Focus on High Energy Particles and Atmospheric Processes

Lights

Guest Editors

Yoav Yair The Open University of Israel
Yukihiro Takahashi Hokkaido University
Keri Nicoll University of Reading
Giles Harrison University of Reading



Synthesis and Review

Open access
Focus on high energy particles and atmospheric processes

R Giles Harrison et al 2015 Environ. Res. Lett. 10 100201

The letters published in the 'Focus issue on high energy particles and atmospheric processes' serve to broaden the discussion about the influence of high energy particles on the atmosphere beyond their possible effects on clouds and climate. These letters link climate and meteorological processes with atmospheric electricity, atmospheric chemistry, high energy physics and aerosol science from the smallest molecular cluster ions through to liquid droplets. Progress in such a disparate and complex topic is very likely to benefit from continued interdisciplinary interactions between traditionally distinct science areas.

The recent reduction in solar activity has drawn renewed attention to interactions between energetic particles entering the atmosphere, constituents of the atmosphere and atmospheric processes. For example, in the troposphere, galactic cosmic rays generate ionisation which makes the air weakly conductive, nucleates ultrafine aerosol and allows current to flow in the global atmospheric electric circuit.

This focus issue welcomes submissions concerning:

  • processes in the thermosphere and mesosphere, stratosphere and troposphere that follow the injection of high energy particles
  • high energy particle effects on noctilucent clouds, acid hydrate clouds, ice clouds or water clouds
  • upper atmosphere chemical effects following precipitation of auroral electrons and solar protons
  • atmospheric propagation of physical effects and chemical species
  • physical and chemical atmospheric responses to galactic cosmic rays
  • effects of energetic particles on electrical processes in different atmospheric layers
  • potential lightning effects triggered by high energy particles

The articles listed below form the complete collection.

Research

Open access
Cosmic ray modulation of infra-red radiation in the atmosphere

K L Aplin and M Lockwood 2013 Environ. Res. Lett. 8 015026

Cosmic rays produce molecular cluster ions as they pass through the lower atmosphere. Neutral molecular clusters such as dimers and complexes are expected to make a small contribution to the radiative balance, but atmospheric absorption by charged clusters has not hitherto been observed. In an atmospheric experiment, a narrowband thermopile filter radiometer centred on 9.15 μm, an absorption band previously associated with infra-red absorption of molecular cluster ions, was used to monitor changes following events identified by a cosmic ray telescope sensitive to high-energy (>400 MeV) particles, principally muons. The average change in longwave radiation in this absorption band due to molecular cluster ions is 7 mWm−2. The integrated atmospheric energy density for each event is 2 Jm−2, representing an amplification factor of 1012 compared to the estimated energy density of a typical air shower. This absorption is expected to occur continuously and globally, but calculations suggest that it has only a small effect on climate.

Open access
Electrical signature in polar night cloud base variations

R Giles Harrison and Maarten H P Ambaum 2013 Environ. Res. Lett. 8 015027

Layer clouds are globally extensive. Their lower edges are charged negatively by the fair weather atmospheric electricity current flowing vertically through them. Using polar winter surface meteorological data from Sodankylä (Finland) and Halley (Antarctica), we find that when meteorological diurnal variations are weak, an appreciable diurnal cycle, on average, persists in the cloud base heights, detected using a laser ceilometer. The diurnal cloud base heights from both sites correlate more closely with the Carnegie curve of global atmospheric electricity than with local meteorological measurements. The cloud base sensitivities are indistinguishable between the northern and southern hemispheres, averaging a (4.0 ± 0.5) m rise for a 1% change in the fair weather electric current density. This suggests that the global fair weather current, which is affected by space weather, cosmic rays and the El Niño Southern Oscillation, is linked with layer cloud properties.

Open access
Electron acceleration above thunderclouds

Martin Füllekrug et al 2013 Environ. Res. Lett. 8 035027

The acceleration of electrons results in observable electromagnetic waves which can be used for remote sensing. Here, we make use of ∼4 Hz–66 MHz radio waves emitted by two consecutive intense positive lightning discharges to investigate their impact on the atmosphere above a thundercloud. It is found that the first positive lightning discharge initiates a sprite where electrons are accelerated during the exponential growth and branching of the sprite streamers. This preconditioned plasma above the thundercloud is subsequently exposed to a second positive lightning discharge associated with a bouncing-wave discharge. This discharge process causes a re-brightening of the existing sprite streamers above the thundercloud and initiates a subsequent relativistic electron beam.

