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Abstract
Very large-fires (VLFs) have widespread impacts on ecosystems, air quality, fire suppression
resources, and in many regions account for a majority of total area burned. Empirical generalized
linear models of the largest fires (>5000 ha) across the contiguous United States (US) were
developed at ∼60 km spatial and weekly temporal resolutions using solely atmospheric
predictors. Climate−fire relationships on interannual timescales were evident, with wetter
conditions than normal in the previous growing season enhancing VLFs probability in rangeland
systems and with concurrent long-term drought enhancing VLFs probability in forested systems.
Information at sub-seasonal timescales further refined these relationships, with short-term fire
weather being a significant predictor in rangelands and fire danger indices linked to dead fuel
moisture being a significant predictor in forested lands. Models demonstrated agreement in
capturing the observed spatial and temporal variability including the interannual variability of
VLF occurrences within most ecoregions. Furthermore the model captured the observed increase
in VLF occurrences across parts of the southwestern and southeastern US from 1984 to 2010
suggesting that, irrespective of changes in fuels and land management, climatic factors have
become more favorable for VLF occurrence over the past three decades in some regions. Our
modeling framework provides a basis for simulations of future VLF occurrences from climate
projections.

S Online supplementary data available from stacks.iop.org/ERL/9/124009/mmedia
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1. Introduction

Large wildfires that compose a small percent of total fires but
often a majority of burned area (Strauss et al 1989, Tedim
et al 2013) have shown a marked increase across parts of the
globe including the western United States (US) in recent
decades (Dennison et al 2014). These large wildfires have
direct societal and ecological impacts (Gill and Allan 2008,

Keane et al 2008), widespread impacts to regional air quality
and human health (e.g., Clinton et al 2006) and global climate
feedbacks (e.g., Liu et al 2010). The spatial extent and
resistance to control often make such large wildfires among
the most dangerous and costly wildfires (Williams 2012).

In the US, large wildfires are inherent to certain fire
regimes and may have been more pervasive in some regions
prior to human settlement (e.g., Stephens et al 2007). Fun-
damental to the development of large-fires (LFs) are wide-
spread and contiguous fuels, ignitions, and environmental
conditions that promote fuel availability and spread (Swet-
nam and Betancourt 1990, Hawbaker et al 2013). The
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accumulation of fuel loads due to land management prac-
tices (e.g., Miller et al 2009) and invasive annual grasses
across the semi-arid western US (e.g., Abatzoglou and
Kolden 2011b, Balch et al 2013) are hypothesized to have
created a more favorable environment for LFs in recent
decades. However, the receptiveness of fuel to fire and fire
spread are strongly driven by both weather and climate
variability. In particular, they respond to antecedent climatic
factors that enable landscape-level fuel availability (Denni-
son et al 2014), as well as to concurrent dead and live fuel
moistures (Dennison and Moritz 2009) and favorable
meteorological conditions that promote fire spread and
impede suppression efforts (e.g., Abatzoglou and
Kolden 2011a). It is not presently resolved to what degree
observed changes in climate have contributed to the increase
in LFs relative to other human activities (e.g., Westerling
et al 2006, Marlon et al 2012, Pausas and Keeley 2014). As
fire potential is projected to increase for parts of the US
under climate change scenarios (Spracklen et al 2009, Liu
et al 2012, Luo et al 2013), efforts to better understand
empirical and processed-based links between climate and
fire have received increasing interest.

Most climate−fire studies have analyzed interannual
relationships using temporal and geographic aggregations of
burned area and climate variables (e.g., Skinner et al 1999,
Westerling and Swetnam 2003, Littell et al 2009, Abatzo-
glou and Kolden 2013) and have extended these to empirical
modeling efforts (e.g., Yue et al 2013, Migliavacca
et al 2013). Although some statistical models have been
designed to forecast daily fire potential using fire danger
indices and ignitions (Preisler et al 2009), the complex
empirical relationships linking atmospheric variability and
the development of LFs is not fully resolved across different
geographic regions or fire regimes. Recent work by Stavros
et al (2014a) and Barbero et al (2014) demonstrate sig-
nificant differences between climatic conditions associated
with the very largest fires and other large fires, in the western
and eastern US, respectively. However, these studies were
based on regional-scale fire aggregations (∼500 km) and did
not account for regional heterogeneity that are needed for
operational or research purposes.

