09E+07 2 0.77
461.20179 −0.259 C26H30N4O2S- 8.23E+07 1.15 0.08
462.14121 0.103 C15H25N7O8S- 5.91E+07 1.67 0.53
463.12523 0.094 C15H24N6O9S- 3.85E+07 1.6 0.6
463.13644 0.144 C14H24N8O8S- 6.44E+07 1.71 0.57
463.18105 −0.247 C25H28N4O3S- 9.18E+07 1.12 0.12
464.12047 0.113 C14H23N7O9S- 5.00E+07 1.64 0.64
464.13165 0.227 C13H23N9O8S- 4.24E+07 1.77 0.62
465.11569 0.175 C13H22N8O9S- 4.13E+07 1.69 0.69
465.1521 0.121 C14H26N8O8S- 7.32E+07 1.86 0.57
465.16034 −0.3 C24H26N4O4S- 5.58E+07 1.08 0.17
466.1361 0.156 C14H25N7O9S- 7.79E+07 1.79 0.64
466.14736 0.098 C13H25N9O8S- 6.42E+07 1.92 0.62
467.12011 0.168 C14H24N6O10S- 4.59E+07 1.71 0.71
467.13135 0.153 C13H24N8O9S- 7.36E+07 1.85 0.69
468.11535 0.187 C13H23N7O10S- 5.05E+07 1.77 0.77
468.12662 0.108 C12H23N9O9S- 4.12E+07 1.92 0.75
468.15174 0.176 C14H27N7O9S- 7.40E+07 1.93 0.64
468.16311 −0.116 C13H27N9O8S- 3.96E+07 2.08 0.62
469.13574 0.21 C14H26N6O10S- 5.17E+07 1.86 0.71
469.14703 0.088 C13H26N8O9S- 6.80E+07 2 0.69
470.13106 0.058 C13H25N7O10S- 5.85E+07 1.92 0.77
471.11514 −0.077 C13H24N6O11S- 2.89E+07 1.85 0.85
471.12628 0.12 C12H24N8O10S- 4.11E+07 2 0.83
472.1103 0.111 C12H23N7O11S- 2.20E+07 1.92 0.92
475.12517 0.218 C16H24N6O9S- 2.09E+07 1.5 0.56
477.15208 0.16 C15H26N8O8S- 6.81E+07 1.73 0.53
477.19666 −0.156 C26H30N4O3S- 1.09E+08 1.15 0.12
477.96586 0.039 C10H17N5O7S5- 2.14E+07 1.7 0.7
478.13619 −0.037 C15H25N7O9S- 5.71E+07 1.67 0.6
478.14746 −0.114 C14H25N9O8S- 5.86E+07 1.79 0.57
479.12013 0.122 C15H24N6O10S- 2.86E+07 1.6 0.67
479.13138 0.087 C14H24N8O9S- 5.49E+07 1.71 0.64
479.14271 −0.116 C13H24N10O8S- 2.85E+07 1.85 0.62
479.16771 0.201 C15H28N8O8S- 6.71E+07 1.87 0.53
479.17595 −0.208 C25H28N4O4S- 1.01E+08 1.12 0.16
480.11538 0.12 C14H23N7O10S- 3.60E+07 1.64 0.71
480.12657 0.209 C13H23N9O9S- 3.77E+07 1.77 0.69
480.15172 0.213 C15H27N7O9S- 6.97E+07 1.8 0.6
480.16306 −0.009 C14H27N9O8S- 6.02E+07 1.93 0.57
480.17124 −0.293 C24H27N5O4S- 4.93E+07 1.13 0.17
481.13586 −0.045 C15H26N6O10S- 4.52E+07 1.73 0.67
481.14712 −0.101 C14H26N8O9S- 8.01E+07 1.86 0.64
481.15524 −0.259 C24H26N4O5S- 5.27E+07 1.08 0.21
482.13102 0.14 C14H25N7O10S- 5.88E+07 1.79 0.71
482.1423 0.043 C13H25N9O9S- 5.86E+07 1.92 0.69
482.16736 0.233 C15H29N7O9S- 4.84E+07 1.93 0.6
483.12624 0.2 C13H24N8O10S- 5.07E+07 1.85 0.77
483.16266 0.127 C14H28N8O9S- 5.37E+07 2 0.64
484.1468 −0.129 C14H27N7O10S- 5.68E+07 1.93 0.71
485.14195 0.075 C13H26N8O10S- 4.40E+07 2 0.77
489.15207 0.177 C16H26N8O8S- 4.41E+07 1.63 0.5
490.06689 −0.238 C11H21N7O11S2- 1.67E+07 1.91 1
490.1475 −0.193 C15H25N9O8S- 4.15E+07 1.67 0.53
491.13134 0.166 C15H24N8O9S- 3.14E+07 1.6 0.6
492.15184 −0.036 C16H27N7O9S- 4.79E+07 1.69 0.56
492.16318 −0.253 C15H27N9O8S- 5.70E+07 1.8 0.53
493.14709 −0.038 C15H26N8O9S- 6.05E+07 1.73 0.6
493.15832 −0.031 C14H26N10O8S- 3.61E+07 1.86 0.57
494.13115 −0.126 C15H25N7O10S- 3.85E+07 1.67 0.67
494.1424 −0.161 C14H25N9O9S- 5.05E+07 1.79 0.64
494.16745 0.046 C16H29N7O9S- 5.34E+07 1.81 0.56
494.17878 −0.151 C15H29N9O8S- 4.94E+07 1.93 0.53
495.12636 −0.047 C14H24N8O10S- 3.86E+07 1.71 0.71
495.13769 −0.243 C13H24N10O9S- 2.27E+07 1.85 0.69
495.15138 0.219 C16H28N6O10S- 3.28E+07 1.75 0.63
495.16268 0.084 C15H28N8O9S- 6.64E+07 1.87 0.6
495.17408 −0.253 C14H28N10O8S- 3.27E+07 2 0.57
