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Abstract
The choice of an appropriate scientific target to guide global mitigation efforts is complicated
by uncertainties in the temperature response to greenhouse gas emissions. Much climate
policy discourse has been based on the equilibrium global mean temperature increase
following a concentration stabilization scenario. This is determined by the equilibrium climate
sensitivity (ECS) which, in many studies, shows persistent, fat-tailed uncertainty. However, for
many purposes, the equilibrium response is less relevant than the transient response. Here, we
show that one prominent policy variable, the social cost of carbon (SCC), is generally better
constrained by the transient climate response (TCR) than by the ECS. Simple analytic
expressions show the SCC to be directly proportional to the TCR under idealized assumptions
when the rate at which we discount future damage equals 2.8%. Using ensemble simulations
of a simple climate model we find that knowing the true value of the TCR can reduce the
relative uncertainty in the SCC substantially more, up to a factor of 3, than knowing the ECS
under typical discounting assumptions. We conclude that the TCR, which is better constrained
by observations, less subject to fat-tailed uncertainty and more directly related to the SCC, is
generally preferable to the ECS as a single proxy for the climate response in SCC calculations.

Keywords: social cost of carbon, climate sensitivity, transient climate response, fat-tailed
uncertainty, climate response in policy discourse

The ‘social cost of carbon’ (SCC) is the present value of the
stream of future damage from one additional unit of carbon
emissions in a particular year [1]. In an idealized (marginal)
assessment of climate change mitigation policy, the optimal
level of emissions are determined by a welfare optimization
(cost–benefit analysis) that trades-off the marginal costs of
reducing emissions against the SCC [2]. Hence the SCC

Content from this work may be used under the terms
of the Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 licence. Any further distribution of this work must maintain
attribution to the author(s) and the title of the work, journal citation and DOI.

would be equivalent to the price in a perfect carbon market
(see [3–10] for the relation between SCC and other indicators
in a multi-gas extension). This simple treatment of the
climate mitigation problem has several limitations: persistent
uncertainties in socioeconomic and biophysical processes,
enduring philosophical debates on value judgements about
the importance of impacts on species, ecosystems, cultures,
human health and mortality, and issues around long-term
decision making and discounting preclude a robust estimation
of the SCC [9]. These difficulties have led parts of the
scientific and political discourse to discuss the climate

11748-9326/13/024032+06$33.00 c© 2013 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/1748-9326/8/2/024032
mailto:alexander.otto@ouce.ox.ac.uk
http://stacks.iop.org/ERL/8/024032
http://creativecommons.org/licenses/by-nc-sa/3.0
http://creativecommons.org/licenses/by-nc-sa/3.0


Environ. Res. Lett. 8 (2013) 024032 A Otto et al

problem within an alternative framework (cost-effectiveness
analysis) of finding the least cost mitigation policy for
staying below a global mean temperature increase relative
to the preindustrial state (most prominently below 2◦ above
preindustrial).

However, the cost–benefit framework and the SCC
remain important tools, especially within the climate change
economics community, which help us investigate important
features of climate change such as potentially fat-tailed
uncertainty [11], tipping points and learning [12], or the
choice of optimal policy instruments [13–15]. In many
of these analyses, it is assumed that uncertainty in the
climate system’s response to emissions can be represented
by the equilibrium climate sensitivity, or ECS, defined as
the very long-term warming resulting from a doubling of
carbon dioxide (CO2). ECS is subject to persistent, fat-tailed
uncertainty [11] which can dominate expected costs. Here
we argue that the SCC is usually far more strongly related
to the transient climate response (TCR), which only shows
thin-tailed uncertainty and can be learned about directly from
observations of on-going climate change [16]. This stands
in contrast to ECS which, since it is determined in part
by processes with very long timescales [17, 18], is learned
about much more slowly [16, 19, 20]. Using a simplified
(linear) damage function, we give an analytic expression of
SCC that shows direct proportionality to TCR. Allowing for
more general climate damage, a numerical analysis shows
that knowing the true value of TCR can reduce relative
uncertainty in SCC substantially more, up to a factor of 3,
than knowing ECS under typical discounting assumptions,
though this result does not hold for ‘outlier’ [21] assumptions
regarding discount rates and damage functions [22].