Open access
Are there persistent physical atmospheric responses to galactic cosmic rays?

Rasmus E Benestad 2013 Environ. Res. Lett. 8 035049

Variations in the annual mean of the galactic cosmic ray flux (GCR) are compared with annual variations in the most common meteorological variables: temperature, mean sea-level barometric pressure, and precipitation statistics. A multiple regression analysis was used to explore the potential for a GCR response on timescales longer than a year and to identify 'fingerprint' patterns in time and space associated with GCR as well as greenhouse gas (GHG) concentrations and the El Niño–Southern Oscillation (ENSO). The response pattern associated with GCR consisted of a negative temperature anomaly that was limited to parts of eastern Europe, and a weak anomaly in the sea-level pressure (SLP), but coincided with higher pressure over the Norwegian Sea. It had a similarity to the North Atlantic Oscillation (NAO) in the northern hemisphere and a wave train in the southern hemisphere. A set of Monte Carlo simulations nevertheless indicated that the weak amplitude of the global mean temperature response associated with GCR could easily be due to chance (p-value = 0.6), and there has been no trend in the GCR. Hence, there is little empirical evidence that links GCR to the recent global warming.

Open access
The interplanetary magnetic field influences mid-latitude surface atmospheric pressure

M M Lam et al 2013 Environ. Res. Lett. 8 045001

The existence of a meteorological response in the polar regions to fluctuations in the interplanetary magnetic field (IMF) component By is well established. More controversially, there is evidence to suggest that this Sun–weather coupling occurs via the global atmospheric electric circuit. Consequently, it has been assumed that the effect is maximized at high latitudes and is negligible at low and mid-latitudes, because the perturbation by the IMF is concentrated in the polar regions. We demonstrate a previously unrecognized influence of the IMF By on mid-latitude surface pressure. The difference between the mean surface pressures during times of high positive and high negative IMF By possesses a statistically significant mid-latitude wave structure similar to atmospheric Rossby waves. Our results show that a mechanism that is known to produce atmospheric responses to the IMF in the polar regions is also able to modulate pre-existing weather patterns at mid-latitudes. We suggest the mechanism for this from conventional meteorology. The amplitude of the effect is comparable to typical initial analysis uncertainties in ensemble numerical weather prediction. Thus, a relatively localized small-amplitude solar influence on the upper atmosphere could have an important effect, via the nonlinear evolution of atmospheric dynamics, on critical atmospheric processes.

Open access
Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics: revised

M Calisto et al 2013 Environ. Res. Lett. 8 045010

This study investigates the influence of a major solar proton event (SPE) similar to the Carrington event of 1–2 September 1859 by means of the 3D chemistry climate model (CCM) SOCOL v2.0. Ionization rates were parameterized according to CRAC:CRII (Cosmic Ray-induced Atmospheric Cascade: Application for Cosmic Ray Induced Ionization), a detailed state-of-the-art model describing the effects of SPEs in the entire altitude range of the CCM from 0 to 80 km. This is the first study of the atmospheric effect of such an extreme event that considers all the effects of energetic particles, including the variability of galactic cosmic rays, in the entire atmosphere. We assumed two scenarios for the event, namely with a hard (as for the SPE of February 1956) and soft (as for the SPE of August 1972) spectrum of solar particles. We have placed such an event in the year 2020 in order to analyze the impact on a near future atmosphere. We find statistically significant effects on NOx, HOx, ozone, temperature and zonal wind. The results show an increase of NOx of up to 80 ppb in the northern polar region and an increase of up to 70 ppb in the southern polar region. HOx shows an increase of up to 4000%. Due to the NOx and HOx enhancements, ozone reduces by up to 60% in the mesosphere and by up to 20% in the stratosphere for several weeks after the event started. Total ozone shows a decrease of more than 20 DU in the northern hemisphere and up to 20 DU in the southern hemisphere. The model also identifies SPE induced statistically significant changes in the surface air temperature, with warming in the eastern part of Europe and Russia of up to 7 K for January.

Open access
Does the diurnal temperature range respond to changes in the cosmic ray flux?

