
Journal of Physics A:
Mathematical and Theoretical

     

FAST TRACK COMMUNICATION

The n-level, n − 1-mode Jaynes–Cummings
model: spectrum and eigenvectors
To cite this article: T Skrypnyk 2013 J. Phys. A: Math. Theor. 46 052001

 

View the article online for updates and enhancements.

You may also like
New non-skew symmetric classical r-
matrices and ‘twisted’ quasigraded Lie
algebras
T Skrypnyk

-

Generalized Gaudin systems in a
magnetic field and non-skew-symmetric r-
matrices
T Skrypnyk

-

Spin generalizations of Clebsch and
Neumann integrable systems
T Skrypnyk

-

This content was downloaded from IP address 18.116.80.2 on 13/05/2024 at 14:53

https://doi.org/10.1088/1751-8113/46/5/052001
https://iopscience.iop.org/article/10.1088/1751-8113/40/7/012
https://iopscience.iop.org/article/10.1088/1751-8113/40/7/012
https://iopscience.iop.org/article/10.1088/1751-8113/40/7/012
https://iopscience.iop.org/article/10.1088/1751-8113/40/7/012
https://iopscience.iop.org/article/10.1088/1751-8113/40/7/012
https://iopscience.iop.org/article/10.1088/1751-8113/40/44/014
https://iopscience.iop.org/article/10.1088/1751-8113/40/44/014
https://iopscience.iop.org/article/10.1088/1751-8113/40/44/014
https://iopscience.iop.org/article/10.1088/1751-8113/40/44/014
https://iopscience.iop.org/article/10.1088/1751-8113/40/44/014
https://iopscience.iop.org/article/10.1088/0305-4470/36/15/313
https://iopscience.iop.org/article/10.1088/0305-4470/36/15/313


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 46 (2013) 052001 (7pp) doi:10.1088/1751-8113/46/5/052001

FAST TRACK COMMUNICATION

The n-level, n − 1-mode Jaynes–Cummings model:
spectrum and eigenvectors

T Skrypnyk
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Abstract
We explicitly find eigenvectors and eigenvalues of the general n-level,
n − 1-mode Jaynes–Cummings model in �-configuration possessing arbitrary
detuning parameters �i, i ∈ 1, n and arbitrary interaction strengths gi, i ∈ 2, n.
In the case of equal interaction strengths gi = g j, i, j ∈ 2, n, we compare the
obtained answers with those obtained by the algebraic Bethe ansatz method
(Skrypnyk 2008 J. Phys. A: Math. Theor. 41 475202; 2009 J. Math. Phys. 50
103523).

PACS numbers: 03.65.Fd, 02.20.Sv, 02.30.Ik
Mathematics Subject Classification: 17B20, 81V80, 82B23

1. Introduction

An important quantum mechanical problem is the description of the interaction of charged
matter with radiation [1, 2]. The standard Jaynes–Cummings model [3] is the simplest non-
trivial model describing the interaction of a two-level atom with an electromagnetic field at
resonance. More complicated is the so-called n-level, many-mode Jaynes–Cummings model
describing the interaction of an n-level atom with an electromagnetic field. Mathematically, the
corresponding model is a generalized spin-boson model, where the role of the ‘generalized spin
operators’ is played by the elements of the Lie algebra gl(n) in an n-dimensional representation.

Usually for physical applications, the most important role is played by the so-called n-
level, n − 1-mode model describing the interaction of an n-level atom with n − 1 modes of
the electromagnetic field when transitions between certain energy levels are forbidden. In this
communication, we are interested in the so-called �-configuration when only transitions from
a fixed energy level of the atom to all other energy levels are allowed. The corresponding
models were introduced and considered (for the cases n = 3 and for arbitrary n) in the papers
[4–9], under the additional requirement that the so-called detuning is scalar, i.e. �i = 0,
i ∈ 2, n. In this paper, we consider the n-level, n − 1-mode Jaynes–Cummings model in
‘�-configuration’ with arbitrary �i, i ∈ 1, n and arbitrary interaction strengths gi, i ∈ 2, n.
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It is necessary to mention that in the papers [10, 11], this and more general Jaynes–
Cummings models were shown to be quantum integrable under the requirement of the equal
interaction strengths gi = g j, i, j ∈ 2, n in an arbitrary representation of a generalized spin
algebra. The corresponding eigenvectors and eigenvalues were constructed with the help of
the ‘nested’ algebraic Bethe ansatz. Nevertheless, the obtained answers are not completely
explicit: they require solutions of the ‘nested’ Bethe equations.

