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Abstract
Timely and accurate data on forest change within Indonesia is required to provide government,
private and civil society interests with the information needed to improve forest management.
The forest clearing rate in Indonesia is among the highest reported by the United Nations Food
and Agriculture Organization (FAO), behind only Brazil in terms of forest area lost. While the
rate of forest loss reported by FAO was constant from 1990 through 2005 (1.87 Mha yr−1), the
political, economic, social and environmental drivers of forest clearing changed at the close of
the last century. We employed a consistent methodology and data source to quantify forest
clearing from 1990 to 2000 and from 2000 to 2005. Results show a dramatic reduction in
clearing from a 1990s average of 1.78 Mha yr−1 to an average of 0.71 Mha yr−1 from 2000 to
2005. However, annual forest cover loss indicator maps reveal a near-monotonic increase in
clearing from a low in 2000 to a high in 2005. Results illustrate a dramatic downturn in forest
clearing at the turn of the century followed by a steady resurgence thereafter to levels estimated
to exceed 1 Mha yr−1 by 2005. The lowlands of Sumatra and Kalimantan were the site of more
than 70% of total forest clearing within Indonesia for both epochs; over 40% of the lowland
forests of these island groups were cleared from 1990 to 2005. The method employed enables
the derivation of internally consistent, national-scale changes in the rates of forest clearing,
results that can inform carbon accounting programs such as the Reducing Emissions from
Deforestation and Forest Degradation in Developing Countries (REDD) initiative.
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1. Introduction

While the forests of Indonesia are a source of economic
development, the deleterious effects of poorly regulated
clearing are well documented, and include the ecological
collapse of the forest ecosystem and attendant disruption of
rural livelihoods (Curran et al 2004). There are many drivers
of Indonesian forest clearing, including economic, political,

5 Author to whom any correspondence should be addressed.

social and environmental factors. As these drivers strengthen
and weaken, so do the temporal rate and spatial extent of
forest cover clearing. For Indonesia, there are no consistent,
reliable estimates quantifying the spatio-temporal variation of
forest clearing. Divergent views on deforestation rates have
been the result, hampering effective forest management and
governance.

The forest clearing rate in Indonesia during the 1990s
was among the highest reported by FAO (2001). Indonesia
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ranked second, behind only Brazil in terms of forest cover lost.
According to Hansen and DeFries (2004), Southeast Asia as a
whole, and Indonesia in particular, were a primary reason for
increasing rates of global forest loss when comparing the 1990s
to the 1980s. For Southeast Asia, the 1990s featured significant
economic growth that led to increased exploitation of forest
resources. A principal deforestation dynamic in Indonesia
during this period was the expansion of oil palm estates, which
grew in area from 100 000 hectares in the late 1960s to 2.5
million hectares by 1997 (Casson 2000, FWI/GFW 2002).
Another change dynamic was fire. The El Niño Southern
Oscillation (ENSO) event of 1997–1998 led to a prolonged
drought and widespread human-induced forest fires (Stibig
and Malingreau 2003), resulting in the loss of an estimated
4.8 million hectares of forest according to the United Nations
Center for Human Settlements (UNCHS 2000) and as high
as 9.7 million hectares according to the Asian Development
Bank (ADB) and Indonesian National Development Planning
Agency (INDPA) (1999). Much of this fire was thought
to be related to oil palm interests profiting from anomalous
climatic conditions to clear forests via fire. The convergence of
political, economic and environmental factors largely favoring
clearing led to anomalously high rates of forest loss during the
late 1990s.

However, many of the drivers of forest clearing changed
at the turn of the last century, including economic, political,
social and environmental factors. The economic crisis of
the late 1990s deleteriously affected Indonesia by devaluing
the currency, creating credit-access problems, and reducing
oil palm prices (Casson 2000). The long-tenured Suharto
government was replaced by a new national government that,
in turn, instituted many policy reforms. Many of the new
policies affected the oil palm sector, including more stringent
permitting rules and new export tax regulations, slowing its
continued expansion. Combined with the poor economic
conditions, this led to a reduction in palm estate expansion.
For example, it is estimated that the 1999 planted palm estate
acreage was 1/3 that of 1997 (Casson 2000). Environmental
factors include the vast cleared areas from the ENSO fires lying
idle, ready for exploitation by agro-industrial interests. Such an
excess of cleared land limited additional clearing in the short
term. Forest fires of the scale that occurred in 1997 and 1998
were not repeated during the 2000–2005 epoch, and a decline
in timber supplies from production forests (Sunderlin 2002)
reflected the increasingly limited availability of intact lowland
forests.

Given the new political, economic, social and environ-
mental dynamics of the current decade, what can be expected
vis-à-vis forest clearing rates? For the current decade (2000–
2005), the FAO Forest Resource Assessment 2005 (FAO 2006)
reports the same rate of clearing as that of the 1990s, 1.87
million hectares per year. However, a pan-humid tropical
forest clearing survey for 2000–2005 estimated a dramatically
different deforestation rate for Indonesia, 0.70 million hectares
per year (Hansen et al 2008c). This study aims to resolve this
discrepancy via the use of remotely sensed data to quantify
change over both epochs. The results are the first repeated
application of the approach of Hansen et al (2008c) with the

aim of quantifying changes in the rates of Indonesian forest
clearing.