496.12144 0.293 C13H23N9O10S- 2.10E+07 1.77 0.77
496.15789 0.162 C14H27N9O9S- 5.71E+07 1.93 0.64
496.166 0.029 C24H27N5O5S- 3.60E+07 1.13 0.21
497.14207 −0.168 C14H26N8O10S- 5.32E+07 1.86 0.71
497.15332 −0.202 C13H26N10O9S- 3.61E+07 2 0.69
497.17513 0.106 C26H30N2O6S- 2.17E+08 1.15 0.23
497.1784 −0.057 C15H30N8O9S- 4.19E+07 2 0.6
498.12605 −0.095 C14H25N7O11S- 3.33E+07 1.79 0.79
498.13726 −0.049 C13H25N9O10S- 3.74E+07 1.92 0.77
498.16235 0.075 C15H29N7O10S- 4.63E+07 1.93 0.67
499.12123 0.043 C13H24N8O11S- 2.37E+07 1.85 0.85
499.15753 0.213 C14H28N8O10S- 4.27E+07 2 0.71
503.16775 0.112 C17H28N8O8S- 3.79E+07 1.65 0.47
504.08244 −0.033 C12H23N7O11S2- 1.35E+07 1.92 0.92
504.15172 0.203 C17H27N7O9S- 2.77E+07 1.59 0.53
504.16309 −0.068 C16H27N9O8S- 4.33E+07 1.69 0.5
505.14708 −0.017 C16H26N8O9S- 3.86E+07 1.63 0.56
505.18354 −0.165 C17H30N8O8S- 4.28E+07 1.76 0.47
506.06185 −0.319 C11H21N7O12S2- 1.54E+07 1.91 1.09
506.14243 −0.216 C15H25N9O9S- 3.42E+07 1.67 0.6
506.16742 0.104 C17H29N7O9S- 4.04E+07 1.71 0.53
506.17872 −0.029 C16H29N9O8S- 4.82E+07 1.81 0.5
507.12624 0.19 C15H24N8O10S- 2.52E+07 1.6 0.67
507.13764 −0.139 C14H24N10O9S- 1.74E+07 1.71 0.64
507.16272 0.003 C16H28N8O9S- 5.48E+07 1.75 0.56
507.17412 −0.326 C15H28N10O8S- 4.02E+07 1.87 0.53
507.22453 −0.535 C19H36N6O8S- 3.57E+07 1.89 0.42
508.14673 0.015 C16H27N7O10S- 3.83E+07 1.69 0.63
508.15801 −0.078 C15H27N9O9S- 5.67E+07 1.8 0.6
508.18313 −0.015 C17H31N7O9S- 3.19E+07 1.82 0.53
509.142 −0.027 C15H26N8O10S- 4.37E+07 1.73 0.67
509.15334 −0.237 C14H26N10O9S- 2.95E+07 1.86 0.64
509.17842 −0.095 C16H30N8O9S- 4.67E+07 1.88 0.56
510.12615 −0.289 C15H25N7O11S- 2.08E+07 1.67 0.73
510.13727 −0.068 C14H25N9O10S- 3.18E+07 1.79 0.71
510.1624 −0.025 C16H29N7O10S- 4.24E+07 1.81 0.63
510.17368 −0.117 C15H29N9O9S- 5.25E+07 1.93 0.6
510.18169 −0.05 C25H29N5O5S- 6.94E+07 1.16 0.2
511.15763 0.013 C15H28N8O10S- 5.24E+07 1.87 0.67
511.16565 0.06 C25H28N4O6S- 5.29E+07 1.12 0.24
511.16901 −0.275 C14H28N10O9S- 3.64E+07 2 0.64
512.14177 −0.229 C15H27N7O11S- 3.00E+07 1.8 0.73
512.1529 −0.028 C14H27N9O10S- 4.06E+07 1.93 0.71
518.17871 −0.009 C17H29N9O8S- 3.89E+07 1.71 0.47
519.16272 0.003 C17H28N8O9S- 3.84E+07 1.65 0.53
520.14674 −0.005 C17H27N7O10S- 2.18E+07 1.59 0.59
520.15799 −0.037 C16H27N9O9S- 4.31E+07 1.69 0.56
520.18323 −0.207 C18H31N7O9S- 3.31E+07 1.72 0.5
521.15334 −0.231 C15H26N10O9S- 2.88E+07 1.73 0.6
521.17848 −0.208 C17H30N8O9S- 4.51E+07 1.76 0.53
521.18972 −0.222 C16H30N10O8S- 3.67E+07 1.88 0.5
521.24015 −0.463 C20H38N6O8S- 2.60E+07 1.9 0.4
522.09298 0.016 C12H25N7O12S2- 1.67E+07 2.08 1
522.13732 −0.162 C15H25N9O10S- 2.25E+07 1.67 0.67
522.16234 0.091 C17H29N7O10S- 2.86E+07 1.71 0.59
522.17359 0.058 C16H29N9O9S- 5.59E+07 1.81 0.56
523.12121 0.079 C15H24N8O11S- 1.37E+07 1.6 0.73
523.1576 0.07 C16H28N8O10S- 4.39E+07 1.75 0.63
523.16581 −0.248 C26H28N4O6S- 2.86E+07 1.08 0.23
523.16888 −0.02 C15H28N10O9S- 4.34E+07 1.87 0.6
523.24596 −0.57 C22H36N8O5S- 3.43E+07 1.64 0.23
524.14162 0.062 C16H27N7O11S- 2.38E+07 1.69 0.69
524.15289 −0.009 C15H27N9O10S- 4.07E+07 1.8 0.67
524.17798 0.11 C17H31N7O10S- 3.13E+07 1.82 0.59
524.18931 −0.075 C16H31N9O9S- 3.84E+07 1.94 0.56
524.1973 0.028 C26H31N5O5S- 1.06E+08 1.19 0.19