1. Idealized analytic example

The warming induced by a pulse injection of an idealized
greenhouse gas x whose concentrations decay exponentially
with rate constant kx into an idealized climate system [23]
with a linear concentration–forcing relationship, a single
effective heat capacity per unit area Ce, and sensitivity
parameter λ (λ is the net additional energy radiated to space
per degree of warming accounting for feedbacks) is given by
the absolute global temperature potential:

AGTPx(t) =
Fx

Ce

(e−kxt
− e−kτ t)

kτ − kx
, (1)

where kτ = λ/Ce is the thermal rate constant (inverse
feedback response time [17]) and Fx is the forcing
immediately after injection. Climate change damage are often
assumed as D(T) = aTb. We linearize economic damage
for analytic simplicity by assuming a constant percentage
reduction in global consumption per degree of warming,
D′. This is not as restrictive as it appears, as for most
baseline emissions scenarios, the impact of increasing the
damage exponent on the response to a small pulse emission
is similar to decreasing the discount rate: both increase the
weight given to impacts further in the future when the baseline
warming is higher (see appendix B). Additionally using an

exponential rate of consumption growth, g, and discount rate r
(at which we discount absolute future damage), the discounted
present value of climate damage attributable to that pulse
emission, or SCC, is:

SCCx
= D′

∫
∞

t=0
AGTPx(t)e−kDtdt

=
FxD′

Ce

∫
∞

t=0

(e−kxt
− e−kτ t)e−kDt

kτ − kx
dt, (2)

where the discount factor kD = r − g is the rate at which we
discount future damage if expressed as percentage changes in
consumption. In the conventional Ramsey model [24], kD =

(η−1)g+ρ, where η is a constant representing relative risk (or
inequality) aversion and ρ is the pure rate of time preference.
Integration the right-hand side of equation (2) yields:

SCCx
=

FxD′

Ce(kx + kD)(kτ + kD)

=
FxD′

F2x(kx + kD)[(ECS)−1 + kDCe(F2x)−1]
, (3)

where F2x is the forcing due to CO2 doubling. The SCC
is separable into a response to emissions, determined by
rate of decay of the emission pulse kx, and a response to
forcing, determined by kτ , which is inversely proportional to
ECS [17]. For large values of ECS kτ becomes small (i.e.
kτ � kD,) except for very low values of kD, making SCC
almost independent of ECS in this ‘fat tail’ situation.

A better predictor of SCC is given by the transient climate
response (TCR), defined as the temperature increase follow-
ing a constant compound increase in CO2 concentrations,
normalized by the percentage rate of increase per year. TCR is
normally defined for a 1% increase, making 70 years the point
of doubling, but like ECS the concept applies to more general
scenarios. In this simple framework:

TCR = ECS−
(ECS)2

2T0

[
1− e−

2T0
ECS

]
≈

1

(ECS)−1 + T−1
0

,

(4)

where T0 = F2xt0/2Ce is the TCR in the absence of any
feedback (λ = 0), with t0 = 70 yr (first equality in equation
(4) from equation (6) in [17], approximation found from
a Taylor expansion). Comparing equations (3) and (4), it
is clear that SCC is approximately proportional to TCR
provided the rate at which we discount future damage is
equal to double the inverse timescale of CO2 doubling: kD =

2/t0 = 2.8% yr−1. The validity of the approximation for TCR
(right-hand side of equation (4)) is tested in figure 1, which
compares the functional forms of SCC and TCR (left-hand
side of equation (4)) in ECS for this value of kD and three
representative values of Ce.

The right-hand side of equation (3) is the product of a
term that depends on gas properties and a term that depends
on climate system properties. This is potentially very useful in
applying this concept to other gases. Note that the very long
term response summarized by the ECS is even less relevant to
the response to emissions of short-lived species like methane.
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Figure 1. Transient climate response (TRC) and social cost of
carbon (SCC) as a function of equilibrium climate sensitivity (ECS)
under the simple analytic assumptions about the carbon climate
system. Shown is the transient climate response in grey and the
social cost of carbon in darker grey. Both functional relationships to
ECS are nearly identical for the shown case of an effective discount
rate kD = 2.8%; the constant marginal damage per degree of
warming D′ is calibrated towards a 2.5% loss of GDP for 3◦ of
warming [2]. Uncertainty in effective ocean heat capacity Ce is
represented by showing the expected value (solid lines,
Ce = 1 GJ K−1 m−2) and lower and upper bounds (broken lines,
Ce = [0.6; 1.6] GJ K−1 m−2).

