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Abstract. The J integral and the stress intensity factor (SIF) K are both important research 
objects of fracture mechanics, and are often employed to establish criteria for crack 
propagation. The relationship between them has always been a research hotspot. In this paper, 
the SIF can be obtained conveniently by the scaled boundary finite element method (SBFEM) 
due to the fact that analytical solution can be obtained along the radial direction for stress 
singularity problems. The J integral can be solved analytically using the formulae between J 
and K for mixed mode crack with arbitrary inclination in elastic materials. Moreover, the J 
integral values obtained by this method are more accurate and convenient than by its definition. 
Factors that affect the accuracy of SIF and J integral, such as the distance between the crack 
and outer boundary, size of the discretized elements and partition of the domain into super-
elements, are examined. 

1. Introduction 
The great earthquake occurring in Wenchuan has dream more attention to the seismic safety of high 
concrete dams. Dynamic fracture is one of the main damage modes of concrete dams in earthquakes, 
and the stability of cracks has become an important factor of safety evaluation of dams, so study on 
cracks of concrete structure is still important and urgent. Fracture energy serves as the basis for study 
on crack extension. Fracture energy and energy release rate of linear elastic materials are equivalent. 
J  integral is a common method for calculation of fracture energy，which remains constant along 
integral paths near the region around the crack tip in small-scale yielding condition. The three 
parameters mentioned are often used as the criterion for crack extension. is also used by 
M.A.Hussain to determine the direction of crack propagation[1]. The stress intensity factors (SIF) K, 
as proposed by Irwin in 1977, is a parameter only related to the local stress-strain field, and can be 
more easily determined than G. 

G

Several methods including boundary element method, finite element method, mesh independent 
method, have been used to calculate SIF. In standard finite element method, the region around the 
crack tip is discretized, while for the boundary element method, discretization of the crack surface and 
the material interface through the crack tip is required. These two methods can’t obtain the analytical 
solution at the singular point owing to segmented smooth shape functions. With the rapid development 
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of computers and computing technology, numerical simulation of fracture problems of engineering 
structures has become feasible. So it is significant to seek a calculation method which is of high 
precision and high efficiency. The scaled boundary finite element method [2-3] developed by Wolf 
and Song has outstanding advantages in solving problems characterized by stress singularity and 
infinite domain. It involves only discretization of boundaries of the investigated domain, yielding 
reduction of the spatial dimension by one, which greatly saves computational effort. The solution at 
the crack tip is analytical, so that accuracy of stress intensity factors is significantly improved. Liu 
Junyu used SBFEM to calculate the stress intensity factor for crack surface loaded with pressure of 
arbitrary distribution [4]. So SBFEM is used to calculate of SIFs and  integral in the presented paper.  

For study on correlation between and , Fan Tianyou derived the relationship between integral and  
for plane problems [5]. Zhou Longhai derived the relationship between integral and   for plane stress 
problems more detailedly [6]. Their relationship has been discussed in many related papers, most of 
which focus on problems characterized by mode I crack or mode II crack only and the crack was 
usually assumed to be in the horizontal direction. Zhu Chaolei utilized the Griffith crack model which 
has analytical expression for the stress field and displacement field and the integral formula proposed 
by Rice, to deduce the analytical expression for the relationship between integral and  , for mixed 
mode crack with arbitrary inclination. It was shown that SBFEM has higher precision, less degree of 
freedom and higher computational efficiency in calculation of integral in contrast to FEM [7]. In the 
presented paper, t SIFs are calculated by the relationship between   integral and  ,  deduced in [7].Then 
the  integral values are more accurate than that obtained by its definition, due to the fact that analytical 
solution can be obtained along the radial direction for stress singularity problems solved by SBFEM. 
In addition, factors that affect the accuracy of SIF and J integral, such as distance between the crack 
and outer boundary, size of the discretized elements and partition of the domain into super-elements, 
are examined. 