This study extends previous work by developing Gen-
eralized Linear Models (GLM) to simulate probabilities of
very large-fire (VLF) (>5000 ha) occurrences across the US
at a 60 km spatial and weekly temporal resolution using
strictly atmospheric variables. Specifically, we identify the
most important weather and climate predictors of VLF
occurrences across ecoregions. Estimates from GLM were
evaluated by comparing model predictions to observed
VLFs across both space and time. Finally, we compare
observed and modeled linear trends from 1984 to 2010 to
better resolve the degree to which atmospheric conditions
alone have potentially enabled changes in VLFs. This
modeling framework aims to provide seasonal-to-short term
outlooks for operational fire management as well as gui-
dance on how climatic conditions may alter the occurrence
of VLFs under future climates.

2. Datasets and methods

2.1. Fire and climate data

The myriad of fire regimes across the contiguous US (Morton
et al 2013) is problematic for generalizing climate−fire rela-
tionships. Most prior analysis and modeling has been con-
ducted using aggregated fire and climate data over broad
geographic and temporal scales. Modeling efforts at finer
spatial scales have been conducted to better link environ-
mental factors such as vegetation, topography, climate and
anthropogenic factors (Parisien et al 2012, Hawbaker
et al 2013); however, such models are often time invariant or
may not be designed to model rare events such as VLFs.

We provide a compromise of spatiotemporal scales in
this study by examining relationships between VLFs and
climate factors at a 60 km spatial and weekly temporal reso-
lution for Omernik level II ecoregions (Omernik 1987).
Ecoregions broadly reflect climate and vegetation zones with
similar climate−fire responses (e.g., Littell
et al 2009, Malamud et al 2005) while providing a suitable
number of VLFs required to build stable and meaningful
models. However, heterogeneity in climate and fire regimes
exists at sub-ecoregion scales thus prompting the need to
refine the spatial scale of modeling. We model intra-ecoregion
variability at tractable scales that reflect the spatial extent of
the variability of top-down controls of fires, by spatially
aggregating ecoregion to ∼60 km resolution using the most
common ecoregion within each voxel (figure 1(a)). We
excluded ecoregions that experienced fewer than five VLFs
from 1984 to 2010 as well as all ∼60 km pixels where a
majority of land cover from a 1 km fuel model map (Burgan
et al 1998) was non-burnable defined by the presence of
agriculture and barren land cover types.

