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Abstract
Transparent, consistent, and accurate national forest monitoring is required for successful
implementation of reducing emissions from deforestation and forest degradation (REDD+)
programs. Collecting baseline information on forest extent and rates of forest loss is a first step
for national forest monitoring in support of REDD+. Peru, with the second largest extent of
Amazon basin rainforest, has made significant progress in advancing its forest monitoring
capabilities. We present a national-scale humid tropical forest cover loss map derived by the
Ministry of Environment REDD+ team in Peru. The map quantifies forest loss from 2000 to
2011 within the Peruvian portion of the Amazon basin using a rapid, semi-automated approach.
The available archive of Landsat imagery (11 654 scenes) was processed and employed for
change detection to obtain annual gross forest cover loss maps. A stratified sampling design and
a combination of Landsat (30 m) and RapidEye (5 m) imagery as reference data were used to
estimate the primary forest cover area, total gross forest cover loss area, proportion of primary
forest clearing, and to validate the Landsat-based map. Sample-based estimates showed that
92.63% (SE= 2.16%) of the humid tropical forest biome area within the country was covered by
primary forest in the year 2000. Total gross forest cover loss from 2000 to 2011 equaled 2.44%
(SE= 0.16%) of the humid tropical forest biome area. Forest loss comprised 1.32% (SE = 0.37%)
of primary forest area and 9.08% (SE = 4.04%) of secondary forest area. Validation confirmed a
high accuracy of the Landsat-based forest cover loss map, with a producer’s accuracy of 75.4%
and user’s accuracy of 92.2%. The majority of forest loss was due to clearing (92%) with the rest
attributed to natural processes (flooding, fires, and windstorms). The implemented Landsat data
processing and classification system may be used for operational annual forest cover loss updates
at the national level for REDD+ applications.

Keywords: REDD, forest cover, forest cover change, national forest monitoring, Landsat, Peru

1. Introduction

Deforestation and degradation of tropical rainforest are
important global issues due to their role in carbon emissions,
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biodiversity loss, and reduction of other ecosystem services
(Millennium Ecosystem Assessment 2003, Foley et al 2007).
Of global gross forest cover loss from 2000 to 2012, 32%
occurred within tropical rainforests (Hansen et al 2013).
Almost half of rainforest loss was found in South America,
primarily in the Amazon basin. Peru, where humid tropical
forests cover about 60% of the total land area, possesses the
second largest portion of Amazon rainforest after Brazil.
While forest cover loss in Peru is substantially lower than in
Brazil (Hansen et al 2013), humid tropical forest loss is
considered the primary source of carbon emissions at the
national scale (MINAM 2011). The large extent of remaining
intact rainforest within the country (Potapov et al 2008)
provides Peru an incentive for combating deforestation and
conserving rainforest ecosystem services. The Peruvian gov-
ernment has developed an agenda to decrease deforestation
rates toward net zero deforestation by 2021 (Piu and
Menton 2013).

Many national and international initiatives aimed at
monitoring and reducing deforestation are underway in Peru,
several of them specifically in support of the reducing emis-
sions from deforestation and forest degradation (REDD+)
national program. The international REDD+ negotiations,
sponsored by the United Nations Framework Convention on
Climate Change (UNFCCC) since 2005, have provided
methodological guidance on REDD+ through conservation of
forest carbon stocks, sustainable management of forests, and
enhancement of forest carbon stocks in developing countries.
Preparation activities (i.e. the readiness phase) for the
implementation of REDD+ projects at the national level have
been developed in Peru since 2009. The Ministry of Envir-
onment (Ministerio del Ambiente, MINAM) served as the
primary governmental agency responsible for the national
REDD+ implementation. One of the main tasks of this pro-
cess, as requested by the UNFCCC, is to develop a robust and
transparent national forest monitoring system (NFMS) for the
monitoring and reporting of the REDD+ activities.

According to the Intergovernmental Panel on Climate
Change guidelines (IPCC 2006), required data for estimating
emissions from forest cover changes include forest extent,
emissions factors (i.e. coefficients quantifying emissions per
unit activity), and activity data (i.e. data on the forest cover
changes). The only viable data source for timely monitoring
and consistent quantification of forest cover change at
national scales and annual time intervals is satellite imagery
(Hansen and Loveland 2012). A number of satellite-based
change detection methods for forest monitoring were proto-
typed over Peru, as local or national projects, or as a part of
continental or global analyses. Landsat data and on-screen
digitizing were used to map deforestation within the Peruvian
Amazon for 1985–1990 and 1990–2000 time intervals
(MINAM 2009). Conservation International performed the
nation-wide analysis of forest extent and loss for the
1990–2000 interval using supervised image classification
(CI 2008). They reported forest loss of 56 300 ha yr−1 for
1990–2000 decade. In 2014, the Dirección Generale de
Ordenamiento Territorial (DGOT) within MINAM produced
an estimate of deforestation from 2000 to 2009, using Landsat

data and a rule-based linear mixture modeling algorithm
(DGOT-MINAM 2014). Forest loss was estimated by DGOT
as 91 100 ha yr−1 for 2000–2005 interval and 163 300 ha yr−1

for 2005–2009 interval. Gross forest cover loss within the
country was also mapped within global mapping initiatives
using moderate resolution imaging spectroradiometer
(MODIS) (Hansen et al 2010) and Landsat data (Hansen
et al 2013).

