Paper The following article is Open access

Estimation of bone Calcium-to-Phosphorous mass ratio using dual-energy nonlinear polynomial functions

, , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation P Sotiropoulou et al 2015 J. Phys.: Conf. Ser. 633 012126 DOI 10.1088/1742-6596/633/1/012126

1742-6596/633/1/012126

Abstract

In this study an analytical approximation of dual-energy inverse functions is presented for the estimation of the calcium-to-phosphorous (Ca/P) mass ratio, which is a crucial parameter in bone health. Bone quality could be examined by the X-ray dual-energy method (XDEM), in terms of bone tissue material properties. Low- and high-energy, log- intensity measurements were combined by using a nonlinear function, to cancel out the soft tissue structures and generate the dual energy bone Ca/P mass ratio. The dual-energy simulated data were obtained using variable Ca and PO4 thicknesses on a fixed total tissue thickness. The XDEM simulations were based on a bone phantom. Inverse fitting functions with least-squares estimation were used to obtain the fitting coefficients and to calculate the thickness of each material. The examined inverse mapping functions were linear, quadratic, and cubic. For every thickness, the nonlinear quadratic function provided the optimal fitting accuracy while requiring relative few terms. The dual-energy method, simulated in this work could be used to quantify bone Ca/P mass ratio with photon-counting detectors.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/633/1/012126