2. The relationship between J integral and stress intensity factors for mixed mode crack 

2.1. Basic theory of J integral 
J integral has two definitions: one is the loop integral definition, while, the other is the deformation 
power definition, and both were proposed by Rice. The loop integral definition is as follows[5]: 

2
1

( )uJ Wdx T ds
xΓ

∂
= −

∂∫  (1)

Or 2
1

( )i
i

uJ Wdx T ds
xΓ

∂
= −

∂∫  (2)

in which W denotes the strain energy density unit volume; T  denotes the stress vector which is 
defined along the outer normal of integral curveΓ . u  denotes the corresponding displacement vector; 

 denotes a section arc length along integral curveds Γ ; Γ  denotes arbitrary integral loop starts from 
the lower surface to the upper surface of the crack in the anticlockwise direction, as shown in figure 1. 
A circle with its center located at the crack tip and with radius is chosen to idealize . The angle 
between the crack and x-axis of the global coordinate system is

r Γ
α . 

2.2. Formula for J integral of mixed mode Griffith crack with arbitrary inclination[7] 
J with arbitrary inclination for plane stress problems: 

2 2 2 2 2 2

2 2 2

1 [(1 )( )cos 7 2(1 ) sin (
4

2(1 )( )cos 4(1 ) sin cos ]

)I II I II I II I II

I II I II

J K K K K K K K K
E

K K K K

μ α μ α μ

μ α μ α α

= − − + + + − − −

+ + − + +
 (3)

J with arbitrary inclination for plane strain problems: 
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2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

1 [(1 )( )cos 7 2(1 ) sin 2(1 )( )cos
4

4(1 ) sin cos 2 ( )cos (2 6 ) 4 sin ( )]

I II I II I II I II

I II I II I II I II I II

J K K K K K K K K
E

K K K K K K K K K K

μ α μ α μ α

μ α α μ α μ μ α μ

= − − + + + − + + −

+ + − − − + − − −

 
(4) 

in which, E means elastic modulus andα means poisson's ratio. Particularly, when 0α = ,the plane 
stress case: 

2 21 ( )I IIJ K K G
E

= + =  
(5)

and the plane strain case: 
      2 2 2(1 )( ) /I IIJ K K E Gμ= − + =  (6)

are yielded 

 

Figure 1.  Schematic diagram of the crack 

3. Basic theory of SBFEM 
The displacement field, stress field and strain field given by SBFEM are as follows, see literature 
[2,3,8]. 

1
{ ( , )} [ ( )]{ }i

n
u

i
i

u c Nλξ η ξ η−

=

=∑ φ  (7)

1

1
{ ( , )} { ( )}i

n

i
i

c λσ ξ η ξ ψ η− −

=

=∑  (8)

1 2
,

1{ ( , )} [ ( )]{ ( )} [ ( )]{ ( )}B u B uξε ξ η η ξ η ξ
ξ

= +  (9)

where[ ( )uN ]η means shape function for boundary elements;{ }iφ  and{ ( )}iψ η mean the displacement 
mode and the stress mode solved by SBFEM; means integral constants. The meaning of [ic ]B  is 
similar to that in FEM and is related to geometry of the boundary. ξ means radial ray coordinate 
starting from the crack tip, η means circumferential direction coordinate. The radial functions of the 
displacement, stress and strain given by SBFEM are analytical, but the precision in the circumferential 
direction is equivalent to that of finite element discretization. 

The formula for stress intensity factors by SBFEM is shown as follows (see literature [2,4]): 

1 ( 0) ( 0)
2

( 0) ( 0)
s yy yy

f
xy xy

K
l c c

K
λ ψ θ ψ θ

π
ψ θ ψ θ

Ι +
Ι ΙΙ

ΙΙ Ι Ι

⎛ ⎞= =⎧ ⎫ ⎧ ⎫⎧ ⎫
= +⎜ ⎟⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟= =⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎝ ⎠Ι

 (10)
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As shown in figure 2, fl means the distance from the scaling centre to the boundary along the radial 

line at θ  = 0 (in front of the crack tip); { ( )}iψ η means the two stress-singular modes in equation (8) 
with eigenvalue 0.5sλ = − . 

lf
Nodes

θ

r

C x

y

A(ξ=1,η=ηA)
B

S

Se

O

 

Figure 2. A cracked domain modelled by super-element with scaling centre at the crack tip 

4. Numerical validation 
For sake of comparison, a plate with Griffith crack with a length of  in the middle and loaded with 
tensile stress 

2a
σ in the far ends [7] is studied. The angle between the direction ofσ and crack surface is β  

and the angle between Ox and crack surface is α (shown in figure 3). Only plane strain problem is 
considered. 