According to the IPCC guidelines on greenhouse gas
emission inventory (IPCC 2006), the data on forest cover
change provided by a NFMS should be clearly documented,
complete at the national scale, consistent between time
intervals, comparable between countries, and include
uncertainty estimates. In determining the suitability of pro-
posed methods for change detection for an operational
NFMS, several factors should be taken into account. These
factors include: (i) data continuity, cost and access; (ii) time
and effort required for data processing and map character-
ization by the national team; (iii) repeatability across space
and through time, meaning consistency of the national
monitoring program as well as portability to other countries
and regions. The goal of the current project was to develop
and prototype an efficient methodology for initial forest
cover and change assessment in the context of the devel-
opment of a NFMS and implementation of REDD+ activ-
ities in Peru. The choice of data and methods was guided by
several requirements: (i) wall-to-wall national coverage of
free-of-charge satellite data; (ii) cost-effective and fast data
processing algorithm; (iii) statistically validated results.
Landsat data were selected for the national assessment as the
only medium spatial resolution data available free-of-charge.
The Landsat data processing and analysis algorithm was
guided by our experience with global forest loss mapping
(Hansen et al 2013) and applied at the national scale using
an improved version of our data processing system. Areas of
primary and secondary forest extent and total gross forest
cover loss were estimated using probability-based sampling.
Landsat and high spatial resolution RapidEye imagery were
employed to characterize forest cover and change within
sample blocks. Specifically, gross forest cover loss was
quantified from high spatial resolution data for each sample
block; sample-based estimates were subsequently incorpo-
rated with mapped forest loss information to reduce the
standard error of the estimate. Area of gross forest cover
loss was disaggregated in time (annually), in space (by
regions), and by disturbance factors using wall-to-wall
annual Landsat forest loss maps. The work was carried out
as a collaboration between the University of Maryland
(UMD) and MINAM, with input data processing performed
by UMD, image interpretation and mapping performed by
the MINAM REDD+ Project, and validation provided by an
independent analysis. Our results depicted forest cover
extent and change from 2000 to 2011 and are presented as a
baseline of activity data for national REDD+ activities
measuring and reporting.
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2. Data

Two satellite datasets were used for the analysis: (i) wall-to-
wall medium spatial resolution data for forest cover change
mapping; and (ii) samples of high spatial resolution data for
total forest and change area estimation and wall-to-wall map
validation. The wall-to-wall dataset consisted of Landsat
multispectral imagery and digital elevation data; the sample-
based dataset consisted of Landsat and RapidEye imagery.

2.1. Landsat data

For this analysis, we used the entire archive of Landsat 7
ETM+ imagery with less than 75% cloud cover available at
the United States Geological Survey National Center for
Earth Resources Observation and Science (USGS EROS).
The total number of Landsat scenes was 11 654. All images
were acquired in the standard terrain-corrected L1T format,
which provides systematic radiometric, geodetic and topo-
graphic accuracy. We used four reflectance bands: red (band
3), near infrared (NIR, band 4), shortwave infrared (SWIR,
bands 5 and 7), and the emissive thermal infrared band 6 to
calculate multi-temporal metrics (section 3.1).

2.2. Topography data

Elevation above sea level and slope were added as additional
data layers for the classification. We used the void-filled
seamless Shuttle Radar Topography Mission (SRTM) digital
elevation model available at http://srtm.csi.cgiar.org, and
calculated slope. Both inputs were re-projected and resampled
to match the 30 m Landsat pixel size.

2.3. RapidEye data

Multispectral remote sensing imagery from the RapidEye
constellation was acquired for 30 validation sample blocks of
12 × 12 km each. The majority of images were from the year
2011 with a small number of images from 2010 and 2012.
The constellation has five identical earth observation satellites
recording radiance in five spectral bands corresponding to the
blue, green, red, red-edge and NIR part of the electromagnetic
spectrum. The imagery has a spatial resolution of 5 m.

3. Methods

Our wall-to-wall gross forest cover loss mapping and sam-
pling analysis was carried out within the humid tropical forest
zone of Peru. The zone was delineated by MINAM (2012)
and extends from the eastern slopes of the Andes into the
Amazon basin. Landsat data from year 2000 to 2011 were
automatically processed and composited by UMD to create a
nation-wide set of multi-temporal spectral metrics. These
spectral metrics were used as independent variables for wall-
to-wall gross forest cover loss detection for the 2000–2011
time interval; MINAM performed this task using a supervised
decision tree classification algorithm. The total gross forest
cover loss was attributed by date (year of change) and by

disturbance agent by UMD. The map was also employed to
create a stratification of high and low forest cover loss;
sample blocks were randomly selected from each stratum. For
each sample, forest cover 2000 and forest cover loss
2000–2011 were characterized using Landsat and RapidEye
data. Sample-based attribution was performed by both orga-
nizations with input from independent experts. Sample-based
estimates provided total gross forest cover loss area, while the
wall-to-wall Landsat-scale map was used to disaggregate this
area by change date, change factor, and by region. Estimates
of primary and secondary forest cover area were produced
only from sample data.

Our analysis was based on the following set of defini-
tions. Forest was defined as areas with trees above 5 m and
tree canopy cover above 30% within Landsat 30 m pixels, and
included natural forests, secondary regrowth, and tree plan-
tations. Forest cover loss was defined as any disturbance
event leading to complete or nearly complete removal of tree
cover within a Landsat pixel. Primary forests were defined as
intact or mature secondary forests absent of visible signs of
recent alteration by human activity. All other tree cover,
whether regrowing forests or tree plantations was considered
as secondary forests.

3.1. Landsat data processing

The Landsat data were transformed from L1T imagery to
multi-temporal metrics using the same approach as was
implemented for the global forest cover produce of Hansen
et al (2013). The approach is easily applied to smaller areas,
for example at national-scale. A precursor effort was imple-
mented for the Democratic Republic of Congo (Potapov
et al 2012), including a sample-based accuracy assessment
(Tyukavina et al 2013).