Monitoring of forest cover clearing requires robust
methods applied repeatedly using data inputs that are internally
consistent, both in space and time. The objective of this
study is to apply the same methodology for quantifying
forest clearing for the 1990–2000 decadal and 2000–2005
half-decadal epochs to discern if rates of clearing remain
unchanged. The analysis employs remotely sensed data sets
to quantify forest area cleared. While the use of satellite-
based observations of the earth surface for monitoring tropical
deforestation is well established (Skole and Tucker 1993, INPE
2002, Achard et al 2002), consistent and timely monitoring of
areas with frequent cloud cover such as Indonesia has not been
implemented.

Forest cover loss was quantified for both epochs from
satellite imagery. We employed a targeted sampling approach
that used national-scale decadal AVHRR (Advanced Very
High Resolution Radiometer) (1990–2000) and annual MODIS
(Moderate Resolution Imaging Spectroradiometer) (2000–
2005) forest cover loss indicator maps to stratify Indonesia
into low, medium and high change categories (Hansen et al
2008c, Stehman 2005). Samples for the two epochs were
selected independently and Landsat image pairs analyzed to
estimate the area of forest cleared. The use of Landsat to
estimate area cleared for both epochs assures a consistent
result across epochs. The MODIS and AVHRR data were
also incorporated in the analysis via a regression estimator.
An additional analysis employed the annual MODIS forest
cover loss indicator data to proportionally allocate change
within the 2000–2005 epoch. For Indonesia and other countries
experiencing agro-industrial scale clearing, MODIS allows for
the comparison of interannual trends in clearing (Hansen et al
2008b).

A final analysis consisted of disaggregating the national-
based samples to estimate forest clearing for sub-regions
within Indonesia. The targeted sample approach enabled
by the coarse resolution change indicator maps intensifies
the sampling effort within sub-regions experiencing the most
change. These sub-regions may be evaluated separately. For
example, the pan-humid tropical sample of Hansen et al
(2008c) had a sufficient sample size to calculate a separate
national-scale estimate for Brazil, revealing that nearly one-
half of all humid tropical forest clearing from 2000 to 2005
occurred in Brazil. Given that clearing in Indonesia has been
concentrated within the lowlands of Sumatra and Kalimantan,
estimates were derived for three important sub-regions: (1)
the combined island groups of Sumatra and Kalimantan, (2)
Indonesian lowlands, and (3) lowlands within Sumatra and
Kalimantan. An advantage of the targeted sampling approach
is that it yields a larger sample size in regions of high forest
clearing thus enhancing the ability to disaggregate the national-
scale estimate to provide a more meaningful and quantitative
narrative of forest clearing within the overall study area.

1.1. Satellite monitoring of forest clearing

Documenting tropical forest area and forest change at national
scales is a challenge. Remotely sensed data offer a suitable
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information source for synoptic forest assessments. Data from
earth observation satellites allow for repeated views of the
land surface over time. However, implementing operational
monitoring of tropical deforestation is challenging. High
spatial resolution sensors that capture enough spatial detail
to yield reliable change area estimates, such as Landsat,
do not have repeat temporal coverage that is sufficient to
overcome cloud contamination for many regions. High spatial
resolution satellites also have a narrow swath and revisit
intervals typically greater than 1–2 weeks. Given this stricture,
timely imaging of the humid tropics is problematic due to the
persistence of cloud cover in many areas (Asner 2001, Ju and
Roy 2008).

Compared to other humid tropical regions, estimating
Indonesian forest cover change using passive optical remotely
sensed data sets is more challenging. For example, large areas
of the Brazilian humid tropical forest have an annual cloud-free
window in August that enables the acquisition of usable high
spatial resolution imagery on an annual basis and the derivation
of annual deforestation maps (INPE 2002). This is particularly
true for the core areas of deforestation, including the regional
change hot spot of Mato Grosso state. The latitude of Mato
Grosso’s forests ranges from 9◦ to 14◦ south. Indonesian
humid tropical forests, on the other hand, range from 6◦ north
to 8◦ south. In Indonesia, there is no reliable annual seasonality
that enables the acquisition of cloud-free imagery. Indonesian
forests are found exclusively in the aseasonal humid tropical
zone where cloud cover is persistent. This is also true for those
parts of the Amazon closer to the equator as well, but to date,
these areas have not been the hot spot of change in Brazil.
While Indonesia does have regions that experience similar-
scale agro-industrial forest clearing as occurs in Brazil, data
limitations related to atmospheric contamination have stymied
efforts to accurately quantify these changes at the national
scale. As a result, there is a less clear understanding of forest
cover change in Indonesia. The Congo Basin is similar to
Indonesia in this regard, but even more challenging due to the
relative fine spatial scale of the prevailing change dynamics
found there (Hansen et al 2008a).

Persistent cloud cover means that improved methods
for automatically processing images are required to perform
exhaustive mapping, as the more persistent are the clouds,
the more images you need to process to acquire good land
observations. This is not a problem for most of Brazil’s change
areas, but it is the situation in Indonesia. Exhaustive mapping
of Indonesia forest cover and change using passive optical data
will entail mass-processing of data to filter atmospherically
contaminated pixels and to identify and characterize good
land observations. Such a procedure has been implemented
in the Congo Basin (Hansen et al 2008a), but not yet for
Indonesia. To date, Indonesian epochal studies of forest cover
and change have been generated using photo-interpretation
methods to identify forest cover classes and change over multi-
year intervals.