2. Simple numerical example

Going beyond this special case in which the social costs
of carbon are directly proportional to TCR instead of ECS
we apply an independent model to investigate how much
could be learned about the true value of SCC from gaining
perfect knowledge about either ECS or TCR. Thereby we are
relaxing the strict artificial assumptions of linear damage and
a linear concentration–forcing relationship and replace them
by polynomial damage with variable exponents and a carbon
cycle model.

It should be noted, however, that (a) we are treating
the damage function and discounting as fixed and known,
only investigating sensitivity in a Monte Carlo analysis, and
that (b) this setup is artificial in that learning about one of
the quantities via future observations would lead to gains in
knowledge about the other quantity as well. However, as the
difference between TCR and ECS stems from the deep ocean
heat uptake on longer timescales, the uncertainty about this
difference would not be reduced by mid-term observations of
atmospheric conditions [25] (i.e. only the TCR part of ECS
would be reduced). Nevertheless, the result will allow us to
evaluate which of the two is a better predictor for the social
cost of carbon.

Using a simple numerical carbon-cycle–climate model
[19], we generate a large ensemble of temperature profiles for
an RCP4.5 emission scenario (extended to 1765–2300) [26],
representing a ‘mitigation policy future’, and for a RCP4.5
baseline amended by an emission pulse of 10 Gt of carbon
as CO2 in 2012. Following [19], we focus on the response
to CO2 only. Inclusion of non-CO2 warming would increase

the effective damage exponent for the response to a pulse
injection, but should not affect our overall conclusions (see
appendix B for a sensitivity analysis w.r.t. stronger pulses and
higher background emissions, both of which can be seen as
representing additional non-CO2 warming).

The differences between the ensemble members stem
from sampling five uncertain parameters within the carbon
cycle and the temperature response. The resulting 5–95%
confidence intervals in ECS and TCR are 2.0–5.2 ◦C and
1.6–3.0 ◦C respectively. For each of the scenarios we calculate
the social cost of carbon of the additional 10 GtC emission
pulse. Figure 2 shows the SCC as a function of ECS and TCR
in the resulting ensemble for a quadratic damage function and
kD = 2.8%.

TCR is clearly a better predictor of SCC than ECS: on
average, the 5–95% confidence interval is 50% of the mean
value of SCC for each value of the abscissa in panel (a),
and 11% in panel (b). Under these assumptions, learning the
value of TCR reduces fractional uncertainty in SCC by 39
percentage points more than learning the value of ECS.

Figure 3 quantifies how TCR and ECS compare as
predictors of SCC by plotting this relative reduction in
fractional uncertainty for a range of discount rates and damage
functions; e.g. a +24 means that learning about TCR instead
of ECS would reduce relative uncertainty (in percentage of
the mean value) of SCC by 24 percentage points more (e.g.
by 54% rather than by 30%).

Using TCR as proxy for SCC is better than using ECS
when the difference between discount rate and consumption
growth rate is more than about 1% (un-shaded region),
though this level increases as the damage exponent rises
(see appendix B). Proponents of very low discount rates,
and those who believe climate change threatens the levels of
consumption growth that the world has enjoyed over the last
two hundred years, may find ECS more relevant. Those who
think consumption growth is likely to continue much as it has
for the last two hundred years, who also use conventional
discount rates, will find that TCR outperforms ECS as a
predictor for SCC.

The markers in figure 3 represent the discount rates and
damage functions used by three prominent groups within the
integrated assessment community [2, 11, 22] and the settings
used in figure 2. By way of context, recent work quantifying
social discount rates in major OECD economies [27] implies
1.6 ≤ kD ≤ 2.8, while for major (populations over 15 million)
Latin American countries [28] corresponding values are in the
range 1.5 ≤ kD ≤ 6.1, even under modest, historically based
assumptions about future growth. The lower bounds of these
sorts of ranges would require damage exponents in excess of
6 before ECS would outperform TCR as a proxy for SCC.

For most of these settings, representation of climate
uncertainty by the fatter-tailed ECS parameter is misleadingly
pessimistic, in that it over-represents climate response
uncertainty in SCC (notwithstanding other uncertainties
from damage, economic projections, discounting, etc) and
underestimates opportunities for reducing climate response
uncertainty through future observations. We suggest that those
who wish to estimate or use SCC should consider which
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Figure 2. Social cost of carbon (SCC) depending on (a) equilibrium climate sensitivity (ECS) and (b) on transient climate response (TRC)
from the ensemble simulations with the simple numerical climate model [23]. Also shown are the limits of the 5–95th percentile confidence
interval of a corresponding Gaussian likelihood (thin lines) as well as the expected relationship between SCC and ECS, and TCR
respectively (thick lines).

