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Abstract
Near a vortex in a monochromatic light beam, the length of the local wavevector (phase
gradient) can exceed the wavenumber in any of the plane waves in the superposition
representing the beam. One way to detect these ‘superweak’ momenta could be by
‘superkicks’ imparted to a small particle located near the vortex, by absorbing individual
large-momentum photons from the beam. A model for this process is a two-level atom with a
transition resonant with the light beam. A semiclassical analysis shows that the momentum
distribution of the atom is shifted by interaction with the vortex beam, by amounts that can
almost reach the target superkicks and are usually greater than the momenta in the plane
waves comprising the beam.
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1. Introduction

A fundamental feature of phase singularities [1–4] of
monochromatic fields representing waves in three-
dimensional space r is that they are optical vortex lines,
near which the phase varies on scales smaller than the
wavelength λ. It follows that the length of the local
wavevector k(r)—the phase gradient—exceeds the free-space
wavenumber k0 = 2π/λ. Such rapid variations are now
recognized as ‘superoscillations’ [5, 6], where the ‘weak
value’ [7] of momentum h̄k(r) exceeds the free-space
momentum h̄k0. The question we address here, in the
spirit of quantum weak measurement theory [8–10], is
whether such large local momenta could be imparted as
‘superkicks’ to test particles (‘atoms’) in the field. This
situation appears paradoxical, because the momentum h̄k(r)
imparted to the absorbing particle exceeds that of any single
photon in the field, raising concerns about global momentum
conservation. Our resolution follows from considering the
quantum mechanics of the motion of an absorbing atom.
We need to account for the wave nature both of the
electromagnetic field and the atom used to probe it.

A local model for the field strength near a vortex line
of strength m on the z axis of a linearly polarized paraxial

wave, is

Em(r, t) = Em(r) exp(−iωt), ω = ck0,

Em(r) = Nrm exp{i(mφ + k0z)}

= N(x+ iy)m exp(ik0z),

(1.1)

in which here and hereafter N denotes a generic multiplier or
normalization constant. The corresponding local wavevector
is

k(r) = ∇ arg Em(r, t) =
m

r
eφ + k0ez. (1.2)

Its transverse part exceeds k0 inside the cylinder k0r < m. The
factor (x + iy)m describes any locally symmetric vortex on
strength m; it is also a small-r approximation to the exact
Bessel beam solution [11] of the Helmholtz equation:

Em,Bessel(r) = NJm(Kr) exp

×

{
i
(

mφ + z
√

k2
0 − K2 − ωt

)}
. (1.3)

Paraxiality corresponds to K � k0.
In section 2 we derive the approximate Hamiltonian

for a model quantum detector in the form of a two-level
atom placed in the field, and show that when the atom gets
excited its position wavefunction inherits the form of the
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optical field. In section 3 we calculate the corresponding
atomic momentum distribution, incorporating the momentum
uncertainty implied by localizing the atom near the vortex. In
particular, we calculate the average momentum, and elucidate
the conditions under which this can exceed the momentum of
free-space optical photons.

This study, developing an idea envisaged earlier [7, 12],
complements and extends existing explorations [13, 14] of
possible quantum effects associated with the cores of optical
vortices.

2. Atom Hamiltonian

As a probe for the optical field, we consider a model
two-level atom of mass M, with electronic ground and excited
states |g〉 and |e〉 and corresponding energies εg and εe,
coupled by electric dipole interaction. It suffices to work
within the semiclassical approximation, in which the atom
is treated quantum mechanically and the field is described
classically [15, 16]. We can describe the coupled atom–field
system by the state |90(t)〉, driven by the Hamiltonian

Ĥ0 =
p̂2

2M
+ εe|e〉〈e| + εg|g〉〈g|

− µ̂[Em(r, t)+ E∗m(r, t)], (2.1)

where p̂2 is the square of the total atomic momentum and µ̂
is the electric dipole operator. Neither of the electronic states
has an intrinsic dipole moment, so the dipole operator has only
off-diagonal matrix elements in this basis and can be written
in the form

µ̂ = µ(|g〉〈e| + |e〉〈g|). (2.2)