An option to high spatial resolution exhaustive mapping is
to use moderate or coarse spatial resolution images from polar
orbiting satellites that have a larger observational swath. Since
the main limitation of tropical forest monitoring is successful

imaging of the land surface, such sensors offer an improved
capability. Moderate and coarse spatial resolution sensors
such as MODIS and AVHRR image Indonesia every 1 to 2
days, providing the best possibility for cloud-free observations.
MODIS and AVHRR data may be used to provide maps
where forest clearing is indicated. However, these moderate
and coarse spatial resolution data are not adequate to directly
estimate change area because most change occurs at sub-pixel
scales for these sensors.

By integrating the complementary characteristics of
moderate/coarse (MODIS/AVHRR) and high (Landsat) spatial
resolution data sources, timely national-scale updates of
forest cover change are achievable using a targeted sampling
strategy. This sampling approach uses nationwide 5 year
aggregate MODIS change indicator maps and decadal AVHRR
change indicator maps to stratify Indonesia into low, medium
and high change categories. Landsat image pairs are then
sampled within these strata, and the Landsat imagery analyzed
for estimating area of forest cleared. Targeted sampling
of Landsat-scale data offers a key advantage over past
approaches by overcoming the need for Landsat-scale wall-
to-wall mapping to quantify rates. Missing data due to scan
line gaps or cloud cover within Landsat sample blocks do not
deleteriously affect the results, if the presence or absence of
the missing data is not correlated with change. Hansen et al
(2008c) showed that missing data did not materially affect their
2000–2005 pan-humid tropical forest cover loss estimation
with this approach.

The objective of this research is to compare rates of
forest clearing in Indonesia for two epochs, 1990–2000 and
2000–2005. The forest clearing rates are estimated via
a sampling approach, with change interpreted from high
resolution Landsat imagery, and using moderate or coarse
resolution imagery to improve the precision of the sample-
based estimates. The methodology and most of the data used
to estimate the forest clearing rate for 2000–2005 are reported
in Hansen et al (2008c). Countrywide results for 2000–2005
reported in this article differ slightly from Hansen et al (2008c)
because the latter results included only that part of Indonesia
within the humid tropical forest biome. The new results of
the estimated forest clearing for 1990–2000 can be compared
to the 2000–2005 estimate to address the critical question of
whether the rate of forest clearing has changed over time. The
results reported in this article also extend beyond Hansen et al
(2008c) to include sub-national estimates of forest clearing.

2. Materials and methods

The sampling unit for the study was a square block 18.5 km ×
18.5 km. Indonesia was partitioned into 5604 such blocks,
and a stratified random sampling design implemented, with
the blocks assigned to strata based on the anticipated amount
of forest clearing in the block. Although the same partition
of blocks was used for both epochs, the samples for the two
epochs were selected independently. Further, the stratification
was based on different derivations of anticipated forest change.
That is, the forest change indicator maps that formed the
basis of the stratification were derived from MODIS data for
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Figure 1. Schematic of methods used in this study.

the 2000–2005 epoch and from AVHRR data for the 1990–
2000 epoch (MODIS data not being available for this epoch).
Figure 1 is a schematic of the methods employed. An example
of the MODIS forest change indicator layer from 2000 to 2005
is shown in figure 2 with the sampling frame overlain.

2.1. Data inputs

To initiate the sampling protocol, change indicator products
were derived from existing products for the nominal 1990–
2000 and 2000–2005 time periods. The 1990–2000 AVHRR
change indicator maps were created using 8 km vegetation

continuous field (VCF) of tree cover data from 1988 through
1999 (Hansen and DeFries 2004). Annual forest cover was
derived using input data from the 8 km Pathfinder data set
(Agbu and James 1994), including monthly composites based
on maximum NDVI (normalized vegetation difference index)
(Holben 1986). The five bands include red (580–680 nm)
and near-infrared (725–1000 nm) reflectance as well as three
thermal bands (3550–3930, 10 300–11 300, 11 500–12 500 nm)
of brightness temperature. Using a regression tree algorithm,
per cent tree cover training data derived from Landsat imagery
were related to the AVHRR inputs to produce annual per
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Figure 2. Full-resolution subset of MODIS indicated change for
Riau Province (western boundary shown in black). Any pixel that
had 90% probability or higher of indicated change from 00–01,
01–02, 02–03, 03–04, 04–05, 00–04 to 00–05 intervals is flagged.
Stratification employed the per cent of these indicated 500 m change
pixels per 18.5 km sample block (white frame).

cent tree cover estimates. Employing an image differencing
approach, VCF tree cover change was estimated for the 1990s
(Hansen and DeFries 2004). This 1990s epochal change
indicator layer was averaged to provide a per cent tree cover
loss estimate for each 18.5 km × 18.5 km block of Indonesia
and to stratify Indonesia into high, medium and low change
strata.

