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Abstract. Recent results are reported showing the effects of thermal pairing in highly excited
nuclei. It is demonstrated that thermal pairing included in the phonon damping model
(PDM) is responsible for the nearly constant width of the giant dipole resonance (GDR) at
low temperature T < 1 MeV. It is also shown that the enhancement observed in the recent
experimentally extracted nuclear level densities in 104Pd at low excitation energy and various
angular momenta is the first experimental evidence of the pairing reentrance in finite (hot
rotating) nuclei. In the study of GDR in highly excited nuclei, the PDM has been extended
to include finite angular momentum. The results of calculations within the PDM are found in
excellent agreement with the latest experimental data of GDR in the compound nucleus 88Mo.
Finally, an exact expression is derived to calculate the shear viscosity η as a function of T in
finite nuclei directly from the GDR width and energy at zero and finite T . Based on this result,
the values η/s of specific shear viscosity in several medium and heavy nuclei were calculated
and found to decrease with increasing T to reach (1.3 − 4) × h̄/(4πkB) at T = 5 MeV, that is
almost the same value obtained for quark-gluon-plasma at T > 170 MeV.

1. Introduction
Superfluid pairing plays an important role in the study of nuclear structure. In infinite systems
the pairing gap ∆ vanishes at a temperature Tc ' 0.567∆(T = 0), which is the critical
temperature of the superfluid-normal (SN) phase transition. In deformed nuclei, the Coriolis
force, which breaks the Cooper pairs, increases with the total angular momentum up to a certain
critical angular momentum Jc, where all Cooper pairs are broken and the nucleus undergoes
the SN phase transition, as suggested by the Mottelson-Valatin effect [1]. The combination of
temperature and angular momentum effects causes the pairing reentrance phenomenon, which
was predicted 50 years ago by Kammuri [2]. The physical interpretation of this phenomenon
was given by Moretto [3] as follows. In spherical nuclei at T = 0, the total angular momentum
J is made up by the nucleons from the broken pairs, which occupy the single-particle levels
around the Fermi surface and block them against the scattered pairs. As J increases, more
levels around the Fermi surface are blocked, which make the pairing correlations decrease until
a sufficiently large total angular momentum Jc, where the pairing gap ∆ completely vanishes
in infinite systems. The increase of T spreads the quasiparticles, which occupy the levels near
the Fermi surface, farther away from it. Some levels become partially unoccupied, which are
available for scattered pairs. As the result, when T reaches a critical value T1, the pairing
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correlations are energetically favored, and the pairing gap reappears. As T goes higher, the
increase of a large number of quasiparticles quenches and eventually breaks down the pairing
gap at T2 (> T1).

It is now well known that, because of thermal fluctuations in finite nuclei, the paring gap does
not vanish at T ≥ Tc and/or Jc, but moronically decreases with increasing T and/or J . The
pairing reentrance in finite nuclei is also modified so that the pairing gap remains finite after
its first reappearance at finite T and J . It has been shown within the phonon damping model
(PDM) [4] that the presence of a thermal pairing gap at T > Tc makes the width of the giant
dipole resonance (GDR) remain nearly unchanged at low temperatures (T ≤ 1 MeV) in heavy
nuclei. This lecture will show the most recent experimental facts that support this mechanism.
It also demonstrates that the recently observed enhancement of the nuclear level densities [5, 6]
is a clear evidence of pairing reentrance in 104Pd [7]. In the description of the GDR width in hot
rotating nuclei, the PDM has been extended to include the effect of angular momentum [8]. It
will be shown that the predictions of the PDM agree well with the latest experimental data for
the GDR in highly excited 88Mo. Finally, the GDR widths and energies predicted by the PDM
and experimentally extracted are also used to calculate the shear viscosity of finite hot nuclei.

2. Pairing reentrance in hot rotating nuclei
The pairing pairing Hamiltonian for a spherical system rotating about the symmetry z axis,
where the total angular momentum J is completely determined by its z-projection M alone,

has the form H =
∑

k εk(a†+ka+k +a†−ka−k)−G
∑

kk′ a
†
ka
†
−ka−k′ak′ −λN̂ −ωM̂ , where a†±k(a±k)

are the creation (annihilation) operators of a particle (neutron or proton) in the k-th state,
whereas εk, λ and ω are the single-particle energies, chemical potential and rotation frequency
for an axially deformed system, respectively. This Hamiltonian was used to derive the
FTBCS1 equations including the effect of angular momentum [9], which consist of a set of
FTBCS (finite-temperature BCS) -based equations, corrected by the effects of quasiparticle-
number fluctuations. The FTBCS1 equation for the pairing gap is written as a sum of the
level-independent term ∆ and level-dependent term δ∆k as ∆k = ∆ + δ∆k , where ∆ =
G
∑