4.1. Idealization and parameters of  the  model 

4.1.1. The formula for SIF is as follows [5] : 
2sinK aσ π βΙ =  (11)

sin cosK aσ π βΙΙ = β  (12)

4.1.2. Idealization of the model : 

  

Figure 3.  A Griffith crack under tension loading Figure 4.  Rectangular plate with inclined crack
 
The model as shown in figure 4 is employed to idealize the crack in figure 3 approximately. The 
length and width of the model are  respectively, the length of the crack is , the angle between 10l = 2a
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the crack and Ox is α , with the crack center coincides with the scaling center. The upper boundary is 
loaded with distributed force with 1σ = , and the lower boundary is constrainted. The material 
parameters of this model (dimensionless): elastic modulus 1.0E = ; poisson's ratio 0.3μ = . 

4.1.3. Partition of the model into super element of SBFEM 
Three schemes are adopted for verification, and the origin is placed at the center of the model (as 
shown in figure 5). The structure is divided into two super elements for the three models. For model a, 
crack length  and 2a = 5l a = . Only the boundary is discretized, and the element length  is chosen 
to be 1, which result in a total of 100 nodes (200 degrees of freedom) and 60 elements. For model b, 
crack length  and 

el

1a = 10l a = , the topological relation is same to model a. For model c, crack 
length  and 0.5a = 20l a = , and the element length  is chosen to be 0.5 by densifying elements by 
one time, which result in a total of 200 nodes(400 degrees of freedom) and 120 elements. 

el

Owing to symmetry between α varies from to and from 0 to , only the latter is 
considered. The scaling centers of the two super elements are

90− 0
( a

90
cosα− , sina )α− , ( coa sα  , sin )a α  

respectively. Accordingly, equations (11) and (12) become: 
2cosK aσ π α  (13)

Ι =

sin cosK aσ π α αΙΙ =  (14)

 

   

(a) (b) (c) 

Figure 5.  Crack element and its discretization,  (a) 2a = ,  (b) 1a = , 5l a = 10=l a  
(c) ,0.5a = 20l a =  

4.2. Calculation of the stress intensity factors by SBFEM 
The stress intensity factors are obtained by SBFEM according to equation (10) and analytically by 
equation (13) and equation (14) respectively. The results of model a, b, c are shown in figure 6(a), (b) 
and (c). The outer boundaries should be located far enough from the crack to guarantee satisfactory 
accuracy which can be seen from figure 6. For model c with 20l a = , the stress intensity factors better 
tally with theoretical solution. For model a with 5l a = , considerable discrepancy exists between IK  
and the theoretical solution. For model b with 10l a = , the error is up to 14%. Because the theoretical 
solution deduced based on the crack in the infinite domain, this comparison result is imaginable. For 
model c, when the element length of the boundary discretization  is assumed, the errors of 0.5el a= =

IK  and IIK  are limited to7% and 4% respectively, as shown in figure 7(a). Particularly, when , 
the error of

45α <

IK  are all lower than 2%. However, when the element lengths are doubled, the maximum 
errors of IK  and II  are as much as 26% and 18% respectively, as shown in figure 7(b), and the 
calculated values are shown in figure 6(d). It can be seen that 

K
l a should be large enough to better 

simulate the real situation for the crack in infinite domain. Simultaneously, the size of  affects the el
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calculation precision greatly for the same size of outer boundary of the calculated domain and the 
discretized element.  is suggested  from the comparison above. el a≤
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Figure 6.  Variation of the SIF with the change of crack angle (a) 2a = , 5l a =  (b) , 1a = 10l a =  
(c) ,0.5a = 20l a = , el a=   (d) ,0.5a = 20l a = ,  2el a=
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Figure 7.  Error analysis for SIF  (a) 0.5a = , 20l a = , el a=   (b) 0.5a = , 20l a = ,  2el a=
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4.3. Calculation of J integral using Equation (4) 
The J integral calculated by substituting the IK , IIK  into equation (4) obtained in the precious section 
for model a, b, c, are shown in figure 8(a), (b) and (c). 