MODIS change indicator maps from 2000 to 2005 for
the dominant global forested biomes are being made as part
of a NASA-funded survey of global tree cover change. To
achieve this, supervised mapping methods using a decision
tree algorithm have been applied to MODIS data to produce
change indicator maps. The results for the humid tropical
forest biome have been subset in this national-scale study
of Indonesia. To create the humid tropical forest change
indicator maps, examples of forest clearing throughout the
humid tropics were interpreted from high spatial resolution
browse imagery and used to label MODIS-scale change and
no change training sites. A supervised classification tree
bagging procedure (Breiman et al 1984, Breiman 1996) was
then employed with annual MODIS metrics as the independent
variables to predict MODIS per pixel annual and 4 and 5 year
change probability maps. MODIS thirty-two day composites
were used as inputs and included data from the MODIS land
bands (blue (459–479 nm), green (545–565 nm), red (620–
670 nm), near-infrared (841–876 nm), and mid-infrared (1230–
1250, 1628–1652, 2105–2155 nm)) (Vermote et al 2002),
as well as data from the MODIS land surface temperature
product (Wan et al 2002). The classification tree bagging
algorithm related expert interpreted forest cover loss and no
loss categories to the MODIS inputs. A 90% threshold was

applied to the annual and 4 and 5 year forest cover loss maps
to produce per 500 m pixel forest change/no change maps
(figure 2). These data were aggregated in the same way as
the AVHRR change indicator maps to produce a per cent cover
loss value for each block of Indonesia.

Whereas the MODIS and AVHRR forest change data are
used for stratification, the estimates of forest clearing are based
on area change analyses of Landsat data from 1990 to 2000 and
2000 to 2005. The images for the 1990 and 2000 epochs were
obtained from the GeoCover Landsat Orthorectified dataset
(http://glovis.usgs.gov/). For the 2005 epoch, Scan Line
Corrector-Off (SLC-Off) images were used. The five TM
and ETM+ reflective bands were employed in the analysis,
for ETM+: green (525–605 nm), red (630–690 nm), near-
infrared (775–900 nm), and mid-infrared (1550–1750, 2090–
2350 nm), along with calculated NDVI. Band 1 (blue, 450-
515 nm) was not used because of frequent atmospheric haze
contamination. To facilitate interpretation of the Landsat block
data, a relative radiometric normalization using a dark object
subtraction (DOS) technique was performed on each image.
Forest areas with tree canopy density >40% according to the
MODIS 2000 VCF per cent tree cover map (Hansen et al
2003) were labeled as the dark target (Chavez 1996) and a bias
adjustment applied to all bands. Automatic data gap detection
and manual cloud masking were performed on both images and
combined to produce a no data mask for each Landsat 1990–00
and 2000–05 image pair.

2.2. Stratification

The strata defined for the 2000–2005 epoch based on the
MODIS change indicator maps were 0–2%, >2–9%, and
>9% change accounting for 95.4%, 3.4%, and 1.2% of the
Indonesian land surface, respectively, and a single block with
the highest MODIS change was selected with certainty and
represented stratum 4 (Hansen et al 2008c). The sample size
for this epoch was 79 blocks, with the allocation to the first
three strata being 43, 17, and 18. For the 1990–2000 interval,
the same strata boundaries were employed, but the change was
based on the AVHRR change indicator maps. Strata 1, 2 and 3
for 1990–2000 accounted for 50.0%, 35.6% and 14.4% of the
Indonesian land surface, respectively. The total sample size for
this epoch was 75, with equal allocation of 25 sample blocks
to each of the three strata.

At the estimation stage, post-stratification was imple-
mented within stratum 1, the low change stratum, for both
epochs. This feature of the analysis was used to compensate
for the difficulty possessed by both MODIS and AVHRR to
capture small parcels of forest clearing. By incorporating ad-
ditional information, post-stratification is designed to partition
all blocks in the low change stratum into two post-strata, one
consisting of blocks representing near zero change, and one
consisting of blocks having a small area of forest clearing.
The post-strata are not constructed from the Landsat sample
data, but instead are derived from ancillary data available for
all of Indonesia. These data were obtained from the Intact
Forest Landscapes (IFL) project (Potapov et al 2008) and the
MODIS 2000 VCF per cent tree cover map (Hansen et al
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2003). For the 2000–2005 analysis, blocks that had greater
than 25% IFL or less than 20% VCF tree cover, and a 90%
MODIS threshold change value of 0% were placed in post-
stratum 1A (blocks expected to show virtually no change), and
the remaining blocks were placed in post-stratum 1B. For the
1990–2000 analysis, the same definitions were applied with the
MODIS threshold change value of 0% replaced by the AVHRR
change value of 0%.

Sample blocks were processed in a randomly ordered
sequence. A sample was excluded if the Landsat data exhibited
seasonal offsets or if less than 25% of the block had usable data
(area unaffected by SLC-off data gaps and cloud cover). In any
of these cases, the next sample block in the randomly ordered
list was processed.