Benjamin A Laken and Jaša Čalogović 2013 Environ. Res. Lett. 8 045018

Recent studies have suggested that measurements of the diurnal temperature range (DTR) over Europe may provide evidence of a long-hypothesized link between the cosmic ray (CR) flux and cloud cover. Such propositions are interesting, as previous investigations of CR–cloud links are limited by data issues including long-term reliability and view-angle artifacts in satellite-based cloud measurements. Consequently, the DTR presents a further independent opportunity for assessment. Claims have been made that during infrequent high-magnitude increases (ground level enhancements, GLE) and decreases (Forbush decreases, Fd) in the CR flux significant anti-correlated DTR changes may be observed, and the magnitude of the DTR deviations increases with the size of the CR disturbance. If confirmed this may have important consequences for the estimation of natural climate forcing. We analyze these claims, and conclude that no statistically significant fluctuations in DTR (p < 0.05) are observed. Using detailed Monte Carlo significance testing we show that past claims to the contrary result from a methodological error in estimating significance connected to the effects of sub-sampling.

Open access
Cosmic rays, solar activity and the climate

T Sloan and A W Wolfendale 2013 Environ. Res. Lett. 8 045022

Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

Open access
Clouds blown by the solar wind

M Voiculescu et al 2013 Environ. Res. Lett. 8 045032

In this letter we investigate possible relationships between the cloud cover (CC) and the interplanetary electric field (IEF), which is modulated by the solar wind speed and the interplanetary magnetic field. We show that CC at mid–high latitudes systematically correlates with positive IEF, which has a clear energetic input into the atmosphere, but not with negative IEF, in general agreement with predictions of the global electric circuit (GEC)-related mechanism. Thus, our results suggest that mid–high latitude clouds might be affected by the solar wind via the GEC. Since IEF responds differently to solar activity than, for instance, cosmic ray flux or solar irradiance, we also show that such a study allows distinguishing one solar-driven mechanism of cloud evolution, via the GEC, from others.

Open access
Possible effect of strong solar energetic particle events on polar stratospheric aerosol: a summary of observational results

I A Mironova and I G Usoskin 2014 Environ. Res. Lett. 9 015002

This letter presents a summary of a phenomenological study of the response of the polar stratosphere to strong solar energetic particle (SEP) events corresponding to ground level enhancements (GLEs) of cosmic rays. This work is focused on evaluation of the possible influence of the atmospheric ionization caused by SEPs upon formation of aerosol particles in the stratosphere over polar regions. Following case studies of two major SEP/GLE events, in January 2005 and September 1989, and their possible effects on polar stratospheric aerosols, we present here the results of an analysis of variations of the daily profiles of the stratospheric aerosol parameters (aerosol extinction for different wavelengths, as well as Ångstrom exponent) for both polar hemispheres during SEP/GLE events of July 2000, April 2001 and October 2003, which form already five clear cases corresponding to extreme and strong SEP/GLE events. The obtained results suggest that an enhancement of ionization rate by a factor of about two in the polar region with night/cold/winter conditions can lead to the formation/growing of aerosol particles in the altitude range of 10–25 km. We also present a summary of the investigated effects based on the phenomenological study of the atmospheric application of extreme SEP events.

Open access
Effect of solar variations on particle formation and cloud condensation nuclei

Fangqun Yu and Gan Luo 2014 Environ. Res. Lett. 9 045004

The impact of solar variations on particle formation and cloud condensation nuclei (CCN), a critical step for one of the possible solar indirect climate forcing pathways, is studied here with a global aerosol model optimized for simulating detailed particle formation and growth processes. The effect of temperature change in enhancing the solar cycle CCN signal is investigated for the first time. Our global simulations indicate that a decrease in ionization rate associated with galactic cosmic ray flux change from solar minimum to solar maximum reduces annual mean nucleation rates, number concentration of condensation nuclei larger than 10 nm (CN10), and number concentrations of CCN at water supersaturation ratio of 0.8% (CCN0.8) and 0.2% (CCN0.2) in the lower troposphere by 6.8%, 1.36%, 0.74%, and 0.43%, respectively. The inclusion of 0.2 °C temperature increase enhances the CCN solar cycle signals by around 50%. The annual mean solar cycle CCN signals have large spatial and seasonal variations: (1) stronger in the lower troposphere where warm clouds are formed, (2) about 50% larger in the northern hemisphere than in the southern hemisphere, and (3) about a factor of two larger during the corresponding hemispheric summer seasons. The effect of solar cycle perturbation on CCN0.2 based on present study is generally higher than those reported in several previous studies, up to around one order of magnitude.