All Landsat 7 ETM+ L1T images were reprojected from
the local UTM projections to the Sinusoidal projection with
central meridian 60°W and resampled to the common output
raster grid. Using the common raster grid facilitated per-pixel
data compositing, and the choice of equal-area projection
allowed for easy area estimation. We converted the digital
numbers of the reflective bands to top-of-atmosphere reflec-
tance and the thermal band to brightness temperature using
the standard protocol (Chander et al 2009). A set of quality
assessment models was then applied to each pixel of an
image, resulting in a quality data layer that identified pixels
affected by clouds, haze, and cloud shadows (Potapov
et al 2012). The quality assessment was performed using a set
of bagged decision trees (Breiman et al 1984) derived from a
large random set of training data collected throughout the
tropical biome.

A radiometric normalization was applied to all images to
reduce reflectance variations between image dates due to
atmospheric conditions and surface anisotropy. We employed
a low spatial resolution (250 m) cloud-free surface reflectance
product from MODIS as a normalization target. To normalize
each Landsat image, we calculated a mean bias between
MODIS surface reflectance and Landsat top-of-atmosphere
reflectance for each spectral band over the image area
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consisting of good quality land observations, and applied the
bias value to adjust Landsat reflectance. Across-track reflec-
tance anisotropy was corrected by modeling Landsat TOA—
MODIS surface reflectance bias as a function of the Landsat
scan angle (Potapov et al 2012). In addition to the reflectance
bands, two indices were calculated for each Landsat image,
the normalized difference vegetation index (NDVI,
Tucker 1979) and the land surface water index (LSWI, Xiao
et al 2004).

The analysis of the Landsat image time series uses multi-
temporal metrics (DeFries et al 1995, Hansen et al 2008,
Potapov et al 2012) and allows for handling time-series data
with variable observation density. Multi-temporal metrics
capture spectral change within a standardized feature space
not tied to any specific time of year. In so doing, they enable
the extrapolation of rule sets, such as decision tree models,
across large areas. The metrics feature space thus allows for
the detection of forest change during 11 years of observations
over the entire humid tropical forests within the country.
Metrics were extracted at a per-pixel level from all cloud and
cloud shadow-free observations from 1999 to 2011. Our
metrics set included start/end image composites, rank-based
metrics, and trend analysis metrics. The first and last single
cloud-free observations were selected as the cloud-free
observations closest to the end of year 2000 and the end of
year 2011 and the dates of the selected observations stored.
The first/last observation dates used for the monitoring were
consistent for the entire country. The mean date for the first
observation was 26/10/2000 and for the last observation 30/8/
2011. From all first observations, 96% came from the year
2000; for the last observation, 95% came from the year 2011.
To remove residual haze and haze shadow contamination, an
additional set of first and last date composites were created
using the median band reflectance value of the three obser-
vations closest to the end of year 2000 and 2011, respectively
(figure 1).

To produce rank-based metrics, band reflectance values
from 2000 to 2011 were ranked based on (i) band reflectance
value or (ii) corresponding ranks of selected indices (NDVI,
LSWI) and brightness temperature. Metrics were created from
observations representing selected percentile values (mini-
mum, 10%, 25%, 50%, 75%, 90%, maximum) and averages
were calculated between these values for each band and rank
method. A separate group of metrics was derived for per-band
reflectance change during the analyzed time interval. These
metrics included: (i) slope of linear regression of band
reflectance versus image date, and standard deviation of band
reflectance from 2000 to 2011; (ii) maximum positive and
negative change in reflectance between consequent observa-
tions; and (iii) selected statistics (minimum, maximum and
range) for temporal segments defined by per-band absolute
maximum and minimum reflectance values.

3.2. Change detection

Multi-temporal metrics derived from cloud-free Landsat
observation covered 99.8% of the humid tropical biome area.
The remaining area (mountain ridge crests with permanent

orographic clouds) was not processed by the change detection
algorithm due to data limitations.

Gross forest cover loss from 2000 to 2011 was mapped
using a supervised bagged classification tree model (Breiman
et al 1984). A group of image analysts at MINAM performed
visual interpretation of the training sites, mapping areas of
stable forest cover and gross forest cover loss from 2000 to
2011. The composites of the first and last cloud free obser-
vations, along with maximum band reflectance composites,
were used for data visualization. Analysts used a number of
additional datasets, including freely available high-resolution
images from GoogleEarth™ as reference materials to aid
interpretation. All events resulting in forest cover loss (per-
manent or temporal) at the 30 m pixel scale, including agri-
culture clearings (even followed by forest regrowth within the
same time interval), logging, fire, flooding, and storm damage
were mapped together as the forest cover loss class.

The classification tree model related manually interpreted
training with the entire set of spectral metrics for the
2000–2011 time interval. Classification was done iteratively,
by examining the output map, correcting training, and re-
running the classifier again until a sufficiently accurate pro-
duct had been created. The final product was extensively
visually checked and manually corrected for remaining noise
and local errors. As a result of manual correction, 51 thousand
ha (3.1% of total loss area) of loss was manually added to the
map product. These areas were not detected as change due to
limited sensitivity of the classification model. Noise and other
sources of committed error of forest cover loss were manually
removed, totaling 31 thousand ha (1.9% of total loss area).
Corrections were made predominantly over mountain areas
where frequent cloud cover, topographic shadows, and low
tree canopy cover density caused local errors.

3.3. Gross forest loss attribution by year and disturbance agent

To disaggregate change areas by forest clearing date we
employed an analysis of annual NDVI profiles. For each year
the minimal annual NDVI value was collected per pixel. For
all change pixels, we analyzed inter-annual minimal NDVI
difference, and the year representing the highest drop in
NDVI was selected as the change date.

The goal of forest loss cause attribution was to separate
natural disturbance and fires from anthropogenic forest
clearings. The attribution process included two steps. First, all
forest loss due to flooding and river meandering was mapped
automatically using annual water masks collected from all
cloud-free image observations. Second, visual analysis of
change areas was performed and used to identify and label
losses due to fires, landslides, and windstorms. The remaining
forest cover loss was attributed to anthropogenic forest
clearing within primary, secondary forests and forest
plantations.