2.3. Sample block analysis

Each Landsat sample block was classified using a supervised
classification tree bagging procedure (Breiman et al 1984,
Breiman 1996) to yield 2000 forest cover and 1990–2000 or
2000–2005 forest clearing areas. Each block was examined in
detail by one or more interpreters and the procedure iterated
if necessary, including manual editing where required, to
achieve accurate per block depictions of forest cover and forest
clearing. Forest was defined as greater than 25% canopy
cover and change was measured without regard to forest land
use. All tree cover assemblages that met the 25% threshold,
including intact forests, plantations, and forest regrowth, were
defined as forests. Missing data per sample block consisted of
hand interpreted cloud and shadow cover and data gaps from
the Landsat 7 scan line corrector-off (SLC-off) malfunction.
To produce the forest cover reference estimate, the MODIS
2000 VCF per cent tree cover map was regressed against the
forest masks derived for the 2000 Landsat block samples and
extrapolated for all blocks within Indonesia (Hansen et al
2008c).

2.4. Regression estimation

For each stratum, a separate regression estimator (Särndal
et al 1992) was employed in the analysis to estimate Landsat-
derived forest area loss. The regression estimator is a common
strategy used in survey sampling to improve precision of the
estimate of a mean or total. A simple linear regression model
was applied per stratum using MODIS or AVHRR data as the
explanatory variable. Because post-stratum 1A of the 2000–
2005 epoch had very little area of forest clearing, the sample
mean Landsat-derived clearing was used instead of a regression
estimator. The models selected were the best or nearly best
fitting models evaluated for a suite of auxiliary variables that
included MODIS and AVHRR-derived forest loss based on
different thresholds of forest cover extent and change variables.
For 2000–2005 MODIS indicated change layers thresholded at
75 and 90% and aggregated to the block scale were used as
ancillary variables. In addition to the 8 km AVHRR change
layer, the ancillary variables used for the 1990–2000 estimates
were derived from other VCF difference images, including
1992 and 1995 1 km AVHRR layers (Hansen et al 2002) and
the 2000 MODIS VCF of tree cover. Each model was applied

per stratum and the strata estimates were then aggregated to
derive national-scale forest clearing estimates.

2.5. Sub-national estimates

Adequate sample sizes existed to provide an estimate of
forest clearing in each epoch for three sub-regions: Sumatra
and Kalimantan, Indonesian lowlands, and lowlands within
Sumatra and Kalimantan. For this study, lowlands were defined
as sample blocks with average elevations of �300 m and
average slopes of �1%. Regression estimators were not used
for the sub-region analyses because the sample sizes were
deemed too small to ensure that the regression estimator would
not be biased. The sub-region estimates were constructed so
that the change rates for sub-regions partitioning Indonesia
would sum to the national-scale estimate. Forest clearing was
estimated for the combined lowlands and uplands of Sumatra
and Kalimantan, and for the combined lowlands and uplands
of the remaining Indonesian island groups of Java, Nusa
Tenggara, Sulawesi, Maluku, and Papua.

2.6. Within-epoch trend analysis

While the Landsat sample-based area estimate represents the
total change over the period, the MODIS-only change maps
can reveal within-epoch trends. MODIS change indicator
maps were derived for both annual and multi-year intervals.
The annual products enable the assessment of the relative
abundance of MODIS pixels flagged from 2000 through 2005.
The current analysis employed 500 m MODIS Collection
4 data. MODIS forest cover loss indicator maps were
thresholded at the 90% probability per pixel per year to analyze
annual trends (Hansen et al 2008c). Hansen et al (2008b) have
used MODIS change indicator maps to estimate area cleared
for Brazil. However, such an analysis requires extensive fine
spatial resolution data for calibrating the MODIS signal as are
available with the PRODES data set derived by the Brazilian
Space Agency. Such data are not available for Indonesia.
Here, the relative presence of change as detected by MODIS
on an annual basis is used to discern within-epoch (2000–2005)
trends.

A similar analysis was not possible with the 1988–
1999 AVHRR annual tree cover maps. Hansen and DeFries
(2004) found the AVHRR annual 8 km tree cover maps to
be inconsistent at interannual timescales due to geolocational
error (Agbu and James 1994), systematic shifts in the data
(Young and Anyamba 1999), and deleterious effects of NDVI
compositing with AVHRR inputs (Justice et al 1989, Moody
and Strahler 1994).

3. Results

Seventy-five and seventy-nine sample blocks were analyzed,
respectively, for the 1990–2000 and 2000–2005 epochs.
Figure 3 displays the locations of the sample blocks and
associated strata. Note the concentration of high indicated
change samples in lowland Sumatra and Kalimantan. Figure 4
is a graphic representation of the national-scale result and
tables 1 and 2 summarize all sample-based change estimates.
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Figure 3. Sample blocks and associated strata for the 1990–2000 and 2000–2005 epochs. Each sample block is 18.5 km × 18.5 km and
shown to scale. Sample blocks may be viewed at http://globalmonitoring.sdstate.edu/projects/gfm/indonesia for 1990–2000 and at http://
globalmonitoring.sdstate.edu/projects/gfm/humidtropics/list.html for 2000–2005. Strata are defined by indicated forest cover loss from
AVHRR data from 1990 to 2000 and MODIS data from 2000 to 2005. The background image in this figure is of MODIS time-integrated
metrics for band 1 red, band 2 near-infrared and band 7 mid-infrared reflectances in r-g-b color.

Table 1. Summary of forest cover loss estimates for 1990–2000 and 2000–2005 for (a) all of Indonesia, (b) Sumatra and Kalimantan,
(c) Indonesian lowlands, and Sumatra and Kalimantan lowlands, for both epochs.

