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Abstract. Conventional power transformers are very simple and reliable electrical components 
and their efficiency, for large power rating, is well above 99 %. With such an excellent 
performance the improvement margin seems very limited. However, due to the large amount of 
power managed and the continuous service, also a small increase in the efficiency is desirable. 
As an example, consider that an efficiency increase of 0.5 % of a 25 MVA transformer may 
lead to savings in the order of 100 k€/year. The use of superconducting materials opens the 
way to efficiency improvements on power transformers, and also adds important advantages 
such as size and weight reduction, that are very attractive for urban substations and transport 
applications. Moreover superconductors eliminate the need for refrigeration oil, thus avoiding 
the risk of fire hazard and reducing the environmental impact, in accordance with recent EU 
guidelines. In this paper a design procedure for HTS power transformers is reported. This 
procedure, that includes an analytical method for the calculation of the AC losses, is used to 
design a 25 MVA – 154 kV / 20 kV transformer based on commercial BSCCO tapes, and the 
evaluated performance are compared with those of a conventional copper transformer. The 
optimal working temperature is evaluated, and allowable cooling technologies are discussed. 
Considerations on the use of future 2nd generation YBCO coated conductors are also reported. 

1. Introduction 
Conventional power transformers are very simple and reliable components that play a central role in 
electric systems. Their efficiency, for large power ratings, is well above 99 %. With such an excellent 
performance, reached through about one century of well established designing, manufacturing and 
operating experience, the improvement margin seems very narrow. Basically, the transformer 
drawbacks are the large size and, due to the presence of oil for cooling purpose, the fire hazard and 
their end-life environmental impact. Moreover, in the transportation sector, where they also find a 
broad application, the excessive weight of transformers is also a concern. It must be noted however 
that, due to the large amount of power managed and the continuous service, even a small efficiency 
increase is very desirable. As an example, consider that an efficiency increase of 0.5 % of a 25 MVA 
power transformer may lead to savings in the order of 100 k€/year. 
Superconducting transformers based on HTS materials have the potential to offer several economic, 
operational and environmental advantages with respect to their conventional counterpart. First of all an 
increase in the efficiency, with a considerable saving in the operational costs. Second, the possibility 
of overload operation without increase of losses; this avoids the increase of thermal stress on 
insulating materials thus allowing a longer life of the whole electrical component. SC transformers are 
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smaller and lighter than conventional ones and are therefore very attractive for strengthening of 
existing urban substations and for transport applications. Moreover by eliminating the need for 
refrigeration mineral oil, SC transformers avoid the risk of fire hazard and reduce the environmental 
impact, in accordance with recent EU guidelines. Finally, with a proper design of the HTS windings, 
they can have a current limiting ability and hence protect the electric equipments in case of fault 
without weakening the grid. 
In this paper a complete procedure for the design of HTS transformers, including relations for the 
estimation of AC losses, is presented in section 2. Based on this procedure a 25 MVA – 154 kV / 20 
kV transformer using present state of the art HTS BSCCO tapes is designed in section 3 and compared 
with a conventional copper transformer of same power. The cryogenic issue is discussed in section 4 
and a possible cooling solution is proposed. Finally, prospects for the application of future low losses 
2G HTS tapes are discussed in section 5. 

2. Design procedure 
In the following we consider a SC transformer made of HTS windings coupled via a ferromagnetic 
core operating at room temperature. In fact, even though possible in principle, an HTS transformer 
without an iron core [1] is not technically and economically feasible due to the large amount of 
conductor (and related AC losses) that would be needed to keep the magnetization current within an 
acceptable value. Moreover, an HTS transformer with a ferromagnetic core operating at cryogenic 
temperature [2], that would be desirable because of the simplified cryostat enclosing the whole 
machine and exposed to a reduced stray field, is also not feasible using nowadays ferromagnetic 
materials owing to their significant losses. Concerning the layout of the winding, basically two 
possibilities exist: alternate solenoids or alternate pancakes. In both cases the winding is formed by a 
number of groups of balanced ampere-turns, which reduces the field on the superconductor (especially 
the component perpendicular to the wide face of the HTS tape) as well as the leakage reactance [3, 4]. 
We considered only the alternate solenoids design because it is the most effective layout for reducing 
the magnetic field and improving the performance of the HTS tapes. 
The input data available for the design of the transformer are: 
- nominal power An (VA); 
- frequency f (Hz); 
- overload factor ξ (ratio between maximum allowable overload current and nominal current); 
- utilization factor of the HTS tape cu (ratio between the assumed maximum current value that the 