The Monitoring Trends in Burn Severity (MTBS) data-
base was used to acquire fire location, fire discovery date and
burned area for LFs over the contiguous US from 1984 to
2010. We excluded fires smaller than 404 ha and further
eliminated ‘unburned to low’ burned area for each fire as
classified by MTBS to more accurately portray the true area
burned (Kolden et al 2012). While the definition of VLFs is
subjective and likely geographically dependent, we define
VLFs as fires whose size exceeds the 90th percentile
(5073 ha) of MTBS fires greater than 404 ha (n= 927)
(figure 1(b)) and LF as fires whose size was below the 90th
percentile but greater than 404 ha (n= 8343)(figure 1(c)).
Both VLF and LF were aggregated to ∼60 km grid and six-
day time increment (hereafter we will use the term ‘week’ for
simplicity) yielding a time series of 1647 weeks from 1984 to
2010 coded as 1 if at least one VLF was discovered within
that week, and 0 otherwise, for each voxel. Modeling at the
weekly timescale has the advantage of capturing intra-sea-
sonal variability otherwise masked in longer timescales and
important for VLF (Barbero et al 2014). However, we
acknowledge that this temporal aggregation may mask intra-
weekly spread events, when weather conditions are conducive
to fire spread (Podur and Wotton 2011, Wang et al 2014).
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Figure 1. (a) Aggregated ecoregions at ∼60 km. We excluded all pixels where a majority of land cover from 1 km fuel model map (Burgan
et al 1998) was non-burnable defined by the presence of agriculture and barren land cover types. Spatiotemporal occurrences of (b) VLF (fire
whose size >90th) and (c) LF (fire whose size <90th) (1984–2010). Models are built from VLF occurrences and evaluated from LF
occurrences.
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We considered a set of predictor variables intended to
capture different timescales of variability through which the
atmosphere can influence VLF occurrences from synoptic to
sub-seasonal to interannual scales (table (S1)). We selected
potential predictors used in prior climate−fire studies to limit
model complexity, although this list is by no means exhaus-
tive. Daily surface meteorological variables at a ∼4 km spatial
resolution were obtained from Abatzoglou (2013). We first
considered several concurrent variables averaged at the
weekly scale coinciding with the VLF database. These
included mean temperature and relative humidity (average of
daily maximum and minimum), as well as four fire danger
indices: Energy Release Component (ERC) and Burning
Index (BI) from the National Fire Danger Rating System
(Deeming et al 1977), using fuel model G, Initial Spread
Index (ISI) from the Canadian Forest Fire Danger Rating
System (Van Wagner 1987) and Fosberg Fire Weather Index
(FFWI, Fosberg 1978). Two concurrent drought indices were
used: (i) the 30-day Effective Precipitation (EP) index (Byun
and Wilhite 1999) that sums rainfall over the previous 30-
days with a daily weight decreasing in a non-linear fashion
that has been shown to be a proxy for surface soil moisture,
and landscape flammability (Barbero et al 2011), and (ii) the
Palmer Drought Severity Index (PDSI) given its widespread
usage in climate−fire studies (e.g., Westerling and Swet-
nam 2003). We also considered PDSI from the year prior
averaged over the growing season May−September (hereafter

−PDSI 1), as it has been linked to changes in biomass avail-
ability in fuel-limited fire regimes.

In addition to temporally varying predictors, we con-
sidered a set of time invariant variables to potentially account
for heterogeneity in vegetation at sub-ecoregion scales as they
pertain to wildfire potential. Rather than using bottom-up
controls (e.g., actual distribution of vegetation), we con-
sidered climatological normals of actual evapotranspiration
and Climatic Water Deficit (CWD) following Dobrowski et al
(2013) as proxies of potential productivity and moisture stress
(Parks et al 2014). Balch et al (2013) showed that fire activity
throughout much of the Cold Deserts ecoregion was facili-
tated by the presence of an invasive annual grass (Bromus
tectorum). We thus considered the fraction of total annual
precipitation in July−September (PRCPJAS) as a potential
predictor given that Bradley (2009) found that it constrained
the geographic distribution of Bromus tectorum. Note that
these predictors are reasoned to model conditions conducive
to VLF and not the exact location of VLF, since we did not
include ignition sources.

2.2. Modeling approach

Models describing rare binary events are, by definition,
designed from small samples, are often imbalanced and over-
fitted and consequently may not be robust. Therefore, addi-
tional procedures are required in the modeling of rare events
to ensure stable and reproducible models (Austin and
Tu 2004, Keating and Cherry 2004). We employed resam-
pling methods in model development and cross-validation to
assess model robustness.

We used GLM with a stepwise regression given their
ability to model binary data (Andrews et al 2003, Stavros
et al 2014a). Models were developed for each ecoregion
acknowledging regional differences in the biophysical drivers
manifest through vegetation and climate, as well as human
factors (e.g., ignitions and suppression). We applied a case-
control design (Keating and Cherry 2004) that uses all VLF
weeks and resampling with replacement of non-VLF weeks
drawn from the distribution of all voxels across time for each
ecoregion (see supplementary materials for further details,
available at stacks.iop.org/ERL/9/124009/mmedia).

