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Abstract. Transparent and conducting tin oxide fibers are of considerable interest for solar energy conversion, 

sensors and in various electrode applications. Appropriate doping can further enhance the conductivity of the 

fibers without loosing optical transparency. Undoped and antimony-doped tin oxide fibers have been synthesized 

by our group in previous work using electrospinning and metallorganic decomposition techniques. The undoped 

tin oxide fibers were obtained using a mixture of pure tin oxide sol made from tin (IV) chloride : water : 

propanol : isopropanol at a molar ratio of 1:9:9:6, and a viscous solution made from poly(ethylene oxide) (PEO) 

and chloroform at a ratio of 200 mg PEO/10 mL chloroform. In this work, antimony doped fibers were obtained 

by adding a dopant solution of antimony trichloride and isopropanol at a ratio of 2.2812 g antimony 

trichloride/10 ml isopropanol to the original tin oxide precursor solution. The Sb concentration in the precursor 

solution is 1.5%. After deposition, the fibers were sintered 600°C in air for two hours. The electrical 

conductivity of single fibers measured at room temperature increases by up to three orders of magnitude when 

compared to undoped fibers prepared using the same method. The resistivity change as a function of the 

annealing temperature can be attributed to the thermally activated formation of a nearly stoichoimetric 

solid.  The resistivity of the fibers changes monotonically with temperature from 714 Ω-cm at 2 K to 0.1 Ω-cm 

at 300 K. In the temperature range from 2 to 8 K the fibers have a positive magnetoresistance (MR) with the 

highest value of 155 % at 2 K and ±9 T.  At temperatures of 10 and 12 K the sign of MR changes to negative 

values for low magnetic fields and positive for high magnetic fields.  For higher temperatures (15 K and above) 

the MR becomes negative and its magnitude decreases with temperature.  

  

1.  Introduction 

Metal oxide nanostructures are of considerable interest for the development of nanoelectronic devices 

and gas sensors.  Of these metal oxides, tin oxide is interesting because it is a binary semiconducting 

oxide with a large bandgap (Eg=3.6 eV) that can be modulated using of a doping material.  It is an 

ideal candidate for gas sensing applications since its conductivity changes considerably when exposed 

to a reducing gas [1-5].  The sensitivity of tin oxide is expected to increase when it is in the form of 

fibers due to the increase in the surface to volume ratio.  As the active element in chemical or 

biological sensors, metal oxide one-dimensional nanostructures can be configured either as resistors 
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whose conductance is altered by charge-transfer processes occurring at their surfaces or as field-effect 

transistors whose properties can be controlled by applying an appropriate potential to its gate [6].  

Sensors based on SnO2 wires on these configurations have been reported [7-10] with good electrical 

and photoconduction properties. Several dopants have been studied to enhance the electrical properties 

of tin oxide while maintaining the optical characteristics. Many reports have been made of the use of 

antimony as tin oxide dopant, particularly thin films [11, 12].   

Of the methods used to fabricate metal oxide nanostructures, electrospinning is especially 

interesting in that it is easy and inexpensive.  The electrospinning technique was invented in the 1930s 

[13], and was rediscovered about a decade ago to synthesize ultrafine polymer fibers.  In a previous 

work, our group obtained a fluid with the appropriate viscosity to electrospun fibers using a pure SnO2

solution mixed with a poly(ethylene oxide) (PEO)/chloroform (CHCl3) solution at an appropriate ratio 

[14].  Then simple thermal decomposition yielded SnO2 fibers.  In a subsequent research, antimony 

was added as a dopant with the objective of increasing the conductivity of the fibers.  For the doping, 

our original tin oxide precursor solution was modified by removing the water of the previous solution 

and adding a solution made from antimony trichloride (SbCl3) and isopropanol (2-C3H7OH).  The 

fibers electrospun with this precursor solution were followed by a heat treatment for two hours at 

600°C to produce the antimony doped tin oxide (ATO) fibers.  The electrical conductivity of the ATO 

fibers increases by three orders of magnitude when compared to the undoped fibers fabricated using 

the same method [15].  

In this work further characterization of the electrospun ATO nanofibers is performed to study the 

electrical properties of the fibers at low temperatures from 300 down to 2 K.  The resistivity of the 

fibers is measured without and in the presence of a transverse magnetic field that varies form – 9 T to 

9 T and the magnetoresistance of the fibers is studied for the temperature range from 2 K to 40 K. 

2.  Experimental 

The fibers were fabricated using a precursor solution based on a pure SnO2 sol made using tin (IV) 

chloride anhydrous SnCl4 (ACROS Organics), propanol (C3H7OH, Fisher Scientific), and isopropanol 

(2-C3H7OH, Fisher Scientific) at a molar ratio of 1:9:6.  To reach the appropriate viscosity for the 

electrospinning process the SnO2 solution was mixed with a viscous solution made from poly(ethylene 

oxide) (PEO) ([-CH2CH2O-]n molecular weight 900,000, Aldrich) and chloroform (CHCl3, Sigma) at 

a ratio of 200 mg PEO/10 mL CHCl3.  The details of this process are described elsewhere [14].  The 

doping solution was made from 2.2812 g of antimony trichloride (SbCl3) dissolved in 10 mL of 

isopropanol (SbCl3).  All three solutions are combined in a volume ratio of 1:1.5:0.5 [15].   