525.13691 −0.016 C15H26N8O11S- 2.45E+07 1.73 0.73
525.1482 −0.125 C14H26N10O10S- 2.50E+07 1.86 0.71
525.1733 −0.026 C16H30N8O10S- 4.24E+07 1.88 0.63
525.18465 −0.248 C15H30N10O9S- 2.97E+07 2 0.6
525.19263 −0.127 C25H30N6O5S- 4.58E+07 1.2 0.2
526.13215 0.001 C14H25N9O11S- 1.73E+07 1.79 0.79
526.16856 −0.047 C15H29N9O10S- 3.91E+07 1.93 0.67
528.14777 0.058 C14H27N9O11S- 2.18E+07 1.93 0.79
532.15805 −0.149 C17H27N9O9S- 2.17E+07 1.59 0.53
533.17838 −0.016 C18H30N8O9S- 3.09E+07 1.67 0.5
534.17368 −0.111 C17H29N9O9S- 3.57E+07 1.71 0.53
535.15759 0.087 C17H28N8O10S- 3.02E+07 1.65 0.59
535.16886 0.018 C16H28N10O9S- 3.35E+07 1.75 0.56
535.19412 −0.184 C18H32N8O9S- 3.71E+07 1.78 0.5
536.15288 0.01 C16H27N9O10S- 2.98E+07 1.69 0.63
536.16421 −0.171 C15H27N11O9S- 1.75E+07 1.8 0.6
536.17819 −0.284 C18H31N7O10S- 2.42E+07 1.72 0.56
536.18929 −0.036 C17H31N9O9S- 4.50E+07 1.82 0.53
537.14818 −0.085 C15H26N10O10S- 1.66E+07 1.73 0.67
537.17324 0.087 C17H30N8O10S- 3.94E+07 1.76 0.59
537.18455 −0.057 C16H30N10O9S- 3.98E+07 1.88 0.56
538.15722 0.153 C17H29N7O11S- 2.38E+07 1.71 0.65
538.16865 −0.213 C16H29N9O10S- 4.21E+07 1.81 0.63
538.19355 0.255 C18H33N7O10S- 2.22E+07 1.83 0.56
539.15241 0.262 C16H28N8O11S- 2.77E+07 1.75 0.69
539.16383 −0.084 C15H28N10O10S- 2.99E+07 1.87 0.67
540.14785 −0.092 C15H27N9O11S- 2.38E+07 1.8 0.73
540.18419 −0.008 C16H31N9O10S- 3.41E+07 1.94 0.63
540.19221 0.036 C26H31N5O6S- 8.38E+07 1.19 0.23
541.16819 0.021 C16H30N8O11S- 2.96E+07 1.88 0.69
548.1893 −0.054 C18H31N9O9S- 3.52E+07 1.72 0.5
549.17323 0.103 C18H30N8O10S- 2.40E+07 1.67 0.56
549.24631 −0.462 C20H38N8O8S- 3.49E+07 1.9 0.4
550.16859 −0.099 C17H29N9O10S- 3.24E+07 1.71 0.59
550.1935 0.341 C19H33N7O10S- 1.88E+07 1.74 0.53
550.20495 −0.054 C18H33N9O9S- 3.31E+07 1.83 0.5
551.16391 −0.228 C16H28N10O10S- 2.61E+07 1.75 0.63
551.189 −0.115 C18H32N8O10S- 2.71E+07 1.78 0.56
551.20028 −0.2 C17H32N10O9S- 3.03E+07 1.88 0.53
552.1729 0.095 C18H31N7O11S- 1.98E+07 1.72 0.61
552.18421 −0.044 C17H31N9O10S- 3.87E+07 1.82 0.59
553.16815 0.093 C17H30N8O11S- 3.28E+07 1.76 0.65
553.17958 −0.263 C16H30N10O10S- 3.32E+07 1.88 0.63
553.18763 −0.274 C26H30N6O6S- 1.82E+07 1.15 0.23
554.16342 0.055 C16H29N9O11S- 2.63E+07 1.81 0.69
555.15882 −0.217 C15H28N10O11S- 1.73E+07 1.87 0.73
562.20501 −0.159 C19H33N9O9S- 3.35E+07 1.74 0.47
562.26655 −0.165 C22H41N7O8S- 2.48E+07 1.86 0.36
563.18886 0.136 C19H32N8O10S- 2.40E+07 1.68 0.53
563.20021 −0.072 C18H32N10O9S- 3.08E+07 1.78 0.5
563.22525 0.127 C20H36N8O9S- 2.74E+07 1.8 0.45
564.18424 −0.097 C18H31N9O10S- 2.97E+07 1.72 0.56
564.19548 −0.109 C17H31N11O9S- 2.52E+07 1.82 0.53
564.28216 −0.093 C22H43N7O8S- 1.45E+07 1.95 0.36
565.16827 −0.121 C18H30N8O11S- 2.01E+07 1.67 0.61
565.17959 −0.275 C17H30N10O10S- 2.87E+07 1.76 0.59
566.16352 −0.123 C17H29N9O11S- 2.19E+07 1.71 0.65
566.1747 −0.029 C16H29N11O10S- 1.72E+07 1.81 0.63
566.1999 −0.114 C18H33N9O10S- 3.34E+07 1.83 0.56
567.15865 0.087 C16H28N10O11S- 1.82E+07 1.75 0.69
567.18373 0.214 C18H32N8O11S- 2.39E+07 1.78 0.61
567.19521 −0.221 C17H32N10O10S- 3.31E+07 1.88 0.59
568.17906 0.071 C17H31N9O11S- 2.41E+07 1.82 0.65
568.18715 −0.01 C27H31N5O7S- 2.68E+07 1.15 0.26
569.16312 −0.006 C17H30N8O12S- 1.32E+07 1.76 0.71
569.17432 0.052 C16H30N10O11S- 1.89E+07 1.88 0.69