The continuous probabilities given by GLM were used to
analyze VLF probability as they have the advantage of being
able to quantify the uncertainty associated with the simulation
in a given voxel. We compared modeled VLF probabilities
(P) with observed VLF weeks at the voxel level to assess
model credibility in both space and time. The latter was
examined using composite analysis of P both ten weeks prior
to and ten weeks following observed VLF weeks. The ana-
lysis was repeated using LF weeks, as an additional cross-
validation analysis. Seasonal and interannual variability was
assessed by aggregating data to ecoregions and using Spear-
man rank correlations between P and observed VLF (note that
p aggregated over timescales and/or ecoregions refers to the
number of VLF weeks). Linear least-squares trends in the
total number of VLF-weeks in observations and simulated P
were analyzed from 1984 to 2010 for each ecoregion and are
referred to as statistically significant when the 95% con-
fidence interval excludes no change in the sign of the trend.
Linear trends in mean annual P were analyzed as well. We
emphasize the use of continuous P in our analyses given the
challenges in converting these values to binaries. However,
we acknowledge that the use of continuous P for rare events
tends to minimize variance thereby underestimating the
probability of highly likely events and vice-versa, resulting in
reduced interannual variability and trends. We complement
continuous P by converting P into binaries (Pbin) by using a
threshold that equals the ratio of number of VLF weeks to
total weeks for all voxels within each ecoregion.

3. Results

Except in the Cold Deserts, three or fewer predictors were
selected in GLM models for each ecoregion, with most
ecoregions relying on two or fewer variables (table 1). Short-
term variability represented though ISI, BI, FFWI, tempera-
ture or relative humidity was a significant predictor of VLF
occurrences in ten ecoregions while sub-seasonal variability
realized through ERC or EP was a significant predictor in six
ecoregions. Concomitant longer-term drought represented by
PDSI was an important contributor of VLF in flammability-
limited ecoregions such as Western Cordillera and Appa-
lachian forests, while anomalous wet conditions realized
through PDSI in the year prior to or concurrent with was a
significant predictor in a couple fuel-limited ecoregions.
Annual mean CWD and PRCPJAS were selected as predictors
in Mixed Wood Shield and Cold Deserts, respectively, largely
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reflecting spatial variations in VLF within these ecoregions.
Our results suggest that these models are robust given the
large commonality across bootstrapped samples and exhibited
high skill across ecoregions (table 1), although other combi-
nations of predictors are possible.

The mean number of VLF weeks expected was highest
across the western US between May and September, con-
sistent with the observed distribution of VLF and their timing
(figure 2). The seasonality of P aggregated to the ecoregion
scale showed strong agreement with observations (table 2),
except for the Appalachian forests. Additional heterogeneity
in seasonal variability was simulated within each ecoregion
with the seasonal timing of peak VLF probability (figure 2),
mainly agreeing with the timing of observed VLF
(figure 1(b)). For example, P for the Mediterranean California
ecoregion peaks in late summer in the northern and interior
portions of the region, while peaking in autumn in the coastal
mountains and plains of southwestern California coincident
with Santa Ana driven wildfires.

We provide examples of modeled VLF probabilities
during the discovery week of four notable VLF fires (figure
(S2)): Zaca fire in California during July 2007, the Bugaboo
fire on the Georgia/Florida border during April 2007, the
Rodeo-Chediski fire in Arizona during June 2002 and the Day
fire in California during September 2006. For all cases,
regional VLF probabilities were elevated and locally almost
300% above normal compared to the mean seasonal cycle. As
our models do not include ignition sources, or other bottom-
up variables (e.g., topography, population) and incorporate
predictors with strong spatial autocorrelation, they should not
be expected to capture the exact location of the fire, but rather