3.4. Sample-based area estimation and map validation

The sample-based analysis goals were to estimate area of
gross forest cover loss, primary forest extent, and map
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accuracy. Collecting reference data to validate 11 years of
land-cover change is challenging. There are no adequate
field data that could be used for such a purpose. Com-
mercial high spatial resolution data are not uniformly
available for Peru, particularly for the earlier years of the
study, precluding a probability-based sample design using
exclusively high spatial resolution imagery. Landsat obser-
vations (single-date images) interpreted through time are a
viable validation reference data set and have been used to
assess forest loss area and map uncertainty (Hansen
et al 2010). However, the preference is to include high

spatial resolution data for determining omission errors
related to the spatial scale of forest disturbance (Tyukavina
et al 2013). For this study, a set of RapidEye images from
the year 2011 was available at the national-scale, and a
hybrid validation approach was employed: high spatial
resolution (RapidEye) data for year 2011 was compared
with Landsat data for the year 2000. The spatial resolution
of the RapidEye data (5 m) enabled mapping of disturbance
at sub-Landsat-pixel scale. Landsat data, including the 15 m
panchromatic band, were used as the reference year 2000
imagery.

Figure 1. Landsat composites for Peru created from median values of three earliest (circa year 2000; (A)) and latest (circa year 2011; (B))
cloud-free observation. The humid tropics biome area is highlighted by a black outline. Position of the close-up image is highlighted by a
yellow rectangle.
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The choice of the validation sampling design (figure 2)
was strongly influenced by RapidEye data costs, as we were
only able to purchase 30 images for circa year 2011 from a
national coverage. A two-stage cluster sampling design was
implemented with the first stage being a stratified random
sample of clusters and the second stage being a simple ran-
dom sample of pixels within clusters. The size of the clusters
was guided by the RapidEye image tile size. Each cluster was
a 12 km by 12 km block, and consequently the sample pixels
were spatially constrained to the 30 selected sample blocks.
The sampling frame over the country consisted of 5532
12 × 12 km blocks within the humid tropical biome (sample
blocks with biome area coverage of less than 40% were
excluded from sampling, reducing the total sampled area of
the biome by less than 1%). To select 30 sample blocks
(clusters), we employed a stratified random sampling design.
Two strata were selected, high change (the blocks with the
highest gross forest loss area comprising 50% of the total
change within the sampling frame) and low change (the
blocks of low change totaling the remaining 50% of total
forest cover loss). The threshold separating the high- and low-
change strata was 9.8% of gross forest loss per block. The

high-change stratum included 337 blocks and the remaining
5195 blocks comprised the low-change stratum. Guided by
Neyman optimal sample size allocation rules (Cochran 1977),
we selected 70% of the 30 total sample blocks (21 blocks)
from the low-change stratum, and 30% (nine blocks) from the
high-change stratum. Within each sampled block, 100 points
(representing 30 × 30 m Landsat pixels) were selected by
simple random sampling. The selected pixels within a block
constitute the second stage sample.

Selected sample points (Landsat pixels) were visually
analyzed using Landsat 2000 and RapidEye 2011 data
(figure 3). For each pixel, analysts recorded the fraction of
gross forest cover loss (both from natural and anthropogenic
factors). In addition, for 2000 the analyst recorded the forest
type: primary or secondary forest. Primary forests were dis-
tinguished by the absence of visible disturbance and a spectral
signature and texture similar to nearby surrounding intact
forest tracts. Forest plantations, regeneration on old clearings,
and fallows were considered secondary forests. Analysts also
marked pixels located on the edge of forest cover loss pat-
ches, which we expected to have lower classification accuracy
compared to ‘core’ forest loss and no-change areas. Reference
results were provided for all except 20 points that had no
cloud-free RapidEye data and were excluded from the
analysis.

Sample-based results (per-pixel comparison of reference
change fraction and map-based change detection) were used
to produce estimates of forest loss area and map accuracy
metrics, along with the standard errors associated with these
estimates (a 95% confidence interval can be obtained by
adding and subtracting two times the standard error of the
estimate). Using primary/secondary forest reference data we
were able to estimate the proportion of primary forests in
2000 as well as the proportion of primary forest loss. The
estimation formulas are presented in the appendix.

4. Results

4.1. Gross forest cover loss

Estimation of gross forest cover loss area within the Peruvian
humid tropical biome (total area 78.6 million ha) for the
2000–2011 time interval was the main objective of the pro-
posed methodology. The sample-based area, which is col-
lected from a probability sample and attributed using high
spatial resolution data, is considered the primary estimate for
forest extent and change. Total gross forest cover loss
2001–2011 equaled 2.439% (SE= 0.162%) of the humid
tropical forest biome area.

Sample-based estimates also allowed us to disaggregate
total forest loss into primary forest clearing and secondary
forest rotation. In 2000, Peruvian primary humid tropical
forest cover totaled 92.63% (SE = 2.16%) of the humid tro-
pical forest biome area, and secondary forest the remaining
7.37%. Forest loss comprised 1.32% (SE = 0.37%) of primary
forest area and 9.08% (SE= 4.04%) of secondary forest area.

Figure 2. Stratified sampling design. 1—Sampled blocks (n= 30);
red blocks: high-change stratum, blue blocks: low-change stratum; 2
—country boundary; 3—boundary of humid tropical forest biome
within Peru; 4—gross forest cover loss percent per 12 × 12 km block
of sampling grid.
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Of total gross forest cover loss, 64.88% (SE= 6.75%) was
found in the primary forests.