571.23067 −0.461 C22H36N8O8S- 3.42E+07 1.64 0.36
573.24636 −0.529 C22H38N8O8S- 4.13E+07 1.73 0.36
575.26197 −0.458 C22H40N8O8S- 3.87E+07 1.82 0.36
576.18413 0.096 C19H31N9O10S- 2.02E+07 1.63 0.53
576.28214 −0.056 C23H43N7O8S- 1.81E+07 1.87 0.35
577.17939 0.077 C18H30N10O10S- 2.10E+07 1.67 0.56
577.24108 −0.188 C21H38N8O9S- 2.93E+07 1.81 0.43
577.27742 −0.11 C22H42N8O8S- 2.06E+07 1.91 0.36
578.16345 0.001 C18H29N9O11S- 1.52E+07 1.61 0.61
578.17467 0.023 C17H29N11O10S- 1.63E+07 1.71 0.59
578.19989 −0.094 C19H33N9O10S- 2.81E+07 1.74 0.53
578.28785 0.018 C25H41N9O5S- 1.58E+07 1.64 0.2
579.19515 −0.113 C18H32N10O10S- 2.63E+07 1.78 0.56
579.25638 0.417 C21H40N8O9S- 2.51E+07 1.9 0.43
579.28327 −0.277 C24H40N10O5S- 1.74E+07 1.67 0.21
580.1791 0.001 C18H31N9O11S- 2.20E+07 1.72 0.61
580.19055 −0.373 C17H31N11O10S- 2.27E+07 1.82 0.59
580.30347 0.07 C25H43N9O5S- 1.36E+07 1.72 0.2
581.17437 −0.035 C17H30N10O11S- 2.28E+07 1.76 0.65
581.29902 −0.448 C24H42N10O5S- 2.01E+07 1.75 0.21
582.20591 0.126 C17H33N11O10S- 2.10E+07 1.94 0.59
582.21403 −0.004 C27H33N7O6S- 2.74E+07 1.22 0.22
582.24652 −0.222 C23H37N9O7S- 2.68E+07 1.61 0.3
582.28294 −0.283 C24H41N9O6S- 2.70E+07 1.71 0.25
583.19808 −0.063 C27H32N6O7S- 2.54E+07 1.19 0.26
586.24158 −0.468 C22H37N9O8S- 3.99E+07 1.68 0.36
587.26197 −0.449 C23H40N8O8S- 3.65E+07 1.74 0.35
588.25722 −0.45 C22H39N9O8S- 4.19E+07 1.77 0.36
589.24103 −0.099 C22H38N8O9S- 2.92E+07 1.73 0.41
589.2774 −0.074 C23H42N8O8S- 2.72E+07 1.83 0.35
589.28851 0.135 C22H42N10O7S- 2.21E+07 1.91 0.32
590.19993 −0.16 C20H33N9O10S- 2.01E+07 1.65 0.5
590.27281 −0.346 C22H41N9O8S- 3.28E+07 1.86 0.36
591.1952 −0.195 C19H32N10O10S- 2.30E+07 1.68 0.53
591.23156 −0.153 C20H36N10O9S- 2.76E+07 1.8 0.45
591.25644 0.307 C22H40N8O9S- 2.51E+07 1.82 0.41
592.19048 −0.247 C18H31N11O10S- 2.01E+07 1.72 0.56
593.17444 −0.153 C18H30N10O11S- 1.42E+07 1.67 0.61
593.21077 −0.06 C19H34N10O10S- 2.32E+07 1.79 0.53
593.23294 −0.045 C25H46N4O4S4- 2.32E+07 1.84 0.16
594.19487 −0.201 C19H33N9O11S- 1.81E+07 1.74 0.58
594.20618 −0.331 C18H33N11O10S- 2.12E+07 1.83 0.56
595.19014 −0.236 C18H32N10O11S- 2.49E+07 1.78 0.61
595.27826 −0.396 C24H40N10O6S- 2.29E+07 1.67 0.25
596.17386 0.261 C18H31N9O12S- 1.36E+07 1.72 0.67
596.2621 −0.1 C24H39N9O7S- 2.42E+07 1.63 0.29
596.29852 −0.158 C25H43N9O6S- 1.81E+07 1.72 0.24
597.29392 −0.411 C24H42N10O6S- 2.40E+07 1.75 0.25
598.24147 −0.275 C23H37N9O8S- 2.38E+07 1.61 0.35
598.27776 −0.116 C24H41N9O7S- 3.08E+07 1.71 0.29
599.30956 −0.393 C24H44N10O6S- 1.62E+07 1.83 0.25
600.25705 −0.157 C23H39N9O8S- 3.52E+07 1.7 0.35
600.26828 −0.152 C22H39N11O7S- 3.22E+07 1.77 0.32
600.29345 −0.182 C24H43N9O7S- 2.49E+07 1.79 0.29
601.25253 −0.541 C22H38N10O8S- 3.23E+07 1.73 0.36
601.27734 0.027 C24H42N8O8S- 2.88E+07 1.75 0.33
601.2887 −0.184 C23H42N10O7S- 3.21E+07 1.83 0.3
602.23632 −0.165 C22H37N9O9S- 2.44E+07 1.68 0.41
602.27277 −0.273 C23H41N9O8S- 3.27E+07 1.78 0.35
602.28396 −0.202 C22H41N11O7S- 2.50E+07 1.86 0.32
603.25667 −0.08 C23H40N8O9S- 2.91E+07 1.74 0.39
603.26805 −0.324 C22H40N10O8S- 2.99E+07 1.82 0.36
604.25193 −0.098 C22H39N9O9S- 2.85E+07 1.77 0.41
604.28832 −0.107 C23H43N9O8S- 2.44E+07 1.87 0.35
605.23586 0.044 C22H38N8O10S- 1.78E+07 1.73 0.45
605.27207 0.333 C23H42N8O9S- 2.22E+07 1.83 0.39