tape can carry in actual operation and the critical current); 
- primary and secondary winding connections (Y or ∆). 

Moreover, in order to complete the design procedure, a choice in the value of the following parameters 
is required: 
- maximum magnetic flux density in the ferromagnetic core max

feB  (T); 

- operating temperature T (K); 
- height of the coils h (m); 
- volts per turn ratio u (V); 
- number of groups of balanced ampere-turns g. 

2.1. Number of turns 
The numbers of turns of the primary and the secondary windings are given by: 
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where the function int returns the nearest greater integer. Notice that the voltages V1, V2 of equation (1) 

are the actual voltages acting on the windings. They may differ by a factor 3  from the nominal 
primary and secondary voltages of the transformer depending on the connection (Y or ∆). 
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2.2. Iron core cross section 
The cross section of the iron core Sfe and the diameter of the iron columns Dfe are given by: 
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where k is the ratio between the cross section of the iron column and the total cross section of the 
surrounding circle. A typical value of max

feB = 1.75 T can be assumed in the design phase; the value of k 

ranges from 0.84 to 0.87 depending on the number of steps of the column [3, 4]. 

2.3. HTS coils design 
In order to choose the number of HTS tapes in parallel required for the primary and the secondary coil 
the following multi-step procedure is applied. At first, the maximum values of the parallel induction 
field max

//B  (occurring at the middle of the coils) and the perpendicular induction field max
⊥B  (occurring 

at the two ends of the coils) are estimated by means of the following expressions [4]: 
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where w is the width of the tape and N and I are respectively the number of turns and the nominal 
current of the primary or the secondary winding indifferently. Although these relations refer to 
solenoids in the vacuum, they can be applied also in the case of a transformer because the distribution 
of magnetic field in the windings region is not much affected by the presence of an iron core [5]. 
Notice that an increase in the number of groups of balanced ampere-turns g is favorable because it 
involves a reduction in the magnetic flux density on the coils and may lead to a reduction in the 
number of parallel tapes; it should be considered however that by increasing g the size of the windings 
(and of the transformer) increases as well. 
The perpendicular component of the magnetic flux density is maximum where the parallel component 
is minimum and vice versa. Since the reduction in the critical current of the HTS tape due to the 
perpendicular component is much stronger than the reduction due to the parallel one, the critical 
current Ic of the tape can be evaluated with little error by considering its dependence on max

⊥B  only. 
The number n1 and n2 of parallel HTS tapes of the primary and secondary windings respectively can 
thus be evaluated on the basis of input data and design parameters as: 
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where the function int returns the nearest greater integer. Notice that the currents I1 and I2 of equation 
(4) are the actual currents in the windings. Concerning the high current (low voltage) winding, the 
choice of an odd number of parallel tapes is favorable because it allows the assembling of an high 
current conductor having equal current distribution by continuous transposition of the tapes [6–10]. 
The calculated values of n1 and n2 allow the evaluation of the actual layout of the coils. The value 

max
⊥B  of the perpendicular magnetic flux density acting on the coils can then be exactly calculated by 

means of numerical tools. By introducing this value in equation (4), the number of parallel tapes can 
be adjusted and the procedure can be repeated until a final value is reached. 