Our map-based gross forest cover loss area (2.07% of the
humid tropical forest biome area) was found to be below the
sample-based estimate (2.44%). Accuracy measures show
overall map accuracy of 99.4% (SE 0.2%). However, the
Landsat-based map underestimates forest cover loss, with
producer’s accuracy of gross forest loss class of 75.4% (SE
2.5%) and user’s accuracy of 92.2% (SE 1.9%) (table 1). As
we expected, edge pixels have the highest uncertainty of
classification results. The overall accuracy of edge pixels
(n= 138) was 73.0%. Excluding these pixels (remaining
sample n = 2844), overall accuracy increased to 99.8%, pro-
ducer’s accuracy to 86.3%, and user’s accuracy to 95.4%.

4.2. Annual and sub-national gross forest cover loss

While the sample-based method allowed us to estimate total
gross forest loss area with high precision and known uncer-
tainty range, the wall-to-wall Landsat change detection map
allows for annual and sub-national disaggregation of the total
loss (figure 4, table 2).

The annual gross forest cover loss indicated an increasing
trend in loss over time with pronounced peak values for 2005
and 2009 (figure 4). While the slope of the linear regression of
annual loss area as a function of year of change has low
statistical significance (p-value of 0.067), the average annual
loss increased by 45% from the 2001–2004 to 2008–2011
time interval. The gross forest loss peak of the year 2005 is
coincident with a major drought event in the Amazon basin,
which caused extensive fires and intensification of agri-
cultural clearing (Marengo et al 2008). A second major
drought in 2010 (Lewis et al 2011) was likewise coincident
with high forest loss values; however, we did not observe
large forest fires during that year. Forest loss increase since
2006 coincided with the expansion of commercial high-yield
oil palm plantations (Gutiérrez-Vélez et al 2011).

At the sub-national level, 80% of total gross forest loss
was concentrated within five regions: San Martin, Loreto,
Ucayali, Huánuco, and Madre de Dios. Visual analysis of the
forest loss map and satellite data revealed different patterns of
forest loss within these regions. We suggest that the primary

cause of forest loss in San Martin and Huánuco regions is
clearing for agriculture and pastures. These regions featured
the highest rate of forest cover loss (8.99% and 9.76% of total
tropical forest biome area, respectively). In Loreto and
Ucayali, large-scale industrial clearing for oil palm planta-
tions is also present, together with small- and medium-size
agriculture clearing. Gold mining (Asner et al 2013) and
large-scale agriculture clearing along the interoceanic high-
way are the leading cause of forest loss in the Madre de Dios
region.

Annual loss rates varied between Peruvian regions
(figure 5). Pronounced intensification of forest cover loss in
Loreto and Ucayali region is most probably an outcome of the
recent expansion of industrial oil palm plantations (Gutiérrez-
Vélez et al 2011). In Loreto region, a single contiguous patch
of new oil palm plantations established between 2007 and
2011 accounted for more than 11 thousand ha of forest
clearing. San Martin region, where forest loss is mostly due to
concentrated agriculture expansion, featured high fluctuations
in annual forest loss area.

4.3. Disturbance types

Forest disturbance type mapping is important in differentiat-
ing the factors of forest loss (natural or anthropogenic dis-
turbance types) as carbon monitoring programs seek to reduce
human-induced conversion of natural forests. The inclusion

Figure 3. Point-based validation example. Landsat 30 m imagery for year 2000 (A) and 2011 (B); RapidEye 5 m imagery for year 2011 (C).
1–5—validation points (Landsat 30 m pixels), points 2 and 3 interpreted as forest loss. The Landsat image pair is sufficient for interpretation
of points 1, 3, and 5. For points 2 and 4 (located at the edge of the cleared areas), higher resolution satellite data (RapidEye) were required.

Figure 4. Annual distribution of total area of gross forest cover loss
within the humid tropical biome in Peru, 2001–2011.
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of natural factors of forest loss can be of value in assessing
underlying factors such as climate change (Easterling and
Apps 2005).

The majority of gross forest cover loss (92.2%) was
attributed to clearing for agriculture and tree plantations. The
rest was due to natural disturbance, mostly represented by
flooding and river meandering (6.0%), and fires (1.5%).
Windstorm damage represented 0.3% of total loss, and
landslides 0.02%. Forest loss due to river course change was
mostly present along the Amazon River and its major tribu-
taries (figure 6.). Fires damaged forests along the Amazon and
Ucayali rivers in Loreto and Ucayali regions. Windstorms
were found mostly in remote forest areas of the Amazon basin
in Loreto region.

While the total area of natural disturbance is small, the
annual rate of such change fluctuated significantly (figure 7).
The extreme drought year of 2005 was associated with the
highest burned area extent (almost 30% of total burned area
and another 25% attributed to the year 2006). A one-year

delay in fire date attribution is typical for remote sensing
products (Hansen et al 2013), so we may suppose that in total,
the year 2005 was responsible for more than one-half of total
burned area over the study period. Extreme windstorms
accompanied the drought of 2005, and were also present in
the last year of the study. Conversely, forest loss due to
flooding and river meandering was the lowest in 2005, likely
due to decreased stream flow resulting from the lack of pre-
cipitation. In general, the area of natural disturbance increased
during the observation period.

Table 1. Confusion matrix for gross forest cover loss validation.

Reference

No change Forest loss Total User’s accuracy (SE)

No change 97.990 0.465 98.455 99.5% (0.2%)
Map Forest loss 0.120 1.426 1.546 92.2% (1.9%)

Total 98.110 1.891 100.00 —

Producer’s accu-
racy (SE)

99.8% (0.1%) 75.4% (2.5%) Overall accuracy (SE) = 99.4%
(0.2%)

n= 2980; Values shown are % of the study region area.

Table 2. Gross forest cover loss 2001–2011 within humid tropical
biome (HTB) by region. The total forest cover loss area was
estimated from the sample data and disaggregated using the wall-to-
wall Landsat forest loss map.