Open access
Runaway electrons from a 'beam-bulk' model of streamer: application to TGFs

O Chanrion et al 2014 Environ. Res. Lett. 9 055003

The generation of x- and gamma-rays in atmospheric discharges has been studied intensively since the discovery of terrestrial gamma-ray flashes (TGFs) by the Compton gamma-ray Observatory in 1991. Emissions are bremsstrahlung from high energy particles accelerated in large scale atmospheric electric fields associated with thunderstorms. Whereas observations now are many, both from lightning and the laboratory, the phases of the discharge where emissions are generated are still debated and several processes for electron acceleration have been put forward by theorists. This paper address the electron acceleration in streamer region of lightning. We present the first 'beam-bulk' model of self-consistent streamer dynamics and electron acceleration. The model combines a Monte Carlo Collision code that simulates the high-energy electrons ($>$100 eV) and a fluid code that simulates the bulk of the low-energy electrons and ions. For a negative streamer discharge, we show how electrons are accelerated in the large electric field in the tip of the streamer and travel ahead of the streamer where they ionize the gas. In comparison to the results obtained with a classical fluid model for a negative streamer, the beam-bulk model predicts a decrease of the magnitude of the peak electric field and an increase of the streamer velocity. Furthermore, we show that a significant number of runaway electrons is lost by diffusion outside of the streamer tip. The results presented here do not yet include extra amplification nor acceleration far away from the streamer to explain the electron energies seen in TGFs. Still, in the light of those results, we emphasize that the production of runaway electrons from streamers needs to be simulated including the self-consistent feedback of runaways on the streamer. Simulations with a beam-bulk model may not only help to understand the fundamental atmospheric processes behind TGFs, but also pave the way for the interpretation of remote sensing of the most energetic discharges in the Earthʼs atmosphere and thus help to address their environmental impact.

Open access
Evidence for solar wind modulation of lightning

C J Scott et al 2014 Environ. Res. Lett. 9 055004

The response of lightning rates over Europe to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. Fast solar wind stream arrival is determined from modulation of the solar wind Vy component, measured by the Advanced Composition Explorer spacecraft. Lightning rate changes around these event times are determined from the very low frequency arrival time difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream's source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 d period of the Sun. Arrival of the high speed stream at Earth also coincides with a small (∼1%) but rapid decrease in galactic cosmic ray flux, a moderate (∼6%) increase in lower energy solar energetic protons (SEPs), and a substantial, statistically significant increase in lightning rates. These changes persist for around 40 d in all three quantities. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again persisting for around 40 d after the arrival of a high speed solar wind stream. This result appears to contradict earlier studies that found an anti-correlation between sunspot number and thunder days over solar cycle timescales. The increase in lightning rates and thunder days that we observe coincides with an increased flux of SEPs which, while not being detected at ground level, nevertheless penetrate the atmosphere to tropospheric altitudes. This effect could be further amplified by an increase in mean lightning stroke intensity that brings more strokes above the detection threshold of the ATD system. In order to remove any potential seasonal bias the analysis was repeated for daily solar wind triggers occurring during the summer months (June to August). Though this reduced the number of solar wind triggers to 32, the response in both lightning and thunder day data remained statistically significant. This modulation of lightning by regular and predictable solar wind events may be beneficial to medium range forecasting of hazardous weather.

Open access
Modulation of UK lightning by heliospheric magnetic field polarity

M J Owens et al 2014 Environ. Res. Lett. 9 115009

Observational studies have reported solar magnetic modulation of terrestrial lightning on a range of time scales, from days to decades. The proposed mechanism is two-step: lightning rates vary with galactic cosmic ray (GCR) flux incident on Earth, either via changes in atmospheric conductivity and/or direct triggering of lightning. GCR flux is, in turn, primarily controlled by the heliospheric magnetic field (HMF) intensity. Consequently, global changes in lightning rates are expected. This study instead considers HMF polarity, which doesnʼt greatly affect total GCR flux. Opposing HMF polarities are, however, associated with a 40–60% difference in observed UK lightning and thunder rates. As HMF polarity skews the terrestrial magnetosphere from its nominal position, this perturbs local ionospheric potential at high latitudes and local exposure to energetic charged particles from the magnetosphere. We speculate as to the mechanism(s) by which this may, in turn, redistribute the global location and/or intensity of thunderstorm activity.