local-to-regional enhancements in P. Figure 3 shows the
composite of P anomalies georeferenced relative to centroids
of observed VLF. The strong signal decaying radially from
the fire centroid suggests the model captured local-to-regional
enhancement in P, with signal attenuation consistent with the
spatial autocorrelation of most predictor variables. A temporal
composite analysis for voxels reporting VLF-weeks shows
peak P during the week of fire discovery (200% above cli-
matology) with enhanced probability in the weeks prior to
and following as expected with the serial correlation of many
of the predictors used (figure 3(b)). Composite analysis for
observed LF weeks showed above normal P, albeit weaker
than for VLF weeks (figure 3(b)).

Interannual variability in P aggregated to ecoregions
showed reasonable agreement with observations, with corre-
lations r> 0.5 in most ecoregions (table 2). While aggregating
such statistics within an ecoregion may enhance low fre-
quency variations in climate anomalies typically present in
longer-term and seasonal predictors (e.g., PDSI, ERC), the
same may not hold for all regions. For instance, weaker
correlation in the Cold Deserts, albeit significant, is likely a
product of the extensive longitudinal and latitudinal extent of
the ecoregion that straddles a latitudinal dipole in interannual
precipitation variability across the western US that dilutes
low-frequency variability across the aggregated ecoregion.

A positive trend in mean annual P was found for
1984–2010 across much of the western half of the US, but
also across some regions in the east, including the Southeast
coastline and Florida (figure 4). Likewise, an increase in VLF
occurrence has been documented in most southern ecoregions
(table 2). Some ecoregions such as the Cold Deserts and

Table 1. Equations describing weekly VLF probabilities at 60 km for each ecoregion.

Ecoregions #VLF weeks β β− + −( ) ( )¯ F ¯ Fexpexp ( ln ) 1 ( ln )0 0 AUC RF (%)

Mixed Wood Shield 8 β = − + × + ×15.2353 BI 0.1549 CWD 0.0405 0.95 49
Western Cordillera 208 β = − + × + ×

+ × −

9.7601 TEMP 0.2209 ERC 0.0514

PDSI ( 0.2479)

0.95 20

Appalachian forests 20 β = + × − + × −4.0802 RH ( 0.1688) PDSI ( 0.3016) 0.91 96
Southeast Coastal Plain 27 β = − + × + ×10.6487 ERC 0.1272 ISI 0.2920 0.89 99
Temperate Prairies 5 β = + × −5.1163 RH ( 0.2147) 0.95 85
WC Semi-arid Prairies 34 β = − + × + ×12.2170 ERC 0.0884 ISI 0.2002 0.96 96
SC Semi-arid Prairies 58 β = − + × + ×−9.3479 FFWI 0.2271 PDSI 0.23181 0.84 21
Cold Deserts 276 β = − + × + × −

+ × + × + × −

7.8977 TEMP 0.2620 EP ( 0.4735)

PDSI 0.0916 ISI 0.1356 PRCP ( 0.1370)JAS

0.95 82

Warm Deserts 23 β = − + × + ×9.7920 ISI 0.2232 PDSI 0.1593 0.90 79
Mediterranean California 70 β = − + × + × −

+ ×

4.1998 TEMP 0.1189 RH ( 0.1016)

FFWI 0.1169

0.90 23

W. Sierra Madre Piedmont 18 β = − + × + ×−10.9692 ISI 0.2499 PDSI 0.29001 0.95 86
Upper Gila mountain 25 β = − + ×11.2822 ERC 0.0779 0.87 92
Everglades 8 β = − + ×10.9095 ERC 0.1854 0.84 85