605.28338 0.206 C22H42N10O8S- 2.23E+07 1.91 0.36
606.20597 0.022 C19H33N11O10S- 1.74E+07 1.74 0.53
606.26736 0.265 C22H41N9O9S- 1.99E+07 1.86 0.41
607.19008 −0.133 C19H32N10O11S- 1.53E+07 1.68 0.58
608.30966 −0.002 C25H43N11O5S- 1.30E+07 1.72 0.2
609.2057 −0.083 C19H34N10O11S- 2.05E+07 1.79 0.58
609.22782 0.014 C25H46N4O5S4- 1.84E+07 1.84 0.2
609.29385 −0.288 C25H42N10O6S- 1.87E+07 1.68 0.24
609.30522 −0.513 C24H42N12O5S- 1.30E+07 1.75 0.21
610.27764 0.083 C25H41N9O7S- 2.38E+07 1.64 0.28
610.28915 −0.371 C24H41N11O6S- 2.06E+07 1.71 0.25
611.27309 −0.246 C24H40N10O7S- 2.62E+07 1.67 0.29
611.3095 −0.287 C25H44N10O6S- 1.59E+07 1.76 0.24
612.2247 −0.176 C28H35N7O7S- 2.87E+07 1.25 0.25
612.25701 −0.089 C24H39N9O8S- 2.45E+07 1.63 0.33
612.29348 −0.228 C25H43N9O7S- 2.29E+07 1.72 0.28
612.30468 −0.174 C24H43N11O6S- 2.15E+07 1.79 0.25
613.28868 −0.148 C24H42N10O7S- 2.93E+07 1.75 0.29
614.27267 −0.105 C24H41N9O8S- 3.19E+07 1.71 0.33
614.30896 0.05 C25H45N9O7S- 1.97E+07 1.8 0.28
615.2681 −0.399 C23H40N10O8S- 3.15E+07 1.74 0.35
615.30438 −0.228 C24H44N10O7S- 2.48E+07 1.83 0.29
616.25194 −0.113 C23H39N9O9S- 2.51E+07 1.7 0.39
616.26333 −0.368 C22H39N11O8S- 2.36E+07 1.77 0.36
616.28832 −0.105 C24H43N9O8S- 2.39E+07 1.79 0.33
616.29951 −0.035 C23H43N11O7S- 1.62E+07 1.87 0.3
617.28353 −0.041 C23H42N10O8S- 3.10E+07 1.83 0.35
618.2675 0.033 C23H41N9O9S- 2.26E+07 1.78 0.39
619.22632 0.104 C21H36N10O10S- 1.69E+07 1.71 0.48
619.26263 0.225 C22H40N10O9S- 2.35E+07 1.82 0.41
620.21037 0.049 C21H35N9O11S- 1.23E+07 1.67 0.52
623.30947 −0.233 C26H44N10O6S- 1.29E+07 1.69 0.23
624.30464 −0.107 C25H43N11O6S- 1.85E+07 1.72 0.24
625.28878 −0.305 C25H42N10O7S- 2.16E+07 1.68 0.28
625.30011 −0.46 C24H42N12O6S- 1.56E+07 1.75 0.25
626.28385 −0.018 C24H41N11O7S- 2.36E+07 1.71 0.29
626.32035 −0.202 C25H45N11O6S- 1.48E+07 1.8 0.24
627.30436 −0.192 C25H44N10O7S- 2.09E+07 1.76 0.28
628.28826 −0.007 C25H43N9O8S- 2.39E+07 1.72 0.32
629.28382 −0.501 C24H42N10O8S- 2.95E+07 1.75 0.33
629.31941 0.017 C25H54N6O6S3- 1.16E+07 2.16 0.24
630.26751 0.017 C24H41N9O9S- 2.14E+07 1.71 0.38
631.29914 0.023 C24H44N10O8S- 2.02E+07 1.83 0.33
632.28288 0.459 C24H43N9O9S- 2.08E+07 1.79 0.38
633.27816 0.41 C23H42N10O9S- 2.28E+07 1.83 0.39
634.22604 0.017 C22H37N9O11S- 1.21E+07 1.68 0.5
637.20066 −0.15 C20H34N10O12S- 1.11E+07 1.7 0.6
638.32049 −0.418 C26H45N11O6S- 1.35E+07 1.73 0.23
639.26774 0.179 C25H40N10O8S- 1.75E+07 1.6 0.32
639.30422 0.031 C26H44N10O7S- 1.60E+07 1.69 0.27
639.31559 −0.184 C25H44N12O6S- 1.51E+07 1.76 0.24
640.29956 −0.112 C25H43N11O7S- 2.02E+07 1.72 0.28
641.28364 −0.211 C25H42N10O8S- 2.06E+07 1.68 0.32
641.29491 −0.269 C24H42N12O7S- 2.10E+07 1.75 0.29
641.31984 0.077 C26H46N10O7S- 1.54E+07 1.77 0.27
642.26732 0.312 C25H41N9O9S- 1.82E+07 1.64 0.36
642.30399 −0.132 C26H45N9O8S- 1.67E+07 1.73 0.31
642.31512 0.029 C25H45N11O7S- 1.70E+07 1.8 0.28
643.29901 0.225 C25H44N10O8S- 1.91E+07 1.76 0.32
644.25802 −0.002 C23H39N11O9S- 1.66E+07 1.7 0.39
644.28285 0.497 C25H43N9O9S- 2.01E+07 1.72 0.36
644.29435 0.083 C24H43N11O8S- 2.55E+07 1.79 0.33
645.27818 0.371 C24H42N10O9S- 2.09E+07 1.75 0.38
645.31469 0.177 C25H46N10O8S- 1.24E+07 1.84 0.32
650.23971 −0.182 C23H41N9O9S2- 1.53E+07 1.78 0.39