2.4. AC losses 
The AC losses per unit length occurring within an HTS tape subject to transport current or exposed to 
an AC magnetic field parallel or perpendicular to the tape can be evaluated respectively as follows 
[11–13]: 
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where Ic is the critical current of the tape, Ac is the total tape cross section, C is the ratio between the 
SC cross section and the total tape cross section, Bp is the full penetration flux density, K is a 
geometrical parameter and Bc is a critical penetration field. Both the parameters Bp and Bc depend on 
the temperature. Except for the value of the critical current density, the transport current losses do not 
depend very much on the applied magnetic field. Moreover, since the parallel component of the 
magnetic field is negligible where the perpendicular component is significant and vice versa, the total 
losses per unit length can be evaluated as the sum of the single contributions [4]. The total AC losses 
PAC of the coils are then calculated through integration along the length of the conductor. 

2.5. Thermal incomes through cryostat and current leads 
Thermal incomes through the cryostats can be evaluated in first approximation as: 

TA
k

P cr
th

th
cr ∆=

δ
 (8) 

where Acr is the total cryostat surface, ∆T is the temperature difference, δth is the thermal insulation 
thickness, and kth is the equivalent thermal conductivity. In the following, a value of δth = 50 mm was 
assumed. As for the equivalent thermal conductivity, it should be noted that when considering the 
usual solution with a separated epoxy cryostat for each transformer phase [14], a precautionary value 
of the operating vacuum degree should be chosen due to the high gas permeability of polymeric 
materials. As a reference, considering a vacuum degree of 1 Pa, a value of 3102 −⋅=thk  W/(m K) can 
be used [15]. 
Total thermal incomes through the current leads for the three phases are evaluated as: 

)(6 21 ppclcl IIqP +=  (9) 
where qcl is the specific thermal income per unit current. A typical reference value of qcl = 45 W/kA is 
used. 

2.6. Iron core losses 
The losses occurring in the iron core are evaluated as: 

fepfe GcP 2.1=  (10) 
where Gfe is the weight of the core, cp is the loss per unit weight of ferromagnetic material at the 
working induction field max

feB , and the coefficient 1.2 takes into account the increase in iron losses due 

to non-uniform distribution of the magnetic field [3]. In the following, a value of cp = 1.4 W/kg was 
assumed. 

2.7. Performance evaluation 
Total transformer losses are evaluated as: 

)( clcrACfetot PPPCPP ++⋅+=  (11) 
where C is the cooling penalty factor, which is assumed as 5 times the ideal cooling penalty factor of a 
reversible machine. As a reference, C is about 18 considering a working temperature of 66 K. 
The efficiency of the transformer at nominal load and power factor cosφ is thus given by: 

8th European Conference on Applied Superconductivity (EUCAS 2007) IOP Publishing
Journal of Physics: Conference Series 97 (2008) 012318 doi:10.1088/1742-6596/97/1/012318

4



 
 
 
 
 
 

totn

n

PA

A

+
=

ϕ
ϕη

cos

cos
 (12) 

The per unit leakage reactance is finally evaluated with the following relation [3]: 
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where Rm is the average radius of the system of concentrically coils, aδ  is the distance between the 
coils and 1δ and 2δ  are the thickness of the primary and secondary windings respectively divided by 
the number g of balanced ampere-turns groups. 