k′ uk′vk′(1− n+k′ − n
−
k′), δ∆k = GδN 2

k ukvk/(1−n
+
k −n

−
k ), u2k =

[
1 + (εk −Gv2k − λ)/Ek

]
/2,

v2k =
[
1− (εk −Gv2k − λ)/Ek

]
/2, Ek =

√
(εk −Gv2k − λ)2 + ∆2

k, n±k = [1 + e(Ek∓ωmk)/T ]−1.

with the quasiparticle-number fluctuations δN 2
k = (δN+

k )2 + (δN−k )2 = n+k (1 − n+k ) +
n−k (1 − n−k ). The equations for the particle number and total angular momentum are N =

2
∑

k

[
v2k(1− n+k − n

−
k ) + 1

2(n†k + n−k )
]
, M =

∑
kmk(n+k −n

−
k ), respectively, with ±mk being the

angular momentum projection quantum number. Although the sums run over all neutron and
proton single-particle levels respectively, only the levels close to the Fermi surface give dominant
contributions. For the levels far from the Fermi surface, uk ' 1 (0) and vk ' 0 (1) so that
ukvk are small. By solving these FTBCS1 equations, one can easily calculate the total energy
E and entropy S of the system, from which the level density ρ(E ,M) is calculated by using
the invert Laplace transformation of the grand partition function [10]. The total level density
ρ(E) of a system with the total energy E is a sum of J-dependent level densities (densities of
states), namely ρ(E) =

∑
J(2J + 1)ρ(E , J). The J-dependent level density ρ(E , J) is calculated

by differentiating ρ(E ,M), that is ρ(E , J) = ρ(E ,M = J)− ρ(E ,M = J + 1) .
Recently, a series of measurements has been conducted at the Bhabha Atomic Research

Center for the reaction 12C + 93Nb → 105Ag∗ → 104Pd∗ + p at the projectile energy E(12C) =
40 - 45 MeV [5, 6]. In these experiments the exclusive proton spectra in coincidence with a
γ-ray multiplicity detector array reveal broad structures at higher multiplicities and energies.
The obtained spectra including these broad structures can be fitted by using the statistical
model only after multiplying the phenomenological level densities for 104Pd by an enhancement
function, which depends on excitation energy and angular momentum. It has been suggested in
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Figure 1. (Color online) Level-weighted pairing gaps ∆ for neutrons (a) and protons (b)
as well as the level densities (c – f) for 104Pd obtained within the FTBCS and FTBCS1 as
functions of excitation energy E∗ at deformation parameter β2 = 0.276 for different values of
angular momentum J . In (a) and (b) the thin and thick lines denote the FTBCS and FTBCS1
pairing gaps, respectively. In (c) – (f), the dotted and dashed lines stand for the level densities
(2J + 1)ρ(E , J) predicted by the FTBCS and FTBCS1, respectively, whereas the solid lines are
the empirical level densities (See Refs. [5, 6, 7] for details).

Ref. [6] that this enhancement might come from the pairing reentrance.
The level-weighted pairing gaps ∆ ≡

∑
k ∆k/N (with N being the sum of all levels) obtained

within the conventional FTBCS show no pairing reentrance. The FTBCS neutron and proton
gaps shown in panels (a) and (b) of Fig. 1 decrease with increasing E∗ (or T ) and collapses at
some E∗c , whose value decreases as J increases. At the same time, the FTBCS1 gaps do not
vanish at E∗ > 0. At J < 20h̄ they decrease monotonically as E∗ increases and remain finite
even at E∗ > 15 MeV. The pairing reentrance shows up at J ≥ 20h̄ for neutrons and at J ≥ 30h̄
for protons, where the gaps first increase with E∗ then decrease as E∗ increases further but do
not vanish even at high E∗. Since this pairing reentrance takes place at rather high values of J ,
where the pairing gaps already vanish within the FTBCS, its origin resides in the quasiparticle
number fluctuations δN 2

k in the FTBCS1 gap equation.
Our preliminary calculations in Ref. [7] show that the corresponding level densities obtained

within the FTBCS are smooth for all values of E∗ and J , whereas those predicted by the
FTBCS1 have a local enhancement at 2 < E∗ < 4.5 MeV for all values of J under consideration.
For β2 = 0.276, the FTBCS1 predictions agree fairly well with the empirical level densities
obtained at J ≤ 30h̄ [See Figs. 1 (c) – 1 (f)]. For β2 = −0.3, a better agreement between
theoretical predictions and empirical level densities is seen at J > 30h̄ (not shown). The fact
that theoretical and empirical level densities agree well for J ≤ 30h̄ at β2 = 0.276, and for J >
30h̄ at β2 = −0.3 is a clear indication of a transition from a prolate shape at J ≤ 30h̄ to an
oblate shape at higher J .