Note: Predictors were selected with stepwise regression from 1000 Monte-Carlo samples including all VLF weeks and 50 000 random non-VLF
weeks. We used the most frequent equation among the 50 000 simulations. The second column gives the number of VLF weeks observed in each
ecoregion. The third column gives β̄ parameters (intercept and coefficients) averaged over the 50 000 cross-validated Monte-Carlo simulations. F0

is the is the fraction of non-VLF weeks randomly sampled compared to the number of non-VLF weeks in the population. The fourth column
indicates the mean area under the curve between simulated very large-fire probabilities and observations according to the cross-validated model (see
supplementary materials for further information). The fifth column gives the relative frequency (RF) of the equation, i.e. the percent of simulations in
which there was agreement.
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Western Cordillera spanned a significant latitudinal extent
that may mask trends apparent on a regional basis. Simulated
trends from continuous probabilities were weaker but statis-
tically more robust than trends from binary probabilities.

4. Discussion

Measures to develop statistical models through resampling
techniques improve model stability and overcome some
limitations of modeling relatively rare events (i.e., large
imbalance between events and non-events). Although the
form of the equations relies on the choice of inputs variables
used in stepwise regression (e.g., table 1), resampling
schemes helps select robust predictors. The resultant models
make intuitive sense and concur with established interannual
climate−fire relationships (e.g., Littell et al 2009) while also
accounting for sub-seasonal timescales that have been docu-
mented to be favorable for LFs growth (e.g., Abatzoglou and
Kolden 2011a). However, further efforts may better account

for intra-weekly spread events driven by shorter-term weather
variability (Wang et al 2014).

Our models show that VLF are often enabled by a
combination of atmospheric conditions operating on synoptic
to interannual timescales. Synoptic variability has been shown
to be a significant driver of VLF occurrences, especially in
non-forested ecoregions where rapid fire spread is favored by
extreme fire-weather, as for example during Santa Ana wind
driven fires in Southern California (Keeley et al 2004, Moritz
et al 2010). However, short timescales of synoptic variability
may be insufficient to carry VLF in forested ecoregions such
as Western Cordillera where fires typically grow over a longer
time period. Instead, sub-seasonal drought viewed through
ERC was a key predictor of VLF in these flammability-lim-
ited ecoregions in agreement with previous findings (Riley
et al 2013, Barbero et al 2014, Stavros et al 2014a). Con-
current long-term drought described by PDSI was a compli-
mentary predictor in the Appalachian forests and Western
Cordillera. These results concur with previous climate−fire
linkages (Westerling and Swetnam 2003, Littell et al 2009)

Figure 2. (a) Mean monthly number of VLF expected averaged over the 1984–2010 period from climate−fire model outputs.
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Table 2. Spearman rank correlations between VLF observed (VLF )obs and the number of VLFs expected from continuous probabilities (P) and binary probabilities P( )bin summed over each month
(1st and 2nd columns) and over each year (3rd and 4th columns).

Ecoregions
Monthly scale
r P(VLF , )obs

Monthly scale
r P(VLF , )obs bin

Interannual
r P(VLF , )obs

Interannual
r P(VLF , )obs bin

Trend in
VLFobs Trend in P

Trend in
Pbin

Mixed Wood Shield 0.57+ 0.77+ 0.52+ 0.67+ −0.2 0.0 −0.3
Western Cordillera 0.96+ 0.87+ 0.73+ 0.62+ 4.1* 1.9 4.6
Appalachian forests 0.27 0.23 0.30 0.34 −0.6 0.0 −0.7
Southeast Coastal Plain 0.87+ 0.33 0.55+ 0.49+ 0.3 0.4* 0.3
Temperate Prairies 0.60+ 0.74+ 0.44+ 0.76+ 0.1 0.0 0.0
WC Semi-Arid Prairies 0.85+ 0.80+ 0.68+ 0.71+ 0.5 0.0 −0.2
SC Semi-Arid Prairies 0.86+ 0.90+ 0.73+ 0.77+ 2.0* 0.6* 2.5
Cold Deserts 0.87+ 0.94+ 0.57+ 0.43+ 2.4 1.2 7.2*
Warm Deserts 0.91+ 0.75+ 0.57+ 0.64+ 1.2* 0.3* 0.4
Mediterranean California 0.90+ 0.85+ 0.49+ 0.58+ 1.0* 1.1* 3.5*
Sierra Madre Piedmont 0.87+ 0.92+ 0.55+ 0.67+ 0.3 −0.1 0.3
Upper Gila Mountain 0.85+ 0.82+ 0.44+ 0.50+ 0.5* 0.3* 0.9
Everglades 0.47 0.55+ 0.61+ 0.78+ 0.5* 0.1* 0.5*