We immediately eliminate some of the fast oscillations
by transforming to a new state |9(t)〉 (equivalent to the
interaction picture):

|90(t)〉 = exp
{
−

i
h̄

t(εg|g〉〈g| + εe|e〉〈e|)
}
|9(t)〉. (2.3)

Thus the Schrödinger equation is

ih̄∂t|9(t)〉 = Ĥ|9(t)〉 (2.4)

with the new Hamiltonian

Ĥ =
p̂2

2M
− µ

(
|g〉〈e| exp

{
−

i
h̄
(εe − εg)t

}
+ |e〉〈g| exp

{
i
h̄
(εe − εg)t

})
× (Em(r, t)+ E∗m(r, t)). (2.5)

(Here we have used the fact that |g〉 and |e〉 are orthogonal, and
the consequence that the operators |e〉〈e| and |g〉〈g| commute.)

We can make three further simplifications. First, we can
make the atom sufficiently massive and slowly-moving such
that the first (kinetic) term has little effect during the short
times will be of interest to us and can be neglected. Second,
we choose exact resonance, so that εe − εg = h̄ω. Third, we
note that from the form of the electric field amplitude (1.1),

Ĥ contains time-independent terms and also terms rotating at
2ω: twice the optical frequency. The effect of these rapidly
rotating terms will tend to average out over relevant time
scales, and discarding them leads to the final time-independent
‘rotating wave’ Hamiltonian [16]:

ĤRW = −µ(|g〉〈e|E∗m(r)+ |e〉〈g|Em(r)). (2.6)

We can now analyse the effect on the atomic motion
of absorbing a quantum of energy near to the vortex core,
where the local optical momentum |k(r)| > k0. In doing so
it is essential to include a quantum description of the motional
state of the atom as well as its electronic state.

Let the initial state of the atom be

〈r|9(0)〉 = |g〉ψinit(r), (2.7)

corresponding to the atom being in its electronic ground state
and in the motional state ψinit(r). After a short time this state
will evolve to a superposition of the ground and excited states.
We can describe this using first-order perturbation theory,
because we are interested only in the effects of a single
absorption event, with the result

〈r|9(t)〉 ≈

(
1− i

ĤRWt

h̄

)
〈r|9(0)〉

= |g〉ψinit(r)+ i
µt

h̄
Em(r)|e〉ψinit(r). (2.8)

If after this short time the atom has made a transition to the
excited state (by absorbing a single quantum from the field)
then its associated motional wavefunction will be

ψm(r) = N(x+ iy)m exp(ik0z)ψinit(r). (2.9)

Clearly, the phase of the electric field has been imprinted on
the motional wavefunction and this encodes the ‘kick’ given
to the atom. Our focus will be on the transverse momentum,
but we note the immediate obvious consequence of (2.9) that
for ψm(r) the average momentum in the z-direction exceeds
by h̄k0 that for ψinit(r). This is the familiar atomic recoil
associated with the conservation of linear momentum.

3. Momentum distribution

It follows from (2.9) that the momentum state of the excited
atom is given in terms of the initial momentum state ψ̄0(k)
(Fourier transform of (2.9)) by

ψ̄m(k) = N(∂kx + i∂ky)
mψ̄init(kx, ky, kz − k0). (3.1)

An immediate consequence is that the final momentum state
can contain only momenta that were present in the initial
state: the only effect of the interaction with the light is a
redistribution of momenta that the atom already possessed as
a result of its localization near the vortex. In particular, if the
initial momentum state has bounded support in k, the final
state has the same bounded support.

Nevertheless, it is possible for the atom to acquire
momenta larger than k0. We explore this for an initial (un-
excited) atomic wavefunction located close to r = (x0, 0, 0),

2



J. Opt. 15 (2013) 125701 S M Barnett and M V Berry

Figure 1. Momentum distribution (3.5) of excited atom in transverse planes, for (a) x0 = σ,m = 1, (b) x0 = σ,m = 3, (c) x0 = 2σ,m = 3,
(d) x0 = 5σ,m = 4.

in the form of the Gaussian

ψinit(r) = N exp
(
−
(x− x0)

2
+ y2
+ z2

2σ 2

)
. (3.2)

In order to localize the atom in the region k0r < m where the
light is superoscillatory, we restrict the position x0 and the
width σ to

x0 <
m

k0
=

2πm

λ
, σ < mλ. (3.3)

The corresponding initial momentum distribution is

ψ̄init(k) = N exp(− 1
2σ

2(k2
x + k2

y + k2
z )+ ikxx0). (3.4)

An easy calculation (iterating (3.1) for successive values
of m) gives the final momentum probability distribution

|ψ̄m(k)|2 = N2 exp(−(kz − k0)
2σ 2)

× (k2
x + (ky + x0/σ

2)2)m exp(−(k2
x + k2

y)σ
2).