651.2163 −0.131 C21H36N10O12S- 1.07E+07 1.71 0.57
654.27895 −0.3 C25H41N11O8S- 1.69E+07 1.64 0.32
654.31513 0.013 C26H45N11O7S- 1.67E+07 1.73 0.27
655.26251 0.396 C25H40N10O9S- 1.34E+07 1.6 0.36
655.29903 0.19 C26H44N10O8S- 1.37E+07 1.69 0.31
656.29436 0.066 C25H43N11O8S- 1.91E+07 1.72 0.32
656.33077 0.028 C26H47N11O7S- 1.11E+07 1.81 0.27
657.27837 0.075 C25H42N10O9S- 1.58E+07 1.68 0.36
657.32621 −0.262 C25H46N12O7S- 1.04E+07 1.84 0.28
658.31006 −0.01 C25H45N11O8S- 1.54E+07 1.8 0.32
659.29376 0.469 C25H44N10O9S- 1.83E+07 1.76 0.36
660.25305 −0.176 C23H39N11O10S- 1.32E+07 1.7 0.43
660.27781 0.417 C25H43N9O10S- 1.43E+07 1.72 0.4
661.27324 0.143 C24H42N10O10S- 1.64E+07 1.75 0.42
661.30944 0.423 C25H46N10O9S- 1.37E+07 1.84 0.36
661.33462 0.38 C27H50N8O9S- 7.36E+06 1.85 0.33
665.24012 0.007 C25H46N8O5S4- 1.40E+07 1.84 0.2
665.25083 0.468 C31H38N8O7S- 1.27E+07 1.23 0.23
667.21126 −0.196 C21H36N10O13S- 8.07E+06 1.71 0.62
667.31039 −0.004 C26H44N12O7S- 1.45E+07 1.69 0.27
668.29431 0.14 C26H43N11O8S- 1.31E+07 1.65 0.31
668.33072 0.102 C27H47N11O7S- 9.03E+06 1.74 0.26
669.28975 −0.146 C25H42N12O8S- 1.53E+07 1.68 0.32
669.32615 −0.168 C26H46N12O7S- 1.30E+07 1.77 0.27
671.29397 0.148 C26H44N10O9S- 1.42E+07 1.69 0.35
671.3054 −0.145 C25H44N12O8S- 1.48E+07 1.76 0.32
671.3305 −0.068 C27H48N10O8S- 1.02E+07 1.78 0.3
672.28897 0.518 C25H43N11O9S- 1.89E+07 1.72 0.36
672.32562 0.124 C26H47N11O8S- 1.30E+07 1.81 0.31
673.30956 0.237 C26H46N10O9S- 1.13E+07 1.77 0.35
673.32091 0.063 C25H46N12O8S- 1.03E+07 1.84 0.32
675.32514 0.34 C26H48N10O9S- 1.00E+07 1.85 0.35
677.25057 −0.117 C24H42N10O9S2- 1.04E+07 1.75 0.38
677.28642 −0.02 C25H54N6O7S4- 1.98E+07 2.16 0.28
677.34089 0.191 C26H50N10O9S- 8.69E+06 1.92 0.35
678.25202 0.362 C24H41N9O12S- 8.31E+06 1.71 0.5
684.3369 0.053 C26H47N13O7S- 7.44E+06 1.81 0.27
686.27982 −0.005 C24H41N13O9S- 1.14E+07 1.71 0.38
687.3004 −0.266 C25H44N12O9S- 1.12E+07 1.76 0.36
689.3408 0.318 C27H50N10O9S- 9.97E+06 1.85 0.33
695.27584 0.002 C28H52N6O6S4- 1.10E+07 1.86 0.21
696.33685 0.124 C27H47N13O7S- 8.82E+06 1.74 0.26
698.31603 0.246 C26H45N13O8S- 1.23E+07 1.73 0.31
700.10011 −0.128 C18H31N13O7S5- 1.59E+07 1.72 0.39
700.32027 0.498 C27H47N11O9S- 1.07E+07 1.74 0.33
700.33181 0.059 C26H47N13O8S- 1.12E+07 1.81 0.31
701.28638 0.038 C27H54N6O7S4- 1.80E+07 2 0.26
701.31602 −0.217 C26H46N12O9S- 9.93E+06 1.77 0.35
703.32037 −0.122 C27H48N10O10S- 7.54E+06 1.78 0.37
706.27694 0.141 C25H45N11O9S2- 9.58E+06 1.8 0.36
709.29414 0.457 C25H46N10O12S- 8.63E+06 1.84 0.48
713.35209 0.228 C28H50N12O8S- 5.54E+06 1.79 0.29
718.277 0.055 C26H45N11O9S2- 8.97E+06 1.73 0.35
721.2942 0.367 C26H46N10O12S- 7.26E+06 1.77 0.46
722.26451 0.071 C23H41N13O12S- 5.65E+06 1.78 0.52
726.34744 0.085 C28H49N13O8S- 6.42E+06 1.75 0.29
728.36306 0.126 C28H51N13O8S- 6.27E+06 1.82 0.29
730.37874 0.084 C28H53N13O8S- 5.95E+06 1.89 0.29
741.28393 0.492 C25H46N10O14S- 6.17E+06 1.84 0.56
742.3788 0.002 C29H53N13O8S- 8.67E+06 1.83 0.28
745.25152 0.045 C26H42N12O10S2- 5.37E+06 1.62 0.38
746.28337 −0.245 C26H45N13O9S2- 6.19E+06 1.73 0.35
753.19854 −0.09 C22H38N14O10S3- 5.75E+06 1.73 0.45
793.13914 0.36 C31H38N8O7S5- 5.38E+06 1.23 0.23
818.30459 −0.333 C29H49N13O11S2- 5.84E+06 1.69 0.38
895.16491 −0.556 C26H40N16O10S5- 6.29E+06 1.54 0.38