For physical applications, more explicit answers are desirable. That is why in this
communication, we find them using the direct method. We show that in the case most
important for applications—the n-dimensional representation of the generalized spin algebra—
the Jaynes–Cummings model is exactly solvable even in the case of non-equal interaction
strengths. We show that the corresponding eigenvalues satisfy one algebraic equation of order
n and explicitly construct the corresponding eigenvectors. The mentioned algebraic equation
coincides with the ‘n-level generalization’ of the Rabi equation. We show that in the case
�i = 0, i ∈ 2, n, the constructed generalization of the Rabi equation passes to the usual
quadratic Rabi equation. Nevertheless, this case is in a sense degenerated—when for n > 2,
the corresponding eigenvalues do not constitute the complete basis in the space of quantum
states.

We compare the obtained answers with those obtained by the Bethe ansatz method in the
case of equal interaction strengths. We show that in the case of n > 2 and �i = 0, i ∈ 2, n in
order to obtain the quadratic Rabi equations, one has to impose an additional condition on the
solutions of the Bethe equations, meaning that the Bethe ansatz method provides a wider set of
eigenvectors than the direct method. In the case when n = 2, there is no additional condition
and the Bethe equations provide the same quadratic Rabi equations for the energy spectrum
as the direct method.

The structure of this communication is as follows: in section 2, we describe the n-level,
n − 1-mode Jaynes–Cummings Hamiltonian and its abelian symmetry algebra; in section 3,
we construct its eigenvectors and eigenvalues. Finally in section 4, we compare the obtained
answers with those obtained by the nested Bethe ansatz.

2. The n-level, n − 1-mode Jaynes–Cummings model

The so-called n-level, n − 1-mode Jaynes–Cummings Hamiltonian in the �-configuration and
rotating wave approximation is given by the following formula (see, e.g., [4–9]):

ĤnJC =
n∑

i=2

wib̂ib̂
†
i +

n∑
i=2

gi
(
b̂iX̂1i + b̂†

i X̂i1
) +

n∑
i=1

εiX̂ii, (1)

where gi are interaction strengths, εi are energy levels of the atom, wi are frequencies of free
modes of the electromagnetic field, operators Xi j constitute a fundamental representation of
the Lie algebra gl(n) in the n-dimensional space, i.e. (X̂i j)αβ = δiαδ jβ ,

[X̂i j, X̂kl] = δk jX̂il − δil X̂k j,

and b̂†
i , b̂i, i ∈ 2, n are standard Bose creation–annihilation operators:[

b̂†
i , b̂ j

] = δi j,
[
b̂†

i , b̂†
j

] = [b̂i, b̂ j] = 0.

This Hamiltonian describes (in the dipole and rotating wave approximation) the physical
problem of the interaction of an n-level atom with n − 1 modes of the radiation field in the
case when the transitions between the first and other n − 1 levels are possible and all other
atomic transitions are forbidden.
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It is easy to show that the Hamiltonian (1) possesses n − 1 commuting integrals of motion
of the form

Mi = X̂ii + b̂ib̂
†
i , (2)

where i ∈ 2, n, in terms of which the Hamiltonian of the model is written as follows:

ĤnJC = H0 + HI =
n∑

i=2

wiM̂i +
n∑

i=1

�iX̂ii +
n∑

i=2

gi(b̂iX̂1i + b̂†
i X̂i1),

where H0 =
n∑

i=2

wiM̂i, HI =
n∑

i=1

�iX̂ii +
n∑

i=2

gi(b̂iX̂1i + b̂†
i X̂i1).

Here �1 = ε1, �i = εi − wi, i ∈ 2, n are the so-called detuning parameters.
Due to the fact that [ĤnJC, M̂i] = 0, [M̂ j, M̂i] = 0, it follows that [M̂i, ĤI] = 0 and

the problem of the diagonalization of ĤnJC is reduced to the problem of the simultaneous
diagonalization of M̂i and ĤI .

3. Spectrum and eigenvectors

Let us obtain the spectrum and eigenvalues of the Hamiltonian ĤnJC, integrals M̂i and ĤI .
The following theorem holds true.