3. Design of a 25 MVA – 154 kV / 20 kV transformer using BSCCO tapes 
By means of the design procedure previously described, several parametric studies were carried out in 
order to evaluate major characteristics and performance of an HTS transformer using BSCCO tape. 
Since benefits of SC power transformers emerge especially at high power ratings, the considered 
working power was chosen as 25 MVA – 154 kV / 20 kV, with f = 50 Hz. Primary and secondary 
connections are respectively Y/∆, and the assumed working temperature is T = 66 K. The main varied 
parameters are: the number of groups of balanced ampere-turns (g), the windings height (h) and the 
volts per turn (u). 
The design is carried out with reference to BSCCO-2223 tapes whose critical current was 
characterized in function of parallel and perpendicular field, and temperature [16]. For the choice of 
the required minimum number of tapes in parallel, an overload factor ξ = 1.5 and an utilization factor 
cu = 0.9 are considered. 
The characteristics and performance of the designed HTS transformer are compared with a 
conventional copper-type transformer of same power. The design of the conventional transformer is 
carried out by the same procedure. The only differences are the imposition of the copper current 
density of 4 A/mm2 to find the required copper conduction section, and the absence of cryostat 
thickness (δth) when computing the transformer dimensions. Copper losses for the conventional 
transformer are calculated with known formulae which take into account the effect of current density 
concentration [3]. 
In the following, the values of u and h are varied respectively between 20 V and 140 V, and between 
0.5 m and 2 m respectively. As for the number of groups of balanced ampere-turns, the results of the 
parametric studies showed that an increase of g over 2 leads to little increase in the maximum 
transformer efficiency at the expenses of larger size (due to the higher number of electrical insulation 
layers), lower leakage reactance (which may be a drawback when considering the application in a real 
electrical grid in case of short circuit) and higher manufacturing complexity. However, the choice of g 
= 1 leads to a significant performance penalization, due to the large increase in the values of parallel 
and perpendicular field on the windings. For these reasons, only the results referring to the 
configuration with g = 2 are here reported. 
Figure 1 shows the evaluated total losses Ptot for the BSCCO transformer in comparison with those of 
the conventional transformer for different values of u (V) and h (m). Step variations in the losses of 
the HTS transformer are due to changes in the chosen number of tapes in parallel. It should be noted 
that for this power class, losses due to thermal incomes through the cryostat and along current leads 
are negligible with respect to AC losses, so that total losses can be considered as the sum of iron core 
losses and winding losses only. For low values of u, winding losses are preponderant with respect to 
iron losses. As shown, AC losses of the HTS transformer decrease greatly with increased winding 
height, as a result of the lower magnetic field components on the coils. With an increase in the volts 
per turn u, the total length of conductor decreases while the mass of the iron core increases. This leads 
to a decrease in the winding losses and an increase in the iron losses, so that the latter become 
predominant for higher values of u. Considering a winding height of 1.5 m, which is acceptable for a 
transformers of this power class, a value of u = 91 V leads to total losses Ptot = 53.5 kW for the 
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BSCCO transformer, which represents savings in the order of 60 kW with respect to the conventional 
transformer. Figure 2 shows the comparison of the total efficiency evaluated at power factor cosφ = 
0.8 for the BSCCO and conventional transformers. 
 

  
(a) (b) 

Figure 1. Total losses for the BSCCO transformer (a) and the conventional transformer (b). 
 

  
(a) (b) 

Figure 2. Efficiency evaluated at nominal power and cosφ = 0.8 for the BSCCO transformer (a) and 
the conventional transformer (b). 

4. Cooling solutions 
Closed-cycle cooling systems are needed for maintenance free operation of large power HTS 
transformers. Considering that AC losses in the 25 MVA BSCCO transformer are in the range of 
several hundreds to thousands of watts, cryogen-free conduction-cooled solutions seem hardly 
applicable. In fact, the most commonly reported cooling solution for large power SC transformers in 
the literature is the cryogen-cooled forced flow method, usually employing liquid nitrogen (allowable 
operating temperatures from 64 K to 77 K) or gaseous neon or helium for lower temperatures [17–20]. 
The value of the design working temperature T directly affects the HTS transformer performance. At 
higher T, the cooling efficiency improves but AC losses and total conductor length increase as a result 
of the reduced performance of the HTS tapes. Figure 3 shows the efficiency evaluated at nominal 
power and cosφ = 0.8 for the BSCCO transformer with h = 1.5 m, u = 91 V at different values of the 
operating temperature. The step variations in the results are due to changes in the discrete number of 
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tapes in parallel, and are particularly evident when this happens for the primary winding, for which the 
number of tapes in parallel is lower and the number of turns is higher. As shown, for the considered 
BSCCO tapes the region of highest efficiency occurs in the temperature range of sub-cooled liquid 
nitrogen. Considering a cryogen input temperature of 64 K and the needed temperature gradient ∆T for 
proper removal of heat, an operating temperature T = 66 K of the HTS windings is chosen. 
 