Sample
size

Per cent of
land area
cleared

Std.
error

Average annual
forest area cleared
(Mha)

95% confidence interval
for average annual forest
area cleared (Mha)

(a) Indonesia
1990–2000 75 9.25 0.97 1.78 1.40–2.16
2000–2005 79 1.84 0.22 0.71 0.54–0.88

(b) Sumatra and Kalimantan
1990–2000 48 12.93 1.81 1.32 0.95–1.69
2000–2005 64 2.95 0.41 0.60 0.43–0.77

(c) Lowlands
1990-2000 39 16.93 2.91 1.46 0.97–1.95
2000-2005 48 3.22 0.36 0.55 0.43–0.67

(d) Sumatra and Kalimantan lowlands
1990–2000 31 22.45 3.86 1.27 0.83–1.71
2000–2005 43 4.47 0.41 0.51 0.41–0.60

Figure 4. Estimated forest area cleared for Indonesia, 1990–2000
and 2000–2005. For 2000–2005, estimated annual change is
allocated using the MODIS annual forest cover loss indicator maps
(black bars).

Results indicate a dramatic decrease in forest clearing within
Indonesia when comparing the 1990s to the first half of
the current decade. Overall national-scale forest cover
loss decreases from 1.78 Mha yr−1 from 1990 to 2000 to
0.71 Mha yr−1 from 2000 to 2005. The change rate of
1.78 Mha yr−1 is close to the value reported by FAO of
1.87 Mha yr−1 for 1990 to 2000. The 2000–2005 rate is more
than 1 Mha yr−1 less than the 1990s and the 2000–2005 value
reported by FAO (1.87 Mha yr−1).

Figure 5 spatially depicts the predictions of the regression
estimation models (table 2) applied to the 5604 Indonesian
sample blocks. The stratum-specific regression models for the
1990–2000 epoch captured from 40 to 64% of the variation
in Landsat change per stratum (coefficient of determination,
R2), meaning that the change is not precisely mapped when
applied spatially. While the relative distribution is accurate
(i.e. the highest change areas are found in Sumatra and
Kalimantan), the absolute location-specific change is not
necessarily captured in this spatial depiction. This leads to
a greater spread of the change across the archipelago than
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Table 2. National-scale stratum-specific results and estimated regression models for 1990–2000 and 2000–2005 forest cover loss.

1990–2000

Strata
Number
of blocks

Number of
samples

Estimated per cent of all land
area cleared (%) SE (%)

Estimated area
cleared (Mha)

1A 1207 10 2.64 0.65 1.09
1B 1595 15 7.73 2.57 4.23
2 1995 25 7.93 1.47 5.43
3 807 25 25.36 2.30 7.03

Total 5604 75 9.247 0.97 17.79

Stratum-specific regressions (Landsat change is expressed as per cent of block area):
1A: Landsat change = 0.5399 + 0.3087A1 (R2 = 50.6%),
1B: Landsat change = 5.057 + 0.8673A2 (R2 = 48.0%),
2: Landsat change = 2.08 + 0.618A2 + 0.289A1 (R2 = 40.5%),
3: Landsat change = 6.69 + 0.6805A3 + 0.4704A2 (R2 = 63.8%),
where,
A1 = 1992 1 km AVHRR tree cover − 2000 500 m MODIS tree cover
A2 = 1990 8 km AVHRR tree cover − 2000 500 m MODIS tree cover
A3 = 1990 8 km AVHRR tree cover − 1997 8 km AVHRR

2000–2005

Strata
Number
of blocks

Number of
samples

Estimated per cent of all land
area cleared (%) SE (%)

Estimated area
cleared (Mha)

1A 1748 8 0.50 0.42 0.30
1B 3590 35 1.62 0.19 2.00
2 196 17 9.82 1.03 0.66
3 69 18 23.39 1.79 0.55
4 1 1 72.30 — 0.02

Total 5604 79 1.840 0.22 3.53

Stratum-specific regressions (Landsat change is expressed as per cent of block area):
1A: Landsat sample mean = 0.50
1B: Landsat change = 1.202 + 0.7544B1 (R2 = 19.9%),
2: Landsat change = 1.687 + 0.9280B1 (R2 = 71.5%),
3: Landsat change = 4.532 + 0.7402B1 (R2 = 65.0%),
4: Landsat single block = 72.3,
where,
B1 = MODIS 2000–2005 forest cover loss probability thresholded at 75%.

For stratum 1A, no regression estimation was applied, as this
post-stratum had very little change.

in reality. The 2000–2005 epoch image better delineates the
relative distribution of high change, due to the robustness of
the MODIS signal as compared to AVHRR. Although the
regression estimation adjustment of the MODIS or AVHRR
per block change enables a coarse approximation of the spatial
depiction of change, these products should not be considered a
replacement for higher spatial resolution maps.

While the sample-based area estimates yield average
change per epoch, the MODIS-only annual data reveal a
within-epoch increase in clearing from 2000 to 2005. Figure 4
shows annual 500 m pixels flagged as indicating forest
cover loss scaled to the overall sample-based epochal change
estimate. The trend is nearly monotonic in increasing area
of forest clearing for the current decade, possibly related to
the recovering Indonesian economy and increasing commodity
prices, including oil palm. One-third of MODIS change
pixels occurred in 2005, representing a rate of 1.17 Mha yr−1

compared to the 5 year average of 0.71 Mha yr−1. Figure 4
illustrates a dramatic, if temporary, reduction in forest clearing
at the turn of the century.