Note: The symbol + indicates significant correlation at the 95% confidence level. Linear trends in VLFobs (expressed as number of VLF per decade), P and Pbin are shown in columns 5, 6 and 7 respectively. The symbol *
indicates that the 95% confidence interval excludes no change in the sign of the trend.
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and the longer time period under moisture stress required to
increase landscape flammability in ecosystems dominated by
large-diameter trees. Antecedent moisture availabilities
( −PDSI 1) was a significant predictor in two fuel-limited
ecoregions reinforcing heighten fire activity that corresponds
to increased fuel biomass and connectivity a year following
pluvial conditions (e.g., Westerling and Swetnam 2003, Lit-
tell et al 2009). By contrast, VLF probabilities increased with
concurrent positive PDSI in Warm and Cold Deserts

corresponding to the rapid growth and desiccation of fine
fuels in arid regions (Crimmins and Comrie 2004). Two time-
invariant predictors were also selected and improved the
spatial accuracy of the model. Increased CWD increased
probabilities in Mixed Wood Shield ecoregion, consistent
with the findings of Parks et al (2014) that drier regions are
more susceptible to moisture stress. Finally, the fraction of
summer precipitation in July−September provides a good
proxy for the bioclimatic range of Bromus tectorum in the

Figure 3. (a) Mean VLF probabilities (expressed in percent of anomalies compared to the mean local seasonal cycle) at the US scale from
climate−fire models during VLF weeks. The probabilities have been relocated relative to VLF locations (coordinates: 0, 0) such that the
center of the map corresponds to the location of each VLF. (b) Composites of probabilities in VLF voxel relative to the discovery week of
VLF. The red (black) curve indicates the mean probabilities simulated before and after VLF (LF) weeks. The 95% confidence intervals of the
composite means are computed using 1000 bootstrapped datasets. The envelope of confidence indicates the 2.5 and 97.5 percentile of the
composite means obtained from the bootstrapped datasets.

Figure 4. Trends in annual number of VLFs expected from simulated probabilities for the 27-year period from 1984 to 2010. Dots indicate
trends for which 95% confidence interval excludes no change in the sign of the trends. Gray dots indicate pixels defined as unburnable or
pixels associated with ecoregions that did not record more than five VLF over the historical period.
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Cold Deserts (one of the largest ecoregion of the US) as seen
in Bradley (2009).

Our models reproduced observed VLF seasonality in all
but one ecoregion (Appalachian forest). In general, VLF
probabilities reach their highest amplitude during the spring
in the eastern half of the country, the southwestern US during
May and June, and much of the interior and northwestern US
in mid to late summer. The model also captures the bimodal
seasonality of fire activity in southern California of which
previous macroscale modeling efforts were unable to (Preisler
and Westerling 2007, Yue et al 2013). While previous studies
noted a time lag between the maxima in fire danger indices
(such as the Keetch and Byram Drought Index) and fire
occurrences in the eastern US (e.g. Liu et al 2012), our model
outputs suggest that ERC, BI or ISI may be better situated to
track them. The only exception is the Appalachian region
where fire danger indices peak in the spring, hence max-
imizing probabilities at that time, while actual VLF happened
in the fall and are probably driven by human activity and an
accumulation of fine fuels (Lafon et al 2005) that are not
included in our model.