 

Figure 3. Efficiency evaluated at nominal power and cosφ = 0.8 for the BSCCO transformer with h = 
1.5 m, u = 91 V at different values of the operating temperature. 
 
For thermal insulation, a SC transformer with room temperature ferromagnetic core typically requires 
the manufacturing of three separated epoxy cryostats for the three electrical phases [14, 17]. This is 
needed since the cryostat walls located around the magnetic circuit form closed loops like a short 
circuited winding. The use of a full epoxy cryostat eliminates any induced current effect but requires 
the permanent use of a vacuum pump due to the large gas permeability of polymeric materials. 
However, an alternate solution exists in which the vacuum sealing is ensured by an outer metallic tank. 
The room temperature ferromagnetic core is water cooled in order to remove the Pfe losses. MLI can 
be used for thermal insulation of the HTS windings, with proper segmentation in order to interrupt 
short circuit rings around the ferromagnetic core. The cooling cryogen flow can by piped through heat 
exchangers for the cooling of the HTS windings. Figure 4 shows a possible layout scheme, in which 
the sub-cooled liquid nitrogen dewar is integrated into the transformer vacuum tank. A similar 
solution, but using gaseous helium at the temperature of 25 K, is described in [20]. 

Water 
Cooling 

Room 
Temperature 

Core 

 

Figure 4. Scheme of liquid hydrogen cooled HTS transformer with room temperature ferromagnetic 
core and single metallic outer vacuum tank. 
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5. Prospects for YBCO coated conductors 
Second generation YBCO coated conductors are close to the introduction in the HTS market. Long 
length tapes having 4 mm width and over 100 A critical current at 77 K can now in fact be produced 
[21, 22]. A great potential in the reduction of AC losses is also foreseen. In order to evaluate the 
prospects for future HTS transformer we postulate the existence of a 2G HTS tape having the same 
engineering current density Je as the nowadays BSCCO tapes and AC losses reduced by a factor of 10 
By using these assumptions the design of the transformer can be carried out through the same 
procedure followed in section 3. 
Figure 5 shows the estimated total losses and efficiency at nominal power and at cosφ = 0.8. The lower 
losses in the superconductor shift the optimal point towards lower values of volts per turn u, and 
therefore towards solutions with an higher “superconductor to iron ratio”. Considering the coils height 
h = 1.5 m, the point of minimal losses of 29.2 kW occurs for u = 50 V. It is important to point out that 
a lower value of u leads to a decrease in the volume and mass of the HTS transformer (being the coils 
thickness and weight much smaller than those of the iron core). When these factors are more important 
than reaching the highest efficiency, lower values of u than the minimum losses point can be chosen. 
As a reference, the YBCO transformer with u = 28 V shows same total losses as the BSCCO 
transformer with u = 91 V, but with a total volume of only 57 %, which is very attractive for transport 
applications. 
Another important parameter which is affected by the value of u is the leakage reactance. It is known 
that optimal design of SC transformers usually lead to low values of the leakage reactance with respect 
to typical values of conventional transformers. For transformers in this power range it can be lower 
than 2–3 % p.u., compared to usual values of 8–10 % p.u. for conventional transformers [3]. This is 
the direct result of the minimization of the magnetic field on the coil region, which is needed for the 
reduction of AC losses. A low value of the leakage reactance is often indicated as a drawback of SC 
transformers when working in a real electrical grid due to the danger of high short circuit currents in 
case of fault. Although different approaches to address this problem exist (i.e. series connected SC 
fault current limiters, or the design of self-limitating transformers) it is interesting to note that the 
YBCO transformer with h = 1.5 m has a leakage reactance of 3.75 % p.u. with u = 50 V, which rises to 
10.4 % p.u. with u = 28 V. 
 