Region

HTB
area,

ha × 103

Gross
forest
loss,

ha × 103

Gross
forest
loss, %
of HTB

% gross
forest loss
attributed
to clearing

Amazonas 3633.8 64.9 1.79 99
Cajamarca 782.1 14.9 1.90 100
Huancavelica 69.5 0.9 1.34 100
Huánuco 2368.3 231.2 9.76 99
La Libertad 83.3 0.7 0.87 100
Loreto 37668.7 426.4 1.13 82
Madre De Dios 8487.0 132.3 1.56 89
Piura 82.3 2.8 3.35 91
San Martin 4883.3 439.1 8.99 100
Ucayali 10573.9 302.1 2.86 85
Pasco 1772.4 84.6 4.77 99
Junín 2521.8 123.5 4.90 98
Ayacucho 346.6 15.7 4.54 99
Cusco 3683.0 59.5 1.61 98
Puno 1603.2 17.5 1.09 90
Total 78559.1 1916.1 2.44 92

Figure 5. Annual distribution of total area of gross forest cover loss
by regions. Regions with small humid tropics biome area
(Huancavelica, La Libertad, and Piura) are not shown.
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5. Discussion

An effective algorithm for national-scale forest change
detection is a key component of any NFMS and a requirement
for a country to participate in REDD+ activities. Such algo-
rithms should be capable of precise and timely estimation of
activity data (primarily forest cover loss) and associated
uncertainty for national carbon emission monitoring. Several
different algorithms and approaches are in development for
tropical countries (Asner et al 2009, Huang et al 2010,
INPE 2010, Hansen et al 2013, Lehmann et al 2013), and the
comparison of these methods should take into account several
major factors, including cost, required effort, data processing
and analysis speed, and consistency of results at national and
international levels.

Freely available, long-term data sources are preferred
inputs to operational monitoring programs. The example
presented here is based on Landsat data, available free-of-
charge for the entire globe. Higher spatial resolution Rapi-
dEye data were purchased in a sampling mode, thereby
minimizing data costs. When using large volumes of time-
series data, it is necessary to have a standard and automated
processing scheme for deriving cloud-free time-series metrics
binned to a standard gridded map projection. The system
presented here employed automated radiometric normal-
ization, quality assessment, and time-series feature derivation
within the defined study period. The standard for such pro-
cessing of land products is MODIS (Justice et al 2002), and
new Landsat-based systems are now being developed (Roy
et al 2010). Our approach follows the MODIS model, trans-
forming single daily observations into a consistent set of
national (continental, global) time-sequential metrics (Hansen
et al 2013).

To date, most national-scale analyses have employed
single image footprints as the basic unit of analysis (Asner
et al 2009, Huang et al 2010, INPE 2010, Lehmann
et al 2013). Per-scene data analyses have several major

drawbacks (Hansen and Loveland 2012). First, they sig-
nificantly increase latency of product derivation and increase
amount of effort in generating products. Second, separate per
scene analyses compromise the consistency between neigh-
boring scenes. Third, employing raw uncalibrated Landsat
data often requires analysts to apply advanced data processing
techniques, including radiometric and geometric corrections.
Such requirements increase overall effort and associated costs
of the methodology, including greater initial capacity per
analyst. Alternatively, we advocate the use of pre-processed
data in the form of national time-series metrics and compo-
sites. Such data facilitate the timely and internally consistent
derivation of national-scale forest change products. Two
important aspects of our approach deserve to be highlighted.
First, the only initial requirement for national-scale mapping
using the presented method is expertise in visual interpreta-
tion of forest extent and change. Visual analysis of pre-
processed image composites does not require special
knowledge of data management techniques and could be
easily performed by a forester or resource management spe-
cialist. Second, national-scale products can be derived and
iterated with low latency, because the classification model
derived from training data is implemented for the entire area
at once. The ability to rapidly iterate classifications is
important and quickly leads to a final map product. Iteration
also illustrates the concept of versioning and as new input
data are made available, new versions of maps can be made if
improved accuracy is documented to justify an update.
Standard pre-processed data inputs also foster product con-
sistency between countries.

The computer and software progress in recent years
allowed for national image processing to be performed within
the countries by regional specialists. While global image
analysis still requires cloud computing capabilities (Hansen
et al 2013), national analysis based on preprocessed gridded
data may be performed using personal workstations and
standard image analysis software. We have prototyped this
approach in other countries, initially in the Democratic
Republic of Congo (Potapov et al 2012). This paper presents
a first product with an operational in-country agency, the
Peruvian MINAM.

A precise forest definition is an important part of the
established forest change reporting system. The national
forest program in Peru adopted the FAO criteria of forest,
defined as minimum tree cover of 10% and height of mature
woody vegetation of 2 m and above (MINAM 2014). Our
minimum tree canopy cover threshold of 30% is higher than
the minimum tree cover criterion proposed by the Peruvian
NFMS program. Our use of a 30% forest cover threshold is
based on our previous Landsat studies (Broich et al 2011,
Potapov et al 2011, 2012) and is meant to facilitate inter-
pretation of training and validation data. As the study area
consisted of the humid tropical forest ecozone of Peru, there
is limited extent of open canopied woodlands in the 10–30%
canopy range. Using the percent tree canopy cover product of
Hansen et al (2013), we quantified the difference in forest
extent between the two definitions; the area of forest within
the 10–30% cover range added only 0.4% forest extent to our

Figure 6. Pattern of annual natural forest cover loss due to river
meandering. Background image—SWIR band from Landsat 2010
image. Patches of forest loss located away from the river are due to
agriculture forest clearings. Río Ucayali, Loreto, Peru, 75°12′W, 7°
11′N.
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definition. For humid tropical forests, the low end of forest
cover definitions should not greatly impact forest extent
estimation. However, for dry tropical environments, where
open canopied woodlands and parklands are extensive, the
application of differing low-end cover thresholds will greatly
impact forest extent estimates.