Further reading

Open access
Anthropogenic contribution to cloud condensation nuclei and the first aerosol indirect climate effect

Fangqun Yu et al 2013 Environ. Res. Lett. 8 024029

Atmospheric particles influence the climate indirectly by acting as cloud condensation nuclei (CCN). The first aerosol indirect radiative forcing (FAIRF) constitutes the largest uncertainty among the radiative forcings quantified by the latest IPCC report (IPCC2007) and is a major source of uncertainty in predicting climate change. Here, we investigate the anthropogenic contribution to CCN and associated FAIRF using a state-of-the-art global chemical transport and aerosol model (GEOS-Chem/APM) that contains a number of advanced features (including sectional particle microphysics, online comprehensive chemistry, consideration of all major aerosol species, online aerosol–cloud–radiation calculation, and usage of more accurate assimilated meteorology). The model captures the absolute values and spatial distributions of CCN concentrations measured in situ around the globe. We show that anthropogenic emissions increase the global mean CCN in the lower troposphere by ∼60–80% and cloud droplet number concentration by ∼40%. The global mean FAIRF based on GEOS-Chem/APM is −0.75 W m−2, close to the median values of both IPCC2007 and post-IPCC2007 studies. To the best of our knowledge, this is the first time that a global sectional aerosol model with full online chemistry and considering all major aerosol species (including nitrate, ammonium, and second organic aerosols) has been used used to calculate FAIRF.

Open access
Persistent solar signatures in cloud cover: spatial and temporal analysis

M Voiculescu and I Usoskin 2012 Environ. Res. Lett. 7 044004

A consensus regarding the impact of solar variability on cloud cover is far from being reached. Moreover, the impact of cloud cover on climate is among the least understood of all climate components. This motivated us to analyze the persistence of solar signals in cloud cover for the time interval 1984–2009, covering two full solar cycles. A spatial and temporal investigation of the response of low, middle and high cloud data to cosmic ray induced ionization (CRII) and UV irradiance (UVI) is performed in terms of coherence analysis of the two signals. For some key geographical regions the response of clouds to UVI and CRII is persistent over the entire time interval indicating a real link. In other regions, however, the relation is not consistent, being intermittent or out of phase, suggesting that some correlations are spurious. The constant in phase or anti-phase relationship between clouds and solar proxies over some regions, especially for low clouds with UVI and CRII, middle clouds with UVI and high clouds with CRII, definitely requires more study. Our results show that solar signatures in cloud cover persist in some key climate-defining regions for the entire time period and supports the idea that, if existing, solar effects are not visible at the global level and any analysis of solar effects on cloud cover (and, consequently, on climate) should be done at the regional level.

Observations of the atmospheric electric field during two case studies of boundary layer processes

I M Piper and A J Bennett 2012 Environ. Res. Lett. 7 014017

We present measurements of potential gradient (PG) with associated meteorological variables and cloud profiles for two examples of convective boundary layer processes. Aerosol acts as a tracer layer to show lofting of the convective boundary layer; the rising aerosol layer results in a decrease in PG. In foggy conditions, the PG is seen to increase during the fog and then reduce as the fog lifts, as expected.

Open access
Monitoring of lightning from the April–May 2010 Eyjafjallajökull volcanic eruption using a very low frequency lightning location network

A J Bennett et al 2010 Environ. Res. Lett. 5 044013

The April–May 2010 explosive eruption of the Eyjafjallajökull volcano in Iceland produced a tephra plume extending to an altitude of over 9 km. During many, but not all, of the periods of significant volcanic activity the plume was sufficiently electrified to generate lightning. This lightning was located by the UK Met Office long-range lightning location network (ATDnet), operating in the very low frequency radio spectrum. An approximately linear relationship between hourly lightning count rate and radar-derived plume height was found. A minimum plume height for lightning generation of sufficient strength to be detected by ATDnet was shown to be 5 km above sea level. It is not clear why some plumes exceeding 5 km did not produce lightning detected by ATDnet, although ambient atmospheric conditions may be an important factor.