Figure 3. Benefit from perfect learning about TCR instead of ECS
in terms of percentage point difference (labels) in the expected
reduction in relative uncertainty about the social cost of carbon.
Markers show different combinations of settings for discounting and
damage function exponents. The triangles show the setting by
Nordhaus [2], for different values for the constant relative risk
aversion η = {1, 2, 3}. Squares and grey lines show the setting by
Stern et al [22], with ranges of damage exponents and for values for
relative risk aversion of η = {1, 1.5}. The diamond shows the setting
by Weitzman [11] (although his damage function additionally
includes a quadratic term). The circle shows the settings used in
figure 2 (g = 2, η = 2, ρ = 1%, b = 2). The grey shading indicates
the region in which ECS is a better predictor for SCC than TCR.

climate response parameter (TCR or ECS) is most informative
and appropriate, given the other assumptions under which
they are working. Except where they are choosing very low
discount rates or unusually high damage exponents, TCR will
be the more appropriate choice.

3. Methods

The analytic results are deduced from the simplifying
assumptions about the carbon cycle and temperature response

to emissions (carbon only), the exponential pulse of
emissions, and the linear climate damage. For the numerical
analysis of the social cost of carbon from RCP4.5 baseline
emissions amended by a 10 GtC emission peak in 2012,
we used a simple coupled climate carbon cycle model [19,
29] with five uncertain parameters: Climate sensitivity,
ocean thermal diffusivity, ocean/biosphere carbon diffusivity,
rate of advection of carbon into the deep ocean, and
the carbon cycle temperature feedback parameter. The five
parameters are randomly sampled within boundaries given
by observations [19]. The boundary of our ensemble is
chosen to represent the 5–95% confidence interval of an
underlying normal distribution, representing the ‘IPCC’s very
likely’ category [30]. The panels in figure 2 are produced
by calculating the social costs of carbon for all of the
ensemble scenarios and for a given set of growth, discounting
and damage assumptions and projecting them against the
corresponding values of ECS and TCR. For quantifying the
predictor quality of TCR versus ECS this calculation is
repeated for a large set of damage exponents and discount and
growth rates. We calculate the fractional uncertainty left when
perfectly knowing ECS (or TCR), take the expected value
over all possible ECS (TCR) values, and compare it to the
original fractional uncertainty in the full SCC ensemble. The
difference of this indicator of expected percentage reduction
of fractional uncertainty in SCC between learning about TCR
and ECS is shown in figure 3 (see appendix A for details).
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Appendix A. Measuring the benefits of perfect
learning about TCR instead of ECS

Throughout the paper and the appendices the terms
uncertainty and risk are used synonymously, describing
a random variable with a known probability distribution
function or a given confidence interval.

Let Y = Y(X),X = (x1, . . . , xi, . . . , xj, . . . , xn) represent
an ensemble of values for the social cost of carbon (SCC)
depending upon n = 5 uncertain parameters in the climate
cause–effect chain, with xi representing equilibrium (or in
this case, effective [17]) climate sensitivity (ECS), and xj
representing transient climate response (TCR). The ensemble
originates from constraining the uncertain parameters by
observations and deriving equally probable samples within
a confidence interval equivalent to the IPCC’s (AR4) ‘very
likely’ (>90%) interval. The relative uncertainty in the social
costs of carbon represented by the ensemble is defined by:

4 Y =
max

X
Y −min

X
Y

1
2 [max

X
Y +min

X
Y]
. (A.1)

We say that xi ‘is a better proxy’ for Y than xj, if
gaining perfect knowledge about xi constrains the uncertainty
in Y further than gaining perfect knowledge about xj. More
formally, we define the expected relative uncertainty of Y after
perfect learning about xi via:

4Y|xi
=

m∑
i=1

p(xi)4Y|xi

=

m∑
i=1

p(xi)

max
X|xi

Y −min
X|xi

Y

1
2 [max

X|xi

Y +min
X|xi

Y]
, (A.2)

and the expected percentage reduction in relative uncertainty
about Y through perfect learning about xi via:

Rxi(Y) = 100×
4Y −4Y|xi

4Y
. (A.3)

Hence, we take the difference of the expected percentage
reduction in relative uncertainty about Y through perfect
learning about xi rather than about xj as an indicator for being
a better proxy for Y:

Ii,j = Rxi
(Y)− Rxj(Y), (A.4)

which is shown in figure 3.