Theorem 3.1. The energy spectrum of the Hamiltonian (1) is given by the following formula:

E =
n∑

i=2

wimi + EI,

where mi are arbitrary non-negative integers coinciding with the eigenvalues of the operators
M̂i and the energy EI satisfies the following polynomial algebraic equation of the order n:

n∏
i=1

(EI − �i) =
n∑

i=2

g2
i mi

n∏
k=2,k �=i

(EI − �k). (3)

Proof. In order to prove this theorem, it will be convenient to use the representation of the
Heisenberg algebra in the space of holomorphic functions of variables zi, i ∈ 2, n:

b̂†
i = ∂zi , b̂i = zi.

Let us write the operators ĤI and M̂i, i ∈ 2, n in the matrix form. We have

M̂i = zi∂zi 1̂n + X̂ii = diag(zi∂zi , . . . , zi∂zi + 1, . . . , zi∂zi ),

ĤI =

⎛
⎜⎜⎝

�1 g2z2 ... gnzn

g2∂z2 �2 ... 0
... ... ... ...

gn∂zn 0 ... �n

⎞
⎟⎟⎠ .

From the explicit form of the operators M̂i, it follows that the following vectors

−→v m2,...,mn =

⎛
⎜⎜⎜⎜⎜⎝

zm2
2 zm3

3 .....zmn
n

k2zm2−1
2 zm3

3 .....zmn
n

k3zm2
2 zm3−1

3 .....zmn
n

....

knzm2
2 zm3

3 .....zmn−1
n

⎞
⎟⎟⎟⎟⎟⎠ (4)

3
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are their eigenvectors with the eigenvalues mi: M̂i
−→v m2,...,mn = mi

−→v m2,...,mn , where mi are
arbitrary non-negative integers and the coefficients ki in the definition of −→v m2,...,mn are arbitrary.
We will use the freedom in their definition in order to diagonalize the Hamiltonian ĤI . The
direct calculation gives

ĤI
−→v m2,...,mn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
�1 +

n∑
i=2

giki

)
zm2

2 zm3
3 .....zmn

n

(k2�2 + g2m2)z
m2−1
2 zm3

3 .....zmn
n

(k3�3 + g3m3)z
m2
2 zm3−1

3 .....zmn
n

....

(kn�n + gnmn)z
m2
2 zm3

3 .....zmn−1
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

Comparing expressions (4) and (5), we obtain that (4) is the eigenvector of ĤI with the
eigenvalue EI if and only if

gimi + ki�i = EIki, i ∈ 2, n, �1 +
n∑

i=2

kigi = EI . (6)

Using this, we obtain the answer for the coefficients of the eigenvectors ki = gimi

EI−�i
, where

the energy EI satisfies the polynomial algebraic equation (3). Now, from the explicit form
of the Hamiltonian ĤnJC, it easily follows that the full energy is given by the formula
E = ∑n

i=2 wimi + EI . The theorem is proven. �

Remark 1. Observe that the n-level Jaynes–Cummings model in �-configuration is exactly
solvable for any ‘vector’ of detuning (�1,�2, . . . ,�n). The equation for the spectrum (3)
has order n. It may be called the ‘n-level Rabi equation’. There is a special case when this
equation is substantially simplified.

Example 1. Let us consider the case when �i = �, ∀i ∈ 2, n. In this case, we may put without
loss of generality � = 0 and obtain from the system of equations (6) the following quadratic
Rabi-type equation for the spectrum of HI :

E2
I − �1EI −

n∑
i=2

g2
i mi = 0 (7)

with its following Rabi-type solutions:

EI = 1

2

⎛
⎝�1 ±

√√√√�2
1 + 4

n∑
i=2

g2
i mi

⎞
⎠

and the coefficients ki of the eigenvectors are given by the following formula:

ki = 2gimi

�1 ±
√

�2
1 + 4

n∑
i=2

g2
i mi

. (8)

Remark 2. Observe that when n > 2, the basis of the eigenvectors constructed in example 1
is not complete (the same thing happens in the other ‘degenerate’ cases when some of the
coefficients �i coincide). Indeed, the subspaces of the eigenvectors of the operators M̂i with
the eigenvalues mi, i ∈ 2, n have the same dimension n. While the space of the eigenvectors
(5) of ĤI with the coefficients ki given by formula (8) has a dimension 2, there exist only two
different solutions for ki in this case.
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4. Comparison with the Bethe ansatz

4.1. Bethe ansatz solutions

Let us recall [10, 11] that in the case of the uniform coupling constants g1 = g2 = .. = gn = g,
the JC model with the Hamiltonian (1) is exactly solvable by means of the algebraic Bethe
ansatz. Let us specify the corresponding ‘Bethe ansatz’ answers in the case at hand.