The electrospinning was done at room temperature using a homemade setup reported in detail 

previously [16].  Single crystal silicon wafers with an oxidized surface layer of 150 nm in thickness 

were used as substrates to collect single fibers.  The samples were sintered at 600°C in air for two 

hours using a Sentry 2.0 Digital Temperature Controller made by Paragon Industries, Inc.  The 

sintered fibers were observed under a JEOL JSM-6360 scanning electron microscope (SEM).  The 

height and horizontal diameter of the fibers were measured using an Alpha Step 500 Tencor 

profilometer.  A Digital Instruments Dimension 3000NS-III atomic force microscope (AFM), operated 

in tapping mode, was used to record the height and amplitude images of the fibers as data files. Offline 

image processing software was used to obtain the average cross-section profile, from which the cross-

section area was evaluated.  The electrodes for the electrical measurements were made by evaporating 

silver over a metallic grid. Then the grid was removed and the connections were made using gold 

wires and silver paint.  

Electronic transport properties were measured using a Model 6000 Physical Measurement System 

by Quantum Inc, equipped with a Keithley 237 high-voltage source measurement unit. The resistance 

of a single fiber was measured using a four point probe setup without any applied magnetic field at 

temperatures from 300 K down to 2 K and back to 300 K.  Each voltage sweep was repeated three 

times.  Then, the current was measured while the applied magnetic field was increased or decreased 
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continuously between -9 T to 9 T.  To suppress possible heating effects, the total measuring power 

was limited to 50 nW.   

3.  Results 

The I/V curves for the ATO fibers with no magnetic field applied and for temperatures 300 K down to 

2 K demonstrated the ohmic nature of the contacts as shown in figure 1.  The resistance of the fibers 

was obtained from the slope of I/V curves.  The corresponding resistivity ρ was calculated using the 

resistance R,   the length l, and cross sectional area A for the fibers as ρ = RA/l. 
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Fig 1 I-V characteristics of single ATO fiber in the a) lower and b) higher temperature limits, showing 

ohmic behaviour 

Figure 2 shows the temperature dependence of the fiber’s resistivity from 300 K to 2 K.  The 

resistivity decreases monotonically with increasing temperature from 714 Ω-cm at 2 K to 0.1 Ω-cm at 

300 K.  These values are comparable to those reported on literature for a low percentage of antimony 

doping [11, 17]. The conductivity is expected to increase with the addition of more antimony. 
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Figure 2 Temperature dependence of resistivity of ATO electrospun fiber 
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The magnetoresistance (MR) of ATO fibers were studied as shown on figure 3. The MR at low 

temperatures (2 K to 6 K) is positive, increases with decreasing temperature, and has a maximum 

value of 155 % at a magnetic field of ± 9 T. At 8 K the MR is small and negative for magnetic fields 

smaller than ± 4 T and becomes high and positive for higher magnetic field values. At 10 K the MR is 

negative for magnetic field values of ± 8 T or lower and becomes positive for higher magnetic fields. 

At 12 K the MR is negative for all magnetic fields.  For higher temperatures, MR remains negative 

and its magnitude decreases with increasing temperature. These results differ from those reported by 

Kimura et. al. [17] in their study of Sn1-xMnxO2:Sb films. They measured negative and small MR 

values for SnO2:Sb films for the range of 5 K to 50 K. They obtain positive MR only with the addition 

of Mn. In a related work with Mn doped ZnO Fukumura et. al. [18] reports a switch in the sign of the 

MR similar to our results. Switching signs is attributed to Mn doping providing localized spins 

interacting with conducting carriers in ZnO. Currently, our group is conducting more research to better 

explain this behavior in our ATO nanofibers. 
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Figure 3 MR measurements a) positive MR for temperature of 2, 4, and 6 K b) switching in MR sign 

for temperatures of 8, 10 and 12 K c) negative MR for temperatures higher than 12 K. 

4.  Conclusions 
  

ATO fibers produced by electrospinning and subsequent heat treatment at 600°C have a monotonically 

decreasing temperature dependence of resistivity that varies from 714 Ω-cm at 2 K to 0.1 Ω-cm at  

300 K.  In the temperature range from 2 to 8 K the fibers have a positive MR with the highest value of 
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155 % at 2 K and ±9 T. A switch on the sign of MR appears at 8 and 10 K, when the MR is negative 

for small and positive for large magnetic fields. After 10 K, the MR is negative for all magnetic fields. 

Further experiments are being conducted to explain this behavior. 
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