Spectral signatures and textures were interpreted in
combination with landscape context to label primary forest
cover. Primary forests are spatially extensive, have dark
spectral signatures and marked texture. Mature secondary
forests can be indistinguishable from primary forest due to
similar structure and composition (assessed using Landsat
imagery) and are included in our primary forest class.
Younger secondary forests differ in their structure and com-
position, as suggested by Chokkalingam and De Jong (2001).
The more homogeneous canopies of regrowing natural forests
and plantations is readily visible in both Landsat and Rapi-
dEye imagery. Our mapping of secondary forests in the
Democratic Republic of Congo (Potapov et al 2012) relied on
smoother canopy structure and a resulting brighter NIR
reflectance.

While the Landsat-based wall-to-wall forest cover loss
map is required for the national-scale analysis, the area esti-
mate of gross forest cover loss is based on the Landsat/
RapidEye assessment. The higher spatial resolution of the
RapidEye sensor (5 m/pixel compared to 30 m/pixel of
Landsat) allowed for the precise detection of change at
Landsat sub-pixel scale. As cautioned by Olofsson et al
(2013, 2014), estimating area from a map is subject to bias
attributable to classification errors. The comparison of user’s
and producer’s accuracies from the error matrix (table 1)
shows that the Landsat-based map underestimated forest
cover loss. The sample-based estimate of forest loss area is
17.5% higher (2.44% of the biome area) than the map-based
estimate (2.07%). Such underestimation is possible for map

products based on medium spatial resolution satellite data in
areas of predominantly small-scale forest clearing (Tyukavina
et al 2013). The estimate derived from the sample of high
spatial resolution data (RapidEye) is assumed to provide a
more accurate assessment of forest loss than does the Land-
sat-derived map; the final area of forest loss is thus estimated
from the RapidEye imagery.

However, the wall-to-wall map is still beneficial as it is
employed as auxiliary information in a model-assisted esti-
mator (Särndal et al 1992, Stehman 2009, 2013) that results in
a substantially more precise estimate of area of forest loss
than would be obtained from just the RapidEye sample data.
The standard error for the estimated percent area of forest loss
would have been 0.60% had the map not been used in the
estimation compared to the standard error of 0.16% which
was reported for the estimate that incorporated the map
information. While the final area estimation was made using
high spatial resolution sample data, the Landsat-based map
was used (i) to define the strata used to select the sample, (ii)
as an input to reducing overall estimate uncertainty (see
appendix) and (iii) to disaggregate the total loss area by year,
province, and disturbance cause. For this disaggregation, we
assumed that the relation of sample-based and Landsat-based
forest loss area is uniform in time and in space. We believe
that this is a valid assumption for Peru where small-scale
forest disturbance is widespread. Our total area disaggrega-
tion approach, however, may not be suitable for precise sub-
national forest loss trends reporting in the context of REDD
activities. The same sampling approach could be used to
provide sub-national estimates, but the sample size would
need to be substantially larger. Because we did not have an
adequate sample size for regional estimates, using the wall-to-
wall Landsat-based forest loss map was the only viable
approach to provide change estimates per region.

Figure 7. Annual distribution of total area of natural disturbance causes.
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Our proposed methodology was implemented in Peru to
map a baseline forest cover loss from 2000 to 2011. Updates
of forest loss information are planned using more recent
Landsat data. The multi-temporal metric approach yields
standard image datasets for any temporal window—from one
year to more than a decade. Moving forward, systematic
annual updates are planned using the presented processing
approach. Using the same data type for both baseline and
monitoring products ensures consistency. Production and
validation of the updated forest loss maps for Peru is now in
the implementation stage.

6. Conclusion

An accurate, low latency approach for national-scale mapping
of gross forest cover loss in the Peruvian humid tropical forest
biome was implemented using Landsat time-series datasets.
High spatial resolution sample data from RapidEye were used
to produce final area estimates and uncertainties, and to
validate the Landsat-based results. Validation confirmed the
high accuracy of the Landsat map, which in turn was used to
disaggregate change spatially (by region), temporally (at
annual intervals), and by disturbance type (anthropogenic
clearing and natural disturbance). Gross forest cover loss
results are the key component of the NFMS and are important
for the Peruvian REDD+ team as a baseline for on-going
forest change monitoring. This approach is now being
extended to the present in deriving a 14 year record of forest
loss in Peru. The presented approach is based on, and con-
sistent with, the global methodology used by Hansen et al
(2013), and may be implemented at the national level for any
country requiring basic information quantifying forest extent
and change, whether for REDD+ or other forest management
purposes.
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Appendix. Technical details of estimation of forest
loss and accuracy

The sampling design is a two-stage cluster sample with a
stratified random sample of clusters (12 km× 12 km blocks)
selected at the first stage and a simple random sample of 100
pixels selected within each sampled cluster at the second
stage. The accuracy analysis is based on a population error
matrix (table A1), and the cell entries of this error matrix must

be estimated from the sample. Each pixel is classified as loss
or no loss by the map, but the reference classification can be
one of five values for proportion of area of forest loss for a
sample pixel, 0, 0.25, 0.50, 0.75, or 1.00. For a given sample
pixel, the proportion of area allocated to each cell of the error
matrix was determined as follows. Let chij = 0 if sample pixel j
in cluster i of stratum h is mapped as no change and let chij= 1
if sample pixel j in cluster i of stratum h is mapped as forest
loss. Let rhij = proportion of area of forest loss according to
the reference classification for sample pixel j in cluster i of
stratum h (r is used for ‘reference’). Suppose the sample pixel
is mapped as no change (chij= 0). Then the proportion of area
of the sample pixel (Pkl,hij) allocated to row k and column l of
the error matrix is:

=P r ,hij hij12,

= −P r1 ,hij hij11,

= =P P 0(no area mapped as loss).hij hij21, 22,

For example, if chij = 0 and rhij = 0.25, then P11,hij = 0.75
(proportion of agreement of no loss), P12,hij= 0.25 (proportion
of map omission error of loss), and P21,hij=P22,hij = 0. If the
sample pixel is mapped as forest loss (chij = 1), then:

= =P P 0(no area mapped as no change),hij hij11, 12,

= −P r1 ,hij hij21,

=P r .hij hij22,

For example, if rhij = 0.25 and chij = 1, then P21,hij = 0.75
(proportion of map commission error of loss), P22,hij = 0.25
(proportion of agreement of loss), and P11,hij=P12,hij = 0.