Appendix B. Sensitivity analysis of the benefit of
perfect learning about TRC instead of ECS

The social cost of carbon (SCC) is a marginal concept
for calculating the monetized impact of the ‘next’ ton of
emissions (or rather a pulse of emissions, but small relative
to the emission baseline). The result of TCR being a better
proxy for SCC than ECS, over a wide range of effective
discount rates and damage functions might depend on the
baseline emission scenario. Another effect impacting upon

Figure B.1. Sensitivity analysis of the benefit of perfect learning
about TCR instead of ECS, shown is the boundary between the
regimes in which TCR is a better (right-hand side) or worse
(left-hand side) proxy for SCC than ECS. Sensitivity is investigated
for four different RCP baseline emission scenarios (solid lines,
shades of grey), for three different levels of constraining the
ensemble representing the confidence intervals of an underlying
Gaussian distribution, with levels corresponding to the IPCC ranges
of ‘likely’, ‘very likely’ (default), and ‘virtually certain’, and finally
for three different amplitudes of the emission pulse used for
calculating the SCC: 10 GtC (default), 100 GtC, and 500 GtC. The
markers representing discounting and growth assumptions are
equivalent to figure 3.

the comparison of TCR versus ECS might come from the
cut-off introduced in the ensemble design process, where only
samples are kept that lie within a given confidence interval of
an underlying Gaussian distribution, where the default value
of taking the 5–95th percentile represents the IPCC category
of taking the ‘very likely’ boundaries of the ensemble.

Finally, the limits of the marginal approximation were
tested by investigating the impact of bigger, potentially non-
marginal, emission pulses, as a small pulse size ‘linearizes’
any damage function.

Hence the investigation of the expected reduction in
relative uncertainty of SCC by perfect learning about TCR,
or ECS was repeated for four different baseline emission
scenarios, which represent the CO2-only emissions from the
RCP scenarios [26], for three different amplitudes of the
additional emission pulse (10 GtC, 100 GtC, 500 GtC),
and for different confidence intervals of an underlying
Gaussian distribution representing the IPCC’s categories of
‘likely’ (>66%), ‘very likely’ (>90%), and ‘virtually certain’
(>99%), whereby we always started from RCP4.5 as a base
case and changed one property at a time. The resulting
boundary between the regimes in the space, spanned by
effective discount rate and damage function exponent, in
which TCR or ECS are ‘better proxies’ for the social cost of
carbon are shown in figure B.1.

While TCR remains the better proxy for SCC for the
majority of combinations of published damage exponents
and observed social time preference rates, we note a general
tendency of ECS being the ‘dominant’ proxy for a larger
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range of discount rates and damage functions the higher
the baseline emission scenario. Higher emissions scenarios
make ECS more relevant for rapidly rising damage functions
because those damage functions are extremely sensitive to
small changes in larger numbers. Likewise, increasing the
fraction of the distribution covered in the analysis makes ECS
more relevant, again at higher damage functions, for the same
reason: because the combination of higher numbers raised
to powers greater than four somewhat offsets more of the
effect of the discounting. However this effect is pronounced
only for rather high damage exponents, within the range of
exponents broadly used (<3) TRC remains a better proxy
for SCC, given that the effective discount rate is >1%.
Changing the ensemble design by demanding a higher level of
confidence (i.e. including more ensemble members) induces
the same tendency of extending the regime in which ECS is a
better proxy towards higher effective discount rates. Again,
this tendency is only significant for high damage function
exponents.

Testing the limits of the marginal approximation shows
that higher amplitudes of the emission pulse added to
the baseline have the opposite effect to a higher level of
confidence and a higher emission baseline, by shifting the
boundary between the TCR and ECS regimes towards lower
effective discount rates.

Our main conclusion is that TCR is a better proxy
for SCC than ECS for a wide range of effective discount
rates (>1%) and damage function exponents, including many
settings used in prominent integrated assessment studies.
This result is robust under changes to the emission baseline,
ensemble design, and the amplitude of the emission pulse, up
to about quadric damage functions. Damage of this order or
higher is rare in the integrated assessment literature.
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