Strong agreement between interannual variability in
observed and modeled VLF were realized despite the fact that
models were built using weekly data thereby suggesting the
importance of low-frequency variability in enabling VLF.
Overall, the selected predictors correspond with many of the
factors used in modeling interannual variability in burned area
(e.g., Littell et al 2009). This is somewhat expected given the
large proportion of burned area comprised by VLF and strong
interannual correlations between the number of VLF and area
burned (Stavros et al 2014a, Barbero et al 2014).

Increased VLF probabilities from 1984 to 2010 are
consistent with observed increases in burned area and the
number of large fires in recent decades, particularly across the
western US (Westerling et al 2006, Dennison et al 2014).
Most notable was the widespread increase in probabilities
across the southern two-thirds of the western US where our
models estimated a 132% linear increase in probabilities over
the 27-year period. This region has observed a pronounced
increase in warm-season ERC (Abatzoglou and Kolden 2013)
and vapor pressure deficit (Williams 2012) over the last three
decades in addition to reduced precipitation in the southwest
(Dai 2013) that collectively promote chronic moisture stress
and increased fire potential particularly in forested systems. A
significant increase in probabilities was also found across the
southeast US, supporting the increase in VLF in Florida over
the period of record. Whereas fuel buildup and fire manage-
ment have been attributed to widespread changes in fire
activity and the number of LFs (Lin et al 2014), our results
suggest that atmospheric conditions alone have also favored
VLFs in recent years.

5. Conclusion

The ability to predict fire activity including VLF has become
increasingly important with increased vulnerability due to a
growing wildland−urban interface, ecosystem stressors such

as insect outbreaks and drought induced mortality (e.g.,
Anderegg et al 2013), increased expenditures on fire sup-
pression in recent years and observed changes in climate. The
increase in VLF occurrence may also be a consequence of the
fire deficit due to the legacy of aggressive fire suppression
policies (e.g., Marlon et al 2012), and in certain ecosystems
the return of large fires to the landscape may offer some
ecosystem services. Regardless of the impact of VLF, our
models provide an empirical basis of the mechanisms driving
VLF at spatiotemporal scales relevant to regional fire and air
quality management across the US. For example, heightened
regional VLF probabilities may be used to reconfigure
national fire suppression resources for improving initial attack
success, while reduced regional VLF probabilities may permit
for other fire management activities such as prescribed
burning or allowing wildfires to burn naturally.

Our models incorporate predictors with strong spatial and
temporal autocorrelation inherent in atmospheric factors but
ignore ignition sources. Hence, models should not be
expected to predict the exact location and timing of VLF, but
rather local-to-regional variations in probabilities. Model
development at finer spatial scales suffers from limited sam-
ple sizes of VLF and lack of ignition sources. However, finer-
scale analysis that includes both top−down variables, as
considered here, and bottom-up variables including fuel
types, human factors (e.g., population density, road networks)
and land management units (Hawbaker et al 2013) may help
elucidate additional spatial detail. Furthermore, fire growth
and the development of VLF may also be a function of
widespread fire activity that curtails suppression resources.
While widespread fire activity may be attributable to lightning
outbreaks that are not explicitly modeled here, the recep-
tiveness of a landscape to ignition is typically predicated on
sub-seasonal moisture stress of the variety represented here.

Projected changes in wildfire in response to climate
change have been examined in terms of burned area (e.g.
Flannigan et al 2009, Spracklen et al 2009, Yue et al 2013)
and fire potential (e.g., Liu et al 2012). In these models,
climate−fire relationships are mediated through vegetation.
Applications of models developed using contemporary cli-
mate−fire relationships assume stationarity in vegetation and
their receptiveness to wildfire under future climates (e.g.,
McKenzie et al 2014). Although empirical models such as the
ones presented here are subject to such uncertainties, they
may be able to provide insight on geographic regions parti-
cularly susceptible to changes in VLF for future climate
projections and the cascading fire related hazards for eco-
systems and communities directly and indirectly impacted by
VLF (e.g., Stavros et al 2014b).
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