The accuracy estimates were produced using the SUR-
VEYMEANS procedure of the Statistical Analysis Software
(SAS version 9.3, SAS Institute, Cary, North Carolina, USA).
The SAS program used to implement this analysis is available
upon request to the corresponding author. For the sampling
design implemented, the primary sampling unit is a cluster
(indicated by the subscript i) and each cluster is assigned to a
stratum h. The basic estimator used throughout is a ratio
estimator (see documentation provided by SAS version 9.3)
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1 1 1
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where h is the stratum index (h= 1, 2), i is the cluster index in
stratum h for the sample size of nh (i= 1, 2, …, nh ) clusters
sampled from the Nh clusters available in stratum h, j is the
index of the pixel (j= 1,…, mhi), mhi is the number of pixels
sampled in cluster i of stratum h from theMhi pixels available,
xhij and yhij are defined to yield the parameter of interest (see

Table A1. Structure and notation for a population error matrix based
on a census of all pixels. The cell entries Pkl represent the proportion
of area with map class k and reference class l.

Reference class

Map class No change Forest loss Row total

No change P11 P12 P1+

Forest loss P21 P22 P2+

Col. total P+1 P+2 1
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subsequent explanation below), and whij is the estimation
weight (i.e., inverse of the inclusion probability) for sample
pixel j in cluster i of stratum h. For the two-stage cluster
sampling design, the inclusion probability of a pixel is the
product of the first-stage inclusion probability (nh/Nh) and
second-stage inclusion probability (100/160 000). The sec-
ond-stage inclusion probability is derived from taking a
simple random sample of 100 pixels from the 160 000 pixels
available in each sampled cluster.

The variance estimator for R̂ is based on a Taylor series
approximation (Särndal et al 1992):
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To estimate user’s accuracy of ‘No Change’ using R̂
define =y Phij hij11, and = +x P Phij hij hij11, 12, , and to estimate
producer’s accuracy of ‘No Change’ define =y Phij hij11, and

= +x P Phij hij hij11, 21, . To estimate user’s accuracy of ‘Forest
Loss’, define =y Phij hij22, and = +x P Phij hij hij21, 22, , and to
estimate producer’s accuracy of ‘Forest Loss’ define

=y Phij hij22, and = +x P Phij hij hij12, 22, . Lastly, to estimate
overall accuracy, define = +y P Phij hij hij11, 22, and =x 1hij . If

=x 1hij , then the denominator of the ratio estimator is M̂ , an
estimator of the total number of pixels in the population. To
estimate forest loss as a proportion of primary forest area, we
define yhij=P12,hij +P22,hij (reference proportion of area of
forest loss) and define =x 1hij if the pixel is in primary forest
and =x 0hij otherwise.

To estimate the proportion of area of forest loss, we can
incorporate the forest loss map information to construct an
estimator that has smaller standard error than a direct esti-
mator of this proportion from the error matrix (i.e., the direct
estimator would be +P̂ 2). For the two-stage cluster sampling
design, many sample clusters did not have any sample pixels
selected that were mapped as forest loss. Consequently, the
estimator used is a difference estimator (Särndal et al 1992,
chapters 6 and 8) as opposed to a poststratified estimator
(Stehman 2013). The difference estimator is based on the
sample differences ehij= yhij − xhij where yhij is the reference
proportion of forest loss and xhij is the map proportion of
forest loss for sample pixel j in sample cluster i of stratum h.
The general form of the difference estimator of the total

number of pixels of forest loss in stratum h is

= +Y X Eˆ ˆ ,D h h h,

where Xh= total number of pixels mapped as forest loss and
Êh is the estimated total of the differences ehij for stratum h.
Êh is estimated from the two-stage cluster sample as follows.
For sample cluster i, the estimated total of the differences is

=E M eˆ ¯ ,h hi hi

where Mhi is the number of pixels in all of cluster i (mhi will
denote the number of pixels sampled in cluster i) and ēhi is the
sample mean of the differences in cluster i of stratum h. Then
the estimated total of the differences for stratum h is
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where Nh= number of clusters in the stratum and nh= sample
size for the stratum. ŶD h, was computed for each of the two
strata constructed for the sampling design and the total
number of pixels of estimated forest loss for all of Peru was
the sum of the two stratum totals (i.e., sum the ŶD h, estimates
for the two strata). The total estimated number of pixels of
forest loss was then divided by the total number of pixels in
the biome to scale the estimate of forest loss as a proportion of
biome area. The variance estimator for ŶD for each stratum
depends only on the variance of Êh because Xh is a known
constant. The variance estimator is then
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is the sample mean of the esti-

mated cluster totals of the differences and shi
2 is the sample

variance of the differences ehij within cluster i of stratum h.

( )V Eˆ ˆh is computed for each of the two strata and then the two
estimated variances are added to provide the estimated var-
iance for the entire biome, ( )V Yˆ D̂ . The standard error of ŶD is
the square root of this estimated variance, and dividing this
standard error by the total number of pixels in the biome
yields the standard error of the estimated proportion of area of
forest loss.
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