Open access
Low solar activity is blamed for winter chill over Europe

Rasmus E Benestad 2010 Environ. Res. Lett. 5 021001

Throughout recent centuries, there have been a large number of studies of the relationship between solar activity and various aspects of climate, and yet this question is still not entirely settled. In a recent study, Lockwood et al (2010) argue that the occurrence of persistent wintertime blocking events (periods with persistent high sea level pressure over a certain region) over the eastern Atlantic, and hence chilly winters over northern Europe, are linked to low solar activity. Is this then a breakthrough in our understanding of our climate?

The Wolf sunspot number, which dates back to Galileo's invention of the telescope in the 17th century, represents one of our longest geophysical data records. Galileo was also involved in building the first barometers and thermometers around that period. Hence, the 17th century represents the start of instrumental measurements of weather and climate, and there are indeed historical records of speculations or studies on the link between changes in the sun and conditions on Earth dating from that time (Helland-Hansen and Nansen 1920).

One notorious problem with many previous studies was that relationships established over the calibration interval subsequently broke down. There was a period in the mid-20th century when little work was done on solar activity and climate, but solar activity was considered a real forcing factor before 1920. With the advent of frontal theory, orbital forcing theory, and stronger awareness of the implications of enhanced greenhouse gas concentrations, the support for solar forcing seemed to have diminished in the climatology community by the mid-20th century (Monin 1972). But non-stationary relationships, the chaotic character of climate, weak effects, and lack of a physical understanding behind such a link, can also explain the low support for solar forcing at that time.

For a long time, it was not established whether more sunspots meant a brighter or dimmer sun (the answer is brighter), and then the direct effect from changes in the solar brightness (0.1%) was estimated to be too low to explain the temperature changes on Earth. The solar influence on changes in the global mean temperature has so far been found to be weak (Lean 2010, Benestad and Schmidt 2009). The important difference between recent and early studies is, however, that the latter lacked a theoretical framework based on physical mechanisms.

Now we understand that stratospheric conditions vary, and are affected by chemical reactions as well as the absorption of UV light. Furthermore, we know that such variations affect temperature profiles, wave propagations, and winds (Schindell et al 2001). Lean (2010) and Haigh (2003) provide nice reviews of recent progress on solar-terrestrial relationships, although questions regarding the quality of the oldest solar data records are still unanswered (Benestad 2005). All these studies still rely on empirical data analysis.

Much of the focus of the recent work has been on climate variation on global scales. The recent paper by Lockwood et al (2010) represents current progress, albeit that they emphasize that the relationship they identify has a regional rather than global character. Indeed, they stress that a change in the global mean temperature should not be confused with regional and seasonal means. The physical picture they provide is plausible, yet empirical relationships between solar activity and any of the indices describing the north Atlantic oscillation, the Arctic oscillation or the polar vortex are regarded as weak.

My impression is nevertheless that the explanation provided by the Lockwood et al (2010) study reflects real aspects of our climate, especially if the effect is asymmetric. They argue that solar-induced changes in the stratosphere in turn affect the occurrence of persistent wintertime blocking. But one comprehensive, definite, consistent, and convincing documentation of the entire chain causality is still not in place, due to the lack of long-term high-quality observations from remote sensing platforms. It is nevertheless well known that the temperature in northern Europe is strongly affected by atmospheric circulation. Crooks and Gray (2005) have identified a solar response in a number of atmospheric variables, and Labitske (1987), Labitske and Loon (1988) and Salby and Callagan (2000) provide convincing analyses suggesting that the zonal winds in the stratosphere are influenced by solar activity. Furthermore, Baldwin and Dunkerton (2001) provide a tentative link between the stratosphere and the troposphere. The results of Lockwood et al (2010) fit in with earlier work (Barriopedro et al 2008) and provide further evidence to support the current thinking on solar-terrestrial links. Thus, it is an example of incremental scientific progress rather than a breakthrough or a paradigm shift.