The following theorem holds true.

Theorem 4.1.

(i) The spectrum of the Hamiltonian and ĤI on the ‘nested’ Bethe vectors has the following
form:

EI = �1 +
M1∑
i=1

1

v
(1)
i

, (9)

where rapidities v
(k)
i , i ∈ 1, Mk, k ∈ 1, n − 1 satisfy the following Bethe-type equations:

− v
(1)
i g2 + (�1 − �2) + 1

v
(1)
i

=
M1∑

j=1; j �=i

2(
v

(1)
i − v

(1)
j

) −
M2∑
j=1

1(
v

(1)
i − v

(2)
j

) , (10a)

(�m+1 − �m+2) =
Mm+1∑

j=1; j �=i

2(
v

(m+1)
i − v

(m+1)
j

) −
Mm∑
j=1

1(
v

(m+1)
i − v

(m)
j

)
−

Mm+2∑
j=1

1(
v

(m+1)
i − v

(m+2)
j

) , m ∈ 1, n − 3, (10b)

(�n−1 − �n) =
Mn−1∑

j=1; j �=i

2(
v

(n−1)
i − v

(n−1)
j

) −
Mn−2∑
j=1

1(
v

(n−1)
i − v

(n−2)
j

) . (10c)

(ii) The spectrum of the additional integrals M̂i, i ∈ 2, n on the ‘nested’ Bethe vectors has the
following explicit form:

mi = (Mi−1 − Mi), where Mn = 0. (11)

Proof. This theorem is a corollary of the more general theorem from the papers [10, 11]. Its
statement is obtained by putting the number of generalized spin operators in the corresponding
theorems of [10, 11] equal to 1 (N = 1) and by the specification of the form of the highest
weight vector λ(1) = (1, 0, . . . , 0) of the finite-dimensional representation of gl(n) and
auxiliary diagonal matrices K = diag(k1, k2, k2, . . . , k2) and C = diag(c1, c2, . . . , cn) =
diag(�1,�2, . . . ,�n), where the interaction strength is connected with the elements of the
matrix K as follows: g2 = k2 − k1. After such an identification, the integrable Hamiltonian
from [10, 11] describing the n-level, n − 1-mode subcase of the Jaynes–Cummings model
(N = 1, ν1 = 0 in the terminology of [10, 11]) acquires the required form:

ĤI =
n∑

i=1

�iŜii + g
n∑

i=2

(
b̂+

i Ŝi1 + b̂−
i Ŝ1i

)
.

Observe that for the chosen representation of gl(n), we have Ŝi j ≡ X̂i j.

5
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The formula for the spectrum of the Hamiltonian ĤI

hI =
n∑

i=1

ciλ
(1)
i + λ

(1)

1

M1∑
i=1

1

v
(1)
i

−
n−1∑
k=2

λ
(1)

k

(
Mk−1∑
i=1

1

v
(k−1)
i

+
Mk∑
i=1

1

v
(k)
i

)
− λ(1)

n

Mn−1∑
i=1

1

v
(n−1)
i

.

acquires in this case the simple form (9).
In a similar way, substituting the above data into the Bethe equations for the n-level,

n−1-mode subcase of the Jaynes–Cummings model from [11], we obtain the Bethe equations
(10) and the formula for the spectrum of the additional integrals (11). The theorem is proven.

�

4.2. Derivation of Rabi equations from the Bethe ansatz equations

In the case of arbitrary n, a derivation of equations (3) from the nested Bethe ansatz
equations is a difficult combinatorial problem. We will solve it only in the ‘degenerated’
case �2 = �3 = . . . = �n = 0.

The following proposition holds true.

Proposition 4.1. Let �2 = �3 = . . . = �n = 0. Then the ‘nested’ Bethe equations (10) on
the subset of their solutions given by

M1∑
i=1

M2∑
j=1

1

v
(1)
i

1

v
(2)
j

+
M2∑
i=1

M3∑
j=1

1

v
(2)
i

1

v
(3)
j

+ · · · +
Mn−2∑
i=1

Mn−1∑
j=1

1

v
(n−2)
i

1

v
(n−1)
j

=
M2∑

i, j=1,i�= j

1

v
(2)
i

1

v
(2)
j

+
M3∑

i, j=1,i�= j

1

v
(3)
i

1

v
(3)
j

+ · · · +
Mn−1∑

i, j=1,i�= j

1

v
(n−1)
i

1

v
(n−1)
j

(12)

yield equation (7), i.e. the following equation:

E2
I − �1EI − g2

n∑
i=2

mi = 0.