(3.5)

This shows that in addition to the obvious z momentum shift
by k0, the distribution is skewed towards +y (if x0 > 0), as
illustrated in figure 1 for several values of x0/σ and m.

To quantify this y kick, we calculate the momentum
expectation values for different vortex strengths m:

〈km〉 =

∫∫
dk k|ψ̄m(k)|2∫∫
dk|ψ̄m(k)|2

≡ kmey + k0ez. (3.6)

The ky shifts can be evaluated exactly in terms of Laguerre
polynomials [17]:

km =
x0L(1)m−1(−x2

0/σ
2)

σ 2Lm(−x2
0/σ

2)
=

1
2
∂x0 log(Lm(−x2

0/σ
2)). (3.7)

The first few shifts are

k1 =
x0

σ 2 + x2
0

, k2 =
2x0(2σ 2

+ x2
0)

2σ 4 + 4x2
0σ

2 + x4
0

,

k3 =
3x0(6σ 4

+ 6x2
0σ

2
+ x4

0)

6σ 6 + 18x2
0σ

4 + 9x4
0σ

2 + x6
0

,

k4 =
4x0(24σ 6

+ x2
0(6σ

2
+ x2

0)
2)

24σ 8 + 96x2
0σ

6 + 72x4
0σ

4 + 16x6
0σ

2 + x8
0

.

(3.8)

These functions should be compared with the correspond-
ing superkicks that we hope to detect in the optical field, given
by (cf (1.2))

km,super =
m

x0
. (3.9)

Comparisons are shown in figure 2. The average momentum
shifts acquired by the atoms reach their greatest value kmmax

when x0 = x0max ∼ σ ; the precise values are given in
table 1.
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Figure 2. Full curves: mean momentum shifts km in y direction (equations (3.6) and (3.7)); dashed curves: local optical momenta (target
superkicks) km,super (equation (3.9)); as functions of the atom position x0, for (a) m = 1, (b), m = 2, (c) m = 3, (d) m = 4.

Figure 3. Full curves: momentum distributions (3.4) of the excited atom along the symmetry line kx = 0 for fixed kz, for atom positions x0
corresponding to the maximum average shifts in table 1, for (a) m = 1; (b) m = 3; (c) m = 5; (d) m = 7. Dashed curves: the corresponding
initial atomic momentum distributions (3.4). (The curves are normalized to facilitate comparison.)

Table 1. Maximal momentum shifts for vortex strengths m.

m 1 2 3 4 5 6

x0max/σ 1 0.939 0.900 0.874 0.854 0.840
kmmaxσ 0.5 0.858 1.151 1.404 1.629 1.835

Figure 3 shows the momentum distributions along the
symmetry line kx = 0 for x0 corresponding to these maximum
shifts, illustrating how the shifts get bigger for larger m.

It is clear from figure 2 that the average momentum shifts
tend to the superkick values (3.9) as x0/σ increases but fall
short for smaller x0. The shifts vanish as x0→ 0, because then
the atomic wavefunction overlaps the other side of the vortex
where k(r) is in the opposite direction. Notwithstanding the
shortfall, in the superoscillatory region near the vortex where
the atom shifts are maximal (table 1) these shifts exceed the
momenta k0 in the plane-wave superpositions comprising the
field, by an amount

kmmax

k0
=
(kmmaxσ)

2π
λ

σ
∼
(kmmaxσ)

2π
λ

x0
, (3.10)
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which is greater than unity if the atom is close enough to the
vortex.