References

Baldwin M P and Dunkerton T J 2001 Stratospheric harbingers of anomalous weather regimes Science 294 581–4

Barriopedro D, Garcia-Herrera R and Huth R 2008 Solar modulation of Northern Hemisphere winter blocking J. Geophys. Res. 113 D14118

Benestad R E 2005 A review of the solar cycle length estimates Geophys. Res. Lett. 32 L15714

Benestad R E and Schmidt G A 2009 Solar trends and global warming J. Geophys. Res. Atmos. 114 D14101

Crook S A and Gray L J 2005 Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset J. Climate 18 996–1014

Haigh J D 2003 The effects of solar variability on the Earth's climate Phil. Trans. R. Soc. Lond. A 361 95–111

Helland-Hansen B and Nansen F 1920 Temperature variations in the North Atlantic ocean and in the atmosphere Smithsonian Miscellaneous Collections 70 (4) 408 pp

Labitzke K 1987 Sunspots, the QBO, and the stratospheric temperature in the North polar region Geophys. Res. Lett. 14 535–7

Labitzke K and van Loon H 1988 Association between the 11-year solar cycle, the QBO, and the atmosphere, I. The troposphere and stratosphere on the northern hemisphere winter J. Atmos. Terr. Phys. 50 197–206

Lean J L 2010 Cycles and trends in solar irradiance and climate WIREs Climate Change 1 111–22

Lockwood M, Harrison R G, Woollings T and Solanki S K 2010 Are cold winters in Europe associated with low solar activity? Environ. Res. Lett. 5 024001

Monin A S 1972 Weather Forecasting as a Problem in Physics (Cambridge, MA: MIT Press) (Engl. translation from Russian)

Salby M and Callagan P 2000 Connection between the solar cycle and the QBO: the missing link J. Climate 13 328–38

Shindell D T, Schmidt G A, Mann M E, Rind D and Waple A 2001 Solar forcing of regional climate change during the Maunder minimum Science 294 2149–52

Open access
Solar activity and the mean global temperature

A D Erlykin et al 2009 Environ. Res. Lett. 4 014006

The variation with time from 1956 to 2002 of the globally averaged rate of ionization produced by cosmic rays in the atmosphere is deduced and shown to have a cyclic component of period roughly twice the 11 year solar cycle period. Long term variations in the global average surface temperature as a function of time since 1956 are found to have a similar cyclic component. The cyclic variations are also observed in the solar irradiance and in the mean daily sun spot number. The cyclic variation in the cosmic ray rate is observed to be delayed by 2–4 years relative to the temperature, the solar irradiance and daily sun spot variations suggesting that the origin of the correlation is more likely to be direct solar activity than cosmic rays. Assuming that the correlation is caused by such solar activity, we deduce that the maximum recent increase in the mean surface temperature of the Earth which can be ascribed to this activity is of the observed global warming.

Open access
Observed atmospheric electricity effect on clouds

R Giles Harrison and Maarten H P Ambaum 2009 Environ. Res. Lett. 4 014003

The atmosphere's fair weather electric field is a permanent feature, arising from the combination of distant thunderstorms, Earth's conducting surface, a charged ionosphere and cosmic ray ionization. Despite its ubiquity, no fair weather electricity effect on clouds has been hitherto demonstrated. Here we report surface measurements of radiation emitted and scattered by extensive thin continental cloud, which, after ∼2 min delay, shows changes closely following the fair weather electric field. For typical fluctuations in the fair weather electric field, changes of about 10% are subsequently induced in the diffuse short-wave radiation. These observations are consistent with enhanced production of large cloud droplets from charging at layer cloud edges.

Open access
Testing the proposed causal link between cosmic rays and cloud cover

T Sloan and A W Wolfendale 2008 Environ. Res. Lett. 3 024001

A decrease in the globally averaged low level cloud cover, deduced from the ISCCP infrared data, as the cosmic ray intensity decreased during the solar cycle 22 was observed by two groups. The groups went on to hypothesize that the decrease in ionization due to cosmic rays causes the decrease in cloud cover, thereby explaining a large part of the currently observed global warming. We have examined this hypothesis to look for evidence to corroborate it. None has been found and so our conclusions are to doubt it. From the absence of corroborative evidence, we estimate that less than 23%, at the 95% confidence level, of the 11 year cycle change in the globally averaged cloud cover observed in solar cycle 22 is due to the change in the rate of ionization from the solar modulation of cosmic rays.