Note. The measured, experimental m/z values, its error in ppm (difference between experimental and theoretical m/z values), the assigned molecular ion formula, mass spectrometric intensity, and atomic ratios H/C and O/C are reported.

Download table as:  ASCIITypeset images: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Appendix B: FT-ICR-MS Data Analysis

Supplementary figures regarding the FT-ICR-MS analysis. In the following, details on data mining of experimental FT-ICR-MS data are given. First, error analysis on formula assignment is reported (Figure 8). Then, distribution of organosulfur (CHNOS) compounds in contrast to CHO and CHNO compounds highlights the significance of the number of sulfur-bearing compounds in the S7+-bombarded astrophysical ice analogs (Figure 9). Due to the complexity and high dimensionality of the obtained FT-ICR-MS data, various types of representations are reported to get as much information as possible. The figures are grouped into four categories, (i) m-z-related representations (Figure 10) and (ii) atomic ratio plots (Figure 11), (iii) DBE-related representations (Figure 12), and (iv) atom count distributions (Figure 13).

Figure 8.

Figure 8. Error plot of formula assignment. 50.1% of all formulas have an error of ±0.1 ppm, 78.5% of all formulas have an error of ±0.2 ppm, and 100% of formula assignments are within ±0.5 ppm.

Standard image High-resolution image
Figure 9.

