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Abstract. The Worldwide LHC Computing Grid (WLCG) today includes more than 150 
computing centres where more than 2 million jobs are being executed daily and petabytes of 
data are transferred between sites. Monitoring the computing activities of the LHC 
experiments, over such a huge heterogeneous infrastructure, is extremely demanding in terms 
of computation, performance and reliability. Furthermore, the generated monitoring flow is 
constantly increasing, which represents another challenge for the monitoring systems. While 
existing solutions are traditionally based on Oracle for data storage and processing, recent 
developments evaluate NoSQL for processing large-scale monitoring datasets. NoSQL 
databases are getting increasingly popular for processing datasets at the terabyte and petabyte 
scale using commodity hardware. In this contribution, the integration of NoSQL data 
processing in the Experiment Dashboard framework is described along with first experiences 
of using this technology for monitoring the LHC computing activities. 

1.  Introduction 
The Large Hadron Collider (LHC) [1] experiments have been collecting data for three years. The data 
are distributed, processed and analysed at more than 150 grid and cloud sites in nearly 40 countries 
distributed around the world and contained within the Worldwide LHC Computing Grid (WLCG) 
collaboration [2]. The total throughput of data transfer is more than 6 GB/s and, at any given time, 
there are more than 250000 concurrent jobs running and in excess of two million jobs submitted on a 
daily basis. 

This highly distributed infrastructure is also heterogeneous with multiple middleware flavours, job 
submission and execution frameworks, and several methods of transporting and accessing the data. 
The large scale activity and heterogeneity of the WLCG increases the level of complexity of the 
system and, thus, increases the probability of failures or inefficiencies arising. Effective monitoring is 
essential for providing a comprehensive way to identify and address any issues within such a highly 
distributed and heterogeneous infrastructure. It is also a key factor in the effective utilisation of the 
system. 

Significant effort has been invested within the Experiment Dashboard [3][4] project to ensure 
effective and flexible monitoring. The Experiment Dashboard system is a Python-based framework 
that provides the building blocks for the development of grid monitoring applications. It provides 
generic solutions that cover the full range of experiments’ computing activities, such as data 
distribution and processing over a large number of sites. These solutions are extensively used by 
different categories of High Energy Physics (HEP) users, ranging from daily operations to resource 
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management, as evidenced by more than 2500 unique visitors per month. This amounts to a total of 7 
TB of monitoring data since 2010. 

The Experiment Dashboard must be able to handle the ever-increasing amount of monitoring data 
that it receives. This paper evaluates NoSQL technologies as the data storage technology for the 
Experiment Dashboard. Two main use-cases were evaluated: 

  
• Applications that require grouping of data by multiple fields. 
• Applications that group data by a single field. 

 
The current work is not intended as a technology benchmark, it is purely a comparison between the 

performance of the existing Oracle cluster provided by CERN and potential alternative solutions. Only 
use-cases that are relevant to the Experiment Dashboard applications were evaluated. 

2.  Evaluation of NoSQL solutions within the Experiment Dashboard 
The evaluation of NoSQL solutions within the Experiment Dashboard was aided by the fact that the 
Web User Interfaces (UIs) are decoupled from the data storage implementation, thus, it is irrelevant 
whether the data back-end is implemented in Oracle, MySQL, any NoSQL solution or even a simple 
file on the user’s hard disk, provided the information that is being passed to the Web User Interface is 
in the predefined format. 

There are many different technologies to consider as an alternative to Oracle, depending on the data 
schema and the use-case of the application. For data with a lot of dependencies between data objects, 
an alternative open source Relational Database Management System (RDBMS), such as MySQL and 
PostgreSQL, would be the perfect candidate. For simpler schemas with few or no dependencies 
between data objects, employing a NoSQL solution would be a reasonable approach. There are a wide 
variety of options in the NoSQL world but it was decided to evaluate two solutions; Hadoop / HBase 
[5] and Elasticsearch [6]. This decision was driven largely by a desire to conform to the common 
strategy of the CERN IT department [7][8], and to avoid relying on experimental solutions which lack 
official long-term support within the department. 

The cluster specifications are illustrated in figure 1. Oracle runs on a high-performance physical 
setup and it is a shared service between all of the Experiment Dashboard applications and other IT 
applications, whereas Elasticsearch and Hadoop run on virtual machines. Oracle tests were performed 
under considerable load in a multi-user environment while Elasticsearch and Hadoop had few users. It 
is worth noting that the ‘parallel’ execution hint in Oracle was not used during the benchmark as it is 
not recommended by the CERN Database Administration team for use on a shared service. 

 

 
Figure 1. Cluster specifications. 