We have calculated the momentum distribution of the
atom on the assumption that a resonant transition has taken
place. However, the probability that such a transition will
occur is very small when the atom is near a vortex. From (2.9),
the Fermi golden rule [16] gives the transition probability per
unit time as

P ∝
∫

dr|〈r, e|9(t)〉|2

∝ N
∫

dr|Em(r)|2|ψinit(r)|2

≈ |Em(x0, 0, 0)|2 = Nx2m
0 (3.11)

where we have assumed that ψinit is localized near (x0, 0, 0)
as in (3.2), and the field has the vortex form (2.1).
This is consistent with the following picture [7, 12] for
the time-averaged force on the atom (classical radiation
pressure), resulting from the collective effect of many
quantum transitions. The force, given by the probability
per unit time multiplied by the momentum shift at each
transition, is proportional to the large-momentum transfer (the
superkick) weighted by the weak light intensity. Classically,
this corresponds to the important distinction, emphasized
earlier [7], between the local momentum h̄k(r) and the local
current

Im[E∗m(r)∇Em(r)] = |Em(r)|2k(r). (3.12)

4. Concluding remarks

It is important to consider how superkicks might be observed
in an experiment. The natural way to proceed would be
to trap a suitable atom and to cool it to its motional
ground state. In this state the atomic motional wavefunction
will be approximately Gaussian, the width of which will
be determined by the experimentally controllable trapping
potential. If the trap is switched off then the atomic
wavepacket will spread but, for sufficiently short times, the
atom will remain localized near to the trap position. Applying
a short laser pulse carrying orbital angular momentum will
induce a transition to the atomic excited state and with it the
superkick of interest. This should be observable by examining
the momentum probability distribution for the excited atom.

A number of improvements on this basic idea may make
superweak momentum transfer more readily observable. The
first is the use of a Bose–Einstein condensate rather than
a single atom. Such condensates have the advantage that
many atoms share the same motional state; a transition for
a small proportion of these may be more readily observable
than a low-probability transition for a single trapped atom.
Moreover, the use of a two-photon Raman transition rather
than a single-photon transition would make it possible to
remove the large-momentum kick in the z direction, the
existence of which might otherwise mask the azimuthal
superkick we seek. Finally, using a magnetic trap may remove
the requirement for turning off the trap before applying the
electromagnetic field. If the field is tuned so as to flip the

electron spin in the trapped atom then the trapping potential
will become repulsive and the trapped atom will be ejected
from the trap. The superkick should then be visible as
a preferred azimuthal direction of ejection from the trap.
Assessing which of these ideas provides the greatest potential
for observing superweak momentum transfer requires further
details of the particular experimental arrangement and lies
beyond the scope of this paper.

Finally, we note a curious feature of the classical
mechanics of the test particles we have been considering,
as represented by the time-averaged force on them, in
circumstances where this is proportional to the Poynting
vector [7, 18]. For the scalar model we have used here, the
time-averaged force is

F(r) ∝ |Em(r)|2k(r), (4.1)

in which the local wavevector momentum is multiplied by
the wave intensity, in contrast with the bare wavevector as
in the quantum kicks h̄k(r). As is known [19, 20] and has
been emphasized [21], this force has non-zero curl, so it is
not derivable from a potential. In such ‘curl forces’ [22],
the classical motion is Newtonian but not Hamiltonian or
Lagrangian, so—for example—Noether’s theorem does not
apply, and the link between symmetries and conservation laws
is broken. It is hard to see how such non-Hamiltonian physics
can be directly quantized, but our analysis reported here, in
which classical radiation pressure (here associated with a curl
force) is quantally deconstructed into individual superkicks,
points to a route where quantum effects might nevertheless be
understood.
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Note added in proof. Professor K Bliokh has suggested that what we call
superkicks might be related to experiments carried out on the transverse
momenta of evanescent waves near an interface. See [23, 24], and discussion
on p 14 of [25]. There are indeed similarities in that a momentum transfer
in excess of the free-space momentum is indicated, but the proximity of a
medium suggests that the apparent momentum imbalance might be made up
by recoil of the medium. In contrast, the phenomenon we have treated could
be demonstrated, at least in principle, arbitrarily far from a material interface,
and a quantum treatment of the motion of the absorbing atom is necessary in
order to account for momentum conservation.
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