Proof. In order to prove this proposition, it is necessary to consider in more detail the nested
Bethe equations (10). The first of these equations in the case at hand has the following form:

−g2v
(1)
i + �1 + 1

v
(1)
i

=
M1∑

j=1; j �=i

2(
v

(1)
i − v

(1)
j

) −
M2∑
j=1

1(
v

(1)
i − v

(2)
j

) .

Multiplying these equations by 1
v

(1)
i

and summing them with respect to the index i, we obtain
the following equation:

−M1g2 + �1

M1∑
i=1

1

v
(1)
i

+
(

M1∑
i=1

1

v
(1)
i

)2

= −
M1∑
i=1

M2∑
j=1

1

v
(1)
i

1(
v

(1)
i − v

(2)
j

) .

Let us transform the expression
∑M1

i=1

∑M2
j=1

1
v

(1)
i

1(
v

(1)
i −v

(2)
j

) . We have

M1∑
i=1

M2∑
j=1

1

v
(1)
i

1(
v

(1)
i − v

(2)
j

) = −
M1∑
i=1

M2∑
j=1

1

v
(1)
i

1

v
(2)
j

−
M1∑
j=1

M2∑
i=1

1

v
(2)
i

1(
v

(2)
i − v

(1)
j

) .

Now using the next set of Bethe equations, namely the equations

0 =
M2∑

j=1; j �=i

2(
v

(2)
i − v

(2)
j

) −
M1∑
j=1

1(
v

(2)
i − v

(1)
j

) −
M3∑
j=1

1(
v

(2)
i − v

(3)
j

) ,

6
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multiplying them by 1
v

(2)
i

and summing them with respect to the index i, we obtain that

M2∑
i=1

M1∑
j=1

1

v
(2)
i

1(
v

(2)
i − v

(1)
j

) = −
M2∑

i, j=1

1

v
(2)
i

1

v
(2)
j

+
M3∑
i=1

M2∑
j=1

1

v
(3)
i

1

v
(2)
j

+
M2∑
j=1

M3∑
i=1

1

v
(3)
i

1(
v

(3)
i − v

(2)
j

) .

Proceeding further in a similar way, using the next Bethe equations, we obtain

−
M1∑
i=1

M2∑
j=1

1

v
(1)
i

1

(v
(1)
i − v

(2)
j )

=
M1∑
i=1

M2∑
j=1

1

v
(1)
i

1

v
(2)
j

+
M2∑
i=1

M3∑
j=1

1

v
(2)
i

1

v
(3)
j

+ · · ·

+
Mn−2∑
i=1

Mn−1∑
j=1

1

v
(n−2)
i

1

v
(n−1)
j

−
⎛
⎝ M2∑

i, j=1,i�= j

1

v
(2)
i

1

v
(2)
j

+
M3∑

i, j=1,i�= j

1

v
(3)
i

1

v
(3)
j

+ · · · +
Mn−1∑

i, j=1,i�= j

1

v
(n−1)
i

1

v
(n−1)
j

⎞
⎠ .

Taking into account that mi = Mi−1 − Mi, we obtain that
∑n

i=2 mi = M1. Taking further into
account that by the very definition EI = �1 + ∑M1

i=1
1

v
(1)
i

and additional condition (12), we
derive equation (7). The proposition is proven. �

Remark 3. Observe that equation (12) imposes an additional restriction on the rapidities v
(k)
i

and onto the corresponding Bethe vectors. This is in good agreement with the above-mentioned
fact that for n > 2, the constructed eigenvectors, corresponding to the eigenvalues satisfying
(7), do not form a complete family, i.e. in this case the family of eigenvectors provided
by the nested Bethe ansatz is wider than the set of the eigenvectors obtained by the direct
method.

Remark 4. Observe that when n = 2, one can put �2 = 0 without loss of generality. Moreover,
in this case there is only one set of rapidities v

(1)
i , i ∈ 1, M1. That is why there is no additional

condition (12) in this case. In other words, the algebraic Bethe ansatz method and the direct
method produce the same results in the case n = 2. Let us also remark that the n = 2 Bethe
equations for the Jaynes–Cummings and Dicke models were first derived in [12] and re-derived
later in [13].
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