3. Damping of GDR in highly excited nuclei
The PDM Hamiltonian includes the independent single-particle (quasiparticle) field, GDR
phonon field, and the coupling between them [4]. The single-particle energies εk are obtained
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Figure 2. GDR width predicted within the PDM as a function of temperature for 201Tl,
208Pb (a) and 97Tc (b). In (a) the dotted and solid lines denotes the GDR width in 208Pb
and 201Tl, respectively. The corresponding experimental data are shown as open boxes and full
circles, respectively [12]. In (b) the PDM prediction (dash-dotted line) is compared with the
experimental data and predictions of the thermal shape fluctuation model (TSFM) with shell
effect (dotted lines) and without shell effect (dashed lines) for J = 0h̄ (lower) and J = 30h̄
(upper) as well as those of the phenomenological model (continuous lines) for J = 10h̄ (lower)
and J = 20h̄ (upper) (See Ref. [11] for details).

within the Woods-Saxon potentials. The GDR width Γ(T ) consists of the quantal width, ΓQ,
and thermal width, ΓT, as Γ(T ) = ΓQ +ΓT. Including thermal pairing, the quantal and thermal

widths are given as ΓQ = 2γQ(EGDR) = 2πF 2
1

∑
ph[u

(+)
ph ]2(1 − np − nh)δ[EGDR − Ep − Eh] ,

and ΓT = 2γT (EGDR) = 2πF 2
2

∑
s>s′ [v

(−)
ss′ ]2(ns′ − ns)δ[EGDR − Es + Es′ ] , where u

(+)
ph =

upvh + uhvp, v
(−)
ss′ = usus′ − vsvs′ (ss′ = pp′, hh′), nk are quasiparticle occupations numbers,

which are well approximated with the Fermi-Dirac distribution for independent quasiparticles,
nk = [exp(Ek/T ) + 1]−1. The parameter F1 is chosen so that ΓQ at T = 0 is equal to
GDR’s width at T = 0, whereas the parameter F2 is chosen so that, with varying T , the GDR
energy EGDR does not change significantly. The latter is found as the solution of the equation
EGDR − ωq − Pq(EGDR) = 0, where ωq is the energy of the GDR phonon before the coupling
between the phonon and single-particle mean fields is switched on, and Pq(ω) is the polarization
operator owing to this coupling (Its expression is given in Ref. [4]). The GDR strength function
is found as Sq(ω) = (1/π)[γQ(ω)+γT (ω)]/{(ω−EGDR)2+[γQ(ω)+γT (ω)]2} . The representation
δ(x) = limε→0 ε/[π(x2+ε2)] is used for the δ-function with ε = 0.5 MeV in numerical calculations.
The GDR widths predicted by the PDM, thermal shape fluctuation model (TSFM), and the
phenomenological model called critical temperature included fluctuation model (CTFM) are
shown in Fig. 2 in comparison with the experimental systematics for 97Tc [11], 201Tl [12], and
208Pb [13]. The PDM results for open shell nuclei include the effect of non-vanishing thermal
pairing gap owing to thermal fluctuations in finite nuclei. The PDM is the only up-to-date semi-
microscopic model that is able to describe well the experimental data in the entire temperature
region including T ≤ 1 MeV as well as high T , where the GDR width seems to saturate.