The national estimates of forest clearing (table 1) were
disaggregated to produce clearing rates for the lowlands
and uplands of Sumatra and Kalimantan and of Java, Nusa
Tenggara, Sulawesi, Maluku and Papua island groups. Figure 6
and table 3 summarize these results. Since 1990, over 40%
of the lowland forests of Sumatra and Kalimantan have been
cleared. The annual rate during the 1990s for this area
was nearly 3.5% per year and slowed to 1.4% from 2000 to
2005. Lowland forests elsewhere in Indonesia have also been
exploited, with a 13% reduction from 1990 to 2000. Most of
these forests may be found in Papua, the last remaining expanse
of lowland forest, though their extent is small compared to the
historic range of Sumatra and Kalimantan lowland forests.

4. Discussion

4.1. Dynamics of forest clearing in Indonesia

It is clear that a dramatic reduction in forest clearing followed
the high rates of change experienced in the 1990s (figure 4).
The mean annual forest cover loss for the 1990s was more

8
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Figure 5. Predicted forest clearing (per 18.5 km block) for (a) 1900–2000, based on the stratum-specific regressions modeling
Landsat-derived change as a function of AVHRR change and for (b) 2000–2005, based on the stratum-specific regressions modeling
Landsat-derived change as a function of MODIS change.

Figure 6. Estimates of national and sub-national forest cover extent and loss. S-K stands for the combined Sumatra and Kalimantan island
groups. J-N-S-M-P stands for the combined Java, Nusa Tenggara, Sulawesi, Maluku and Papua island groups.

than twice that of the 5 year period from 2000 to 2005. While
the major factors governing forest change favored increased
clearing during this period, nearly all were reversed at or near
the end of the decade and led to a dramatic decline in clearing
rates. However, this does not appear to be a long-lived reversal.
The MODIS interannual results illustrate a steady increase
of clearing during the 2000s, indicating recent clearing rates
estimated to be over 1 Mha yr−1. Many of the factors
that dampened clearing at the turn of the century changed,
including post-crisis economic recovery and associated high
oil palm commodity prices.

For the 1990–2000 epoch, we do not have an annual
change indicator product with which to more fully describe the

interannual cover loss dynamic. It is clear that the fire event
of 1997–98 inflates the overall mean annual forest loss during
this decade. Estimates on how much forest was burned during
this event differ. Subtracting the estimate from the (UNCHS
2000) report of 4.8 Mha burned in 1997–98 from our decadal
estimates would result in a residual mean forest cover loss of
1.3 Mha yr−1 over the decade, or 83% higher than the 2000–
2005 mean value of 0.71 Mha yr−1. Subtracting the estimate of
the ADB/INDPA (1999) report of 9.7 Mha results in a residual
mean forest cover loss of 0.81 Mha yr−1, still 14% higher
than the 2000–2005 mean value. If the ADB/INDPA number
is accurate, the fires of 1997–98 account for over half of all
change from 1990 to 2000, equal to four years of clearing in

9
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Table 3. Estimated forest cover and forest cover cleared in millions of hectares for both 1990–2000 and 2000–2005 epochs. S-K stands for
combined Sumatra and Kalimantan island groups. Other includes the combined Java, Nusa Tenggara, Sulawesi, Maluku and Papua island
groups. Estimated sample-based rates of clearing from table 1 are shown in italics. See figure 5 for map depiction of sub-regions.

Land area
in Mha

1990 forest
cover in
Mha

1990–2000
annual rate
cleared in
Mha yr−1

1990–2000
annual %
forest cleared

2000–2005
annual rate
cleared in
Mha yr−1

2000–2005
annual %
forest cleared

Total forest
cleared
1990–2005
in Mha

1990–2005
total % forest
cleared

2005
forest
cover in
Mha

Indonesia 192.47 121.40 1.78 1.47 0.71 0.58 21.32 17.56 100.08

S-K 102.11 68.89 1.32 1.92 0.60 0.87 16.20 23.51 52.69
Non-S-K 90.36 52.51 0.46 0.87 0.11 0.20 5.12 9.75 47.39

Lowlands 86.55 51.82 1.46 2.82 0.55 1.06 17.35 33.48 34.47
Uplands 105.92 69.59 0.32 0.46 0.16 0.22 3.97 5.71 65.62

S-K-lowlands 56.94 36.55 1.27 3.47 0.51 1.40 15.25 41.72 21.30
S-K-uplands 45.16 32.34 0.05 0.15 0.09 0.28 0.95 2.94 31.39

Other lowlands 29.61 15.27 0.19 1.24 0.04 0.26 2.10 13.76 13.17
Other uplands 60.76 37.25 0.27 0.72 0.07 0.18 3.02 8.11 34.23

the Legal Amazon (INPE 2002). Even if such a large figure is
discounted from the decadal mean, the 1990–2000 mean rate
is still higher than that of 2000–2005. However, given that
the fires were human-induced and that the lands cleared were
often used for agro-industrial purposes, these areas should not
be viewed in isolation from the overall change dynamic within
and after the fire episode.

