The following article is Open access

Optimizing cloud removal from satellite remotely sensed data for monitoring vegetation dynamics in humid tropical climate

, and

Published under licence by IOP Publishing Ltd
, , Citation M Hashim et al 2014 IOP Conf. Ser.: Earth Environ. Sci. 18 012010 DOI 10.1088/1755-1315/18/1/012010

1755-1315/18/1/012010

Abstract

Remote sensing technology is an important tool to analyze vegetation dynamics, quantifying vegetation fraction of Earth's agricultural and natural vegetation. In optical remote sensing analysis removing atmospheric interferences, particularly distribution of cloud contaminations, are always a critical task in the tropical climate. This paper suggests a fast and alternative approach to remove cloud and shadow contaminations for Landsat Enhanced Thematic Mapper+ (ETM+) multi temporal datasets. Band 3 and Band 4 from all the Landsat ETM+ dataset are two main spectral bands that are very crucial in this study for cloud removal technique. The Normalise difference vegetation index (NDVI) and the normalised difference soil index (NDSI) are two main derivatives derived from the datasets. Change vector analysis is used in this study to seek the vegetation dynamics. The approach developed in this study for cloud optimizing can be broadly applicable for optical remote sensing satellite data, which are seriously obscured with heavy cloud contamination in the tropical climate.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.