  
(a) (b) 

Figure 5. Estimated total losses (a) and efficiency at nominal power and cos φ = 0.8 (b) for a HTS 
transformer employing low losses YBCO coated conductors. 
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6. Conclusions 
A procedure for the design of power transformers employing HTS tapes was presented and used to 
evaluate the potentials of HTS power transformers in comparison with conventional copper 
transformers. Parametric studies, for varying values of coils height and volts per turn, were carried out 
with reference to a 25 MVA – 154 kV / 20 kV transformer. Optimal design parameters were calculated 
for a transformer employing commercial BSCCO tapes, which allow power losses savings in the order 
of 60 kW with respect to a conventional copper transformer of same power. A possible cooling 
solution was proposed. Finally, prospects for the use of future low-losses YBCO coated conductors in 
HTS transformers were evaluated. It was shown that great improvements are possible, involving not 
only the efficiency, but also the overall size, weight and leakage reactance value. 
 

7. References 
[1] Laumond Y 1998 Handbook of Applied Superconductivity vol 2 ed Seeber B (Bristol: IOP 

Publishing) chapter H4 pp 1613–26 
[2] Tixador P, Donnier-Valentin G and Maher E 2003 IEEE Trans. Appl. Supercond. 13 2331–6 
[3] Karsai K, Kerenyi D and Kiss L 1987 Large Power Transformers (Amsterdam: Elsevier) 
[4] Baldwin T L, Ykema J I, Allen C L and Langston J L 2003 IEEE Tran. Appl. Supercond. 13 

  2344–7 
[5] Morandi A, Trevisani L, Ribani P L, Fabbri M, Negrini F and Mariani G 2006 Study on high 

  temperature superconducting transformers. Report Department of Electrical Engineering, 
  University of Bologna, Italy 

[6] Leghissa M, Gromoll B, Rieger J, Oomen M, Neumuller H-W, Schlosser R, Schmidt H, Knorr 
W, Meinert M and Henning U 2002 Physica C 372–6 

[7] Hussennether V, Oomen M, Leghissa M and Neumuller H-W 2004 Phys. C 401 135–139 
[8] Leghissa M, Hussennether V and Neumüller H-W 2006 Adv. Sci. Technol., 47 212–9 
[9] Goldacker W, Nast R, Kotzyba G, Schlachter S I, Frank A, Ringsdorf B, Schmidt C and 

  Komarek P 2006 J. Phys.: Conf. Series 43 901–4 
[10] Goldacker W, Frank A, Heller R, Schlachter S I, Ringsdorf B, Weiss K-P, Schmidt C and 

  Schuller S 2007 IEEE Trans. Appl. Supercond. 17 3398–401 
[11] Norris W T 1970 J. Phys. D. 3 489–507 
[12] Magnusson N 2001 Phys. C 349 225–34 
[13] Wolfbrandt A and Magnusson N 2002 Supercond. Sci. Technol. 15 1818–22 
[14] Zueger H 1998 Cryogenics 38 1169–72 
[15] Demko J A, Lue J W, Gouge M J, Lindsay D, Roden M, Willen D, Daumling M, Fesmire J E 

  and Augustynowicz S D IEEE Trans. Appl. Supercond. 13 1930–3 
[16] American Superconductor, High Strength Plus Wire, product specifications:  

 http://www.amsuper.com/documents/WFS_HSP_0106_FNL.pdf 
[17] Mehta S P, Aversa N and Walker M S 1997 IEEE Spectrum 34 43–9 
[18] Funaki K et al. 2001 IEEE Trans. Appl. Supercond 11 1578–81 
[19] Suzuki Y, Yoshida S and Kamioka Y 2003 Cryogenics 43 597–602 
[20] Schwenterly S W, Mehta S P, Walker M S and Jones R H 2002 Phys. C 382 1–6 
[21] American Superconductor, 344 Superconductors, product specifications:  

 http://www.amsuper.com/products/htsWire/documents/WFS_344CP_0807_A4_FNL.pdf 
[22] SuperPower Inc, Second-Generation High Temperature Superconductor, product specifications:

 http://www.superpower-inc.com/pdf/Spec+Sheet+2G+Wire+0607.pdf 
 

8th European Conference on Applied Superconductivity (EUCAS 2007) IOP Publishing
Journal of Physics: Conference Series 97 (2008) 012318 doi:10.1088/1742-6596/97/1/012318

9