Figure 9. van Krevelen diagram of all annotation including CHO, CHNO, and CHNOS. 12.1% of all assigned molecular formulas bear sulfur, even though the major chemical class consists of CHNO compounds. The bubble size scales with mass spectrometric intensity.

Standard image High-resolution image
Figure 10.

Figure 10. m/z-related representations. (A) H/C vs. m/z plot shows the presence of complete homologues organosulfur series at a fairly high degree of saturation. (B, C, E) Oxygen, nitrogen counts as well as DBE are proportional to molecular mass. (D) #S vs. m/z representation highlight that most detected organosulfur (CHNOS) compounds bear one sulfur atom. The bubble size scales with mass spectrometric intensity.

Standard image High-resolution image
Figure 11.

Figure 11. Atomic ratio plots. (A) van Krevelen diagram (H/C vs. O/C) with a nitrogen count color code indicates the presence of different groups within all detected organosulfur compounds. (B,F) S/C vs. N/C and S/C vs. O/C underlines a small sulfur to carbon backbone ratio along a diversity of heteroatoms (N or O). (C, D) H/C vs. N/C and H/C vs. S/C reveal saturated characteristics of organosulfur compounds. (E) N/C vs. O/C plot shows a rich diversity in heteroatom chemistry within the observed organosulfur compounds. The bubble size scales with mass spectrometric intensity.

Standard image High-resolution image
Figure 12.

Figure 12. DBE-related representations. (A) DBE scales with carbon counts and is inversely related to H/C (C), O/C (D), N/C (E), and S/C (F). (B) H/C vs. O/C with DBE color code give further evidence for an inverse trend of DBE with both H/C and O/C. The bubble size scales with mass spectrometric intensity.

Standard image High-resolution image
Figure 13.

Figure 13. Atom count distributions. (A, B) Oxygen and nitrogen counts vs. carbon counts reveal two separate groups within the observed organosulfur compounds. (C, E, F) Organosulfur compounds bear mostly one sulfur atom. Among these one-S-bearing compounds, different intensity patterns are observed. (D) Nitrogen counts vs. oxygen counts show a large coverage among a large range of heteroatom counts. This indicates a rich diversity in heteroatom chemistry within the observed organosulfur compounds. The bubble size scales with mass spectrometric intensity.

Standard image High-resolution image
Please wait… references are loading.
10.3847/2041-8213/ab4e9f