The tendency observed is similar to that in section 4.2, as shown in figure 8. For model c with 
20l a = , the J integral obtained is identical with the theoretical solution. For model a with 5l a = , 

considerable discrepancy exists between J integral and the theoretical solution. For model b with 
10l a = , the error is also up to 7.68%. For model c, when the element length of the boundary 

discretization  is assumed, the errors are limited to 1.7%, as shown in figure 9 (a). 
However, when the element lengths are doubled, the errors can add up to 12.7%, as shown in figure 9 
(b), and the calculation results are shown in figure 8 (d). 

0.5l a= =e
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Figure 8.  Variation of the J integral with the change of crack angle (a) 2a = , 5l a =                             
(b) , 1a = 10l a =  (c) 0.5a = , 20l a = , el a=   (d) 0.5a = , 20l a = ,  2l a=e
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Figure 9.  Error analysis for J integral  (a) 0.5a = , 20l a = , el a=   (b) 0.5a = , 20l a = ,  2el a=

4.4. Calculation of J integral and SIF for a new super element 
The error analysis above are only performed for , because the scaling center would be so close 
to the border of the super element in the domain, causing high singularity when . This can be 
improved by re-division of the super element. Only model c, shown in figure 5(c), is re-evaluated, and 
the size of 

60α <
60α ≥

discretized element . The new super element is shown in figure 10. 0.5el a= =
 

 

Figure 10.  New super elements and its discretized mesh with 0.5a = , 20l a =  
 
The J integral and the SIF are calculated for 4 , with the results shown in figure 11 (a) 

and (b). It can be seen that the two curves are almost coincident. The error between the calculated 
value and the theoretical solution of 

0 90α≤ <

IK , IIK calculated by the new super element are shown in figure 
11 (c), where the errors of IK  and IIK  are less than 2.9% and 1.4% respectively. The error between 
the calculated value and the theoretical solution of J integral is shown in figure 11 (d), with the 
maximum deviation less than 0.5%. It can be seen from figure 7 (a) and figure 11 (c) that the 
maximum errors of IK  and IIK  are less than 2.9% and 3.9% respectively by the rational super element. 
It can be seen from figure 9 (a) and figure 11 (d) that the error of J integral is less than 1.7% and is 
less than 2.5% for the best approximation path of model c [7]. So in order to achieve better accuracy, 
partition of the domain into super elements should be reasonably employed. 
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Figure 11.  SIF and J integral obtained for the new super elements 

5. Conclusions 
J integral and energy release rate G of linear elastic material are equivalent, so it can be used to solve 
energy release rate by the relationship between the value of J integral and the stress intensity 
factors for the K mixed mode Griffith crack in elastic materials, thus J criteria and G criteria can be 
applied more conveniently. 

 For J integral solved using the definition formulae by FEM, the model needs to be remeshed as 
soon as the crack direction changes, furthermore, refinement of elements in the crack tip is needed to 
improve the accuracy, which is quite computationally expensive. On the contracy, only location of the 
scaling center is changed in SBFEM, and only the outer boundary is discretized, so the degrees of 
freedom could be much less than in FEM. 

It also can be shown that the J integral values obtained by the formulae deduced in paper [7], are 
more convenient and accurate than by its definition, due to the analytical property of the solution in 
the radial direction for stress singularity problems solved by SBFEM, and this method needn’t to 
operate integral calculation along the integral paths. Numerical verification show that certain factors, 
such as size of outer boundary of the calculated domain and the size of the discretized element, affect 
the accuracy of the results. In addition, reasonable partion sheme of the domain into super-element lead 
to higher accuracy. 
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