To describe the non-collective rotation of a spherical nucleus, the z-projection M of the total
angular momentum J is added into the PDM Hamiltonian as −γM̂ , where γ is the rotation
frequency [8]. The latter and the chemical potential are defined, in the absence of pairing, from
the equation M =

∑
kmk(f+k −f

−
k ) , and N =

∑
k(f+k +f−k ) , where N is the particle number and

f±k are the single-particle occupation numbers, f±k = 1/[exp(βE∓k )+1], and E∓k = εk−λ∓γmk .
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Figure 3. PDM predictions for the GDR line shapes in 88Mo (solid lines) in comparison with
the experimental data at the beam energies of 300 MeV (a) and 600 MeV (b), which correspond
to the average temperatures of 2.04 and 3.06 MeV, respectively. The average angular momentum
is equal to 38h̄ (Adapted from Figs. 5.5 and 5.6 of Ref. [14]. Also see Ref. [15] for details of
theoretical calculations).
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Figure 4. Shear viscosity η(T ) [(a) and (b)] and ratio η/s [(c) and (d)] as functions of T for
nuclei in tin [(a) and (c)], and lead [(b) and (d)] regions. The gray areas are the PDM predictions
by using 0.6u ≤ η(0) ≤ 1.2u with u = 10−23 Mev s fm−3(See Ref. [17] for details).

The prediction of the PDM for the GDR line shape agrees remarkably well with the latest
experimental date for 88Mo at high T and J [14], as shown in Fig. 3.

4. Shear viscosity of hot nuclei
For the application of hydrodynamics to nuclear system, the quantum mechanical uncertainty
principle requires a finite viscosity for any thermal fluid. Kovtun, Son and Starinets (KSS) [16]
conjectured that the specific viscosity, which is the ratio η/s of shear viscosity η to the entropy
volume density s, is bounded at the lower end for all fluids by the universal value, which is called
the KSS bound (or unit), η/s = h̄/(4πkB).

According to collective theories, one of the fundamental explanations for the giant resonance
damping is the friction term (viscosity) of the neutron and proton fluids. By using the Green-
Kubo’s relation, Ref. [17] expresses the shear viscosity η(T ) at finite T in terms of the GDR’s
energies and widths at zero and finite T as

η(T ) = η(0)
Γ(T )

Γ(0)

EGDR(0)2 + [Γ(0)/2]2

EGDR(T )2 + [Γ(T )/2]2
. (1)

The predictions for the shear viscosity η and the specific viscosity η/s by several theoretical
models for 120Sn and 208Pb are plotted as functions of T in Fig. 4 in comparison with the
empirical results. The latter are extracted from the experimental systematics for GDR in tin
and lead regions [13] making use of Eq. (1). It is seen from Fig. 4 that the predictions by
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the PDM agree best with the empirical results. The ratio η/s decreases sharply with increasing
T up to T ∼ 1.5 MeV, starting from which the decrease gradually slows down to reach (2 - 3)
KSS units at T = 5 MeV. The fermi-liquid drop model (FLDM) has a similar trend up to T ∼
2 - 3 MeV, but at higher T (T > 3 MeV for 120Sn or 2 MeV for 208Pb) both η and η/s with T
sharply increase. At T = 5 MeV the FLDM model predicts the ratio η/s within (3.7 - 6.5) KSS
units, that is roughly 1.5 – 2 times larger than the PDM predictions. The TSFM in two versions
as adiabatic model (AM) and phenomenological TSFM (pTSFM) show a similar trend for η
and η/s, provided η(0) in the pTSFM calculations is reduced to 0.72u. However both versions
of TSFM overestimate η at T < 1.5 MeV. Based on these results and on a model-independent
estimation, it is concluded that the PDM predicts 1.3 ≤ η/s ≤ 4 KSS units for medium and
heavy nuclei at T = 5 MeV. This is about (3 - 5) times smaller (and of much less uncertainty)
than the value between (4 - 19) KSS units predicted by the FLDM for heavy nuclei [18], where
the same lower value η(0) =0.6u was used.

5. Conclusions
This lecture has confirmed that thermal pairing included in the phonon damping model (PDM)
is indeed responsible for the nearly constant width of the giant dipole resonance (GDR) at low
temperature T < 1 MeV. It also demonstrates that the enhancement, which has been observed in
the recent experimentally extracted nuclear level densities in 104Pd at low excitation energy and
various angular momenta, is the first experimental evidence of the pairing reentrance in finite
(hot rotating) nuclei. The extension of the PDM to finite angular momentum offers predictions
in excellent agreement with the latest experimental data of GDR in the compound nucleus 88Mo.
The specific shear viscosity η/s in several medium and heavy nuclei is calculated from the GDR
widths and energies at zero and finite temperatures and found to decrease with increasing T
to reach (1.3 − 4) × h̄/(4πkB) at T = 5 MeV, which is almost the same value obtained for
quark-gluon-plasma at T > 170 MeV.

The calculations were carried out on the RIKEN Integrated Cluster of Clusters (RICC)
system. Thanks are due to M. Ciemala for permission to use the experimental GDR line shapes
in 88Mo [14].
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