For both epochs, the lowlands of Sumatra and Kalimantan
accounted for over 70% of total forest clearing (table 3).
Clearing and fires in the lowlands of these island groups led
to an annual forest cover loss of almost 3.5% for the 1990s
(table 3). Figures 2, 3 and 5 highlight Riau Province in central
Sumatra to be a predominant locus of forest clearing from
2000 to 2005, contributing to a lowland forest clearing rate
of 1.4% per year for Sumatra and Kalimantan. A dramatic
displacement of forest clearing to island groups other than
Sumatra and Kalimantan has not yet occurred. The only
sub-region to experience an increase in the annual rate of
clearing from the 1990s to the 2000s was the Sumatra and
Kalimantan uplands, possibly in response to a reduced lowland
forest resource base. The overall study period documents
the intensive effort to clear lowland forests that were largely
intact for centuries prior to this period. The 41.3% areal
reduction of lowland forest extent in 15 years for Sumatra
and Kalimantan indicates an unsustainable rate of deforestation
(table 3 and figure 6). This rapid decline constitutes a
fundamental limitation that will constrain the maintenance of
past levels of clearing.

4.2. Sampling to estimate forest clearing

Considerable debate on the appropriate use of Landsat data
for regional monitoring has concerned the alternative uses
of exhaustive mapping versus sampling-based approaches
(Tucker and Townshend 2000, Czaplewski 2003, Stehman
2005). Data limitations, namely cloud cover and costs of
imagery, have been the principal arguments against exhaustive
mapping. The challenge to a sampling approach is that
change is typically rare at regional scales. However, a
targeted sampling approach that successfully identifies the
sub-regions containing most of the change can overcome this

limitation. The ability of either the MODIS or AVHRR
to efficiently stratify the region does not bias results, as a
sufficient number of samples were taken per stratum to provide
reliable mean estimates. However, a successful stratification
and regression estimation procedure can significantly reduce
uncertainties (i.e. the standard errors of the estimates). The
benefit of stratification is manifested in lower standard errors
and narrower confidence intervals. Confidence intervals for
the national-scale forest clearing estimates are highlighted in
table 1 and graphically illustrated in figure 4.

MODIS proved to be a better information source
than AVHRR in the stratification and regression estimation
procedure, as evidenced by the reduced standard error for
the 2000–2005 epoch. The effectiveness of the MODIS
change-based stratification can be quantified by estimating
the ratio of the standard error of a simple random sample to
the standard error for our stratified random sample. For the
MODIS analysis, this ratio was 2.04, indicating a considerable
advantage of stratification for Indonesia. Stratification based
on the AVHRR-derived change was less successful as the ratio
of the standard error expected from simple random sampling
to the standard error obtained from the stratified design was
only 1.10. Re-expressing this result in another way, a simple
random sample of 91 blocks would have been required to
achieve the same standard error obtained by a sample of
75 blocks for the stratified design based on AVHRR-derived
change for 1990–2000. A simple random sample of 328 blocks
would have been needed to match the standard error achieved
by the sample of 79 blocks in the MODIS-based stratified
design.

The problem encountered in previous studies of imprecise
estimates of forest clearing attributable to the rarity of such
clearing was largely overcome. The MODIS and AVHRR data
permitted the assigning of each block to a change stratum,
whereas past deforestation studies defined strata by delineating
broad regions of suspected change (Achard et al 2002) rather
than using objectively-derived, block-specific information.
Targeted sampling of Landsat-scale data offers key advantages
over past approaches. First, it overcomes the need for Landsat-
scale wall-to-wall mapping to quantify rates; for Indonesia,
the reality is that annual wall-to-wall mapping at high spatial
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resolutions is impossible given the high frequency of cloud
cover. Second, the method can be applied operationally due
to its relative simplicity. The method requires an automated
change indicator product, interpretation of a limited number
of Landsat samples, and appropriate application of statistical
principals.

5. Conclusion

This study has demonstrated an approach for synoptic
monitoring of forest clearing within Indonesia. The use of
a consistent methodology and data source creates the ability
to compare forest clearing rates of different epochs. The
results revealed an inter-epochal reduction in forest clearing, in
contrast to previous results (FAO 2006) suggesting a common
rate of clearing for the two epochs. Forest clearing is related
to a host of drivers, including political, economic, social and
environmental factors (Lambin and Geist 2006). In Indonesia,
the conditions of many of these drivers changed within the
period of analysis, as did the estimated forest clearing rates.
Results quantify a dramatic drop in clearing within Indonesia
at the turn of the last century. However, a resurgence of
forest clearing since 2000 indicates this decrease to have been
temporary and possibly related to the political and economic
upheavals of the turn of the century.

The results for Indonesia and other such studies (Hansen
et al 2008c, Potapov et al 2008) can inform a host of other
research objectives, including improved econometric, climate,
biodiversity conservation, hydrological, and carbon modeling
efforts. For example, the method operationally targets areas
of intensive change, ensuring that displacement, or leakage,
of clearing activities can be quantified. When combined
with carbon stock information, results from this method may
enable carbon accounting efforts such as those mandated by
the UNFCCC’s REDD program (UNFCCC 2005).
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