2.1.  Job Accounting 
Job processing data are visualised in the job accounting dashboard [9]. The application is used by a 
wide variety of users within the ATLAS and CMS collaborations [10] to mine long-term job statistics. 
It offers time-series data plus filtering and grouping by multiple fields. 
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2.1.1.  HBase. 8 million rows of data were imported into HBase (equivalent to a ~2.4 GB CSV file). 
The HBase key uniquely identifies a record and comprises 10 columns from the original Oracle table 
concatenated into a string and separated by the underscore sign (‘_’). An HBase record also consists of 
52 columns that belong to one HBase column family.  

The HBase key is prefixed with a date timestamp in the format of ‘YYYYMMDD’ because the 
queries are always performed on the time range and data need to be accessed in a time-ordered way. 
Importing and querying time series data in HBase can be quite problematic, firstly because HBase is 
optimised for random read access and secondly because the inserted data result in monotonically 
increasing row-keys, preventing the full leverage of parallelism. Many alternatives were considered in 
order to overcome this issue. Initially, a shard identifier was prefixed at the beginning of the key (date 
timestamp modulo number of region servers) but this approach becomes problematic in the case of 
performing queries over long time-ranges, as prefixing and un-prefixing the values is required with the 
results being joined in memory. Another alternative would be to replicate data proportionally to the 
number of columns in the HBase key but this approach was considered too expensive as data would 
have to be replicated 10 times. 

Since the Experiment Dashboard framework is written in Python, a decision was made to use 
HappyBase, a high-level Python library for interacting with HBase, in preference to the native Java 
client. The THRIFT [11] interface was used instead of the Stargate Representational state transfer 
(REST) [12] interface as REST is considerably slower than THRIFT because it carries over the 
schema definition along with the data either in XML or JSON format. THRIFT uses a different 
approach; it returns a chunk of bytes that can then only be deserialised against a generated entity 
(based on the THRIFT IDL definition). Below the surface, HappyBase uses the Python THRIFT 
library to connect to HBase via the THRIFT gateway, which is included in the latest HBase releases. 

The initial scanning results using the default HBase cluster configuration parameters were 
surprisingly slow and thus, the following optimisations were performed: 

 
• Increased the number of Remote Procedure Call (RPC) Server instances spun up on 

RegionServers from 1 to 100. 
• Increased the number of rows to fetch when calling next on a scanner if it is not served 

from memory from 1 to 1000. 
• Increased the size of the memstore that will be flushed to disk if the size of the memstore 

exceeds this value from 128 MB to 256 MB. 
• Decreased the size of the maximum HStoreFile size from 1 GB to 256 MB. 
• Increased the percentage of the maximum heap (-Xmx setting) to allocate to block cache 

used by HFile/StoreFile from 25% to 30%. 
• Increased the number of RPC Server instances spun up on the HBase Master from 25 to 

100. 
• Forced HBase to write the checksum into the datablock and avoid having to do the 

checksum seek whenever a read is performed. 
 

A comparison between Oracle and HBase is shown in table 1. Scans over many time ranges were 
performed, with and without filters. The column with the grouped Oracle benchmark corresponds to 
the query performed on the Dashboard production server when Oracle returns back the grouped results 
that are then exposed in the visualisation / user-interface layer. During the course of the tests HBase 
Coprocessors were not used to aggregate the results, and a fair comparison between Oracle and HBase 
was required, the same Oracle scans were executed but this time without performing any grouping. 
The performance benchmark shows that for the application’s use-case, Oracle is many times faster 
than HBase with time-series data. 

2.1.2.  Elasticsearch. Elasticsearch was suggested as an alternative by the CERN Agile Infrastructure 
(AI) Monitoring team. It is a flexible and powerful open source, distributed real-time search and 
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analytics engine built on top of Apache Lucene designed to provide high availability. Tests with 
Elasticsearch were conducted using the same amount of data as for HBase. Table 2 shows that over 
many different scan time ranges, with or without any filters, Elasticsearch outperforms Oracle. 
However, there are some limitations on Elasticsearch’s ability to group data that are described in 
section 2.2. 

 

 
 

Table 1. Job Accounting: Oracle VS HBase. 

Scan type Oracle 1st hita (grouping) Oracle 1st hita 
(no grouping) 

HBase 
(no grouping) 

Period Filter Time in secs. Avg. rows Time in secs. Avg. 
Rows 

Time in 
secs. 

Avg. rows 

1 day 0 0.031 116 0.61 10K 2.13 10K 
1 week 0 0.2 807 4.54 70K 13.49 70K 
1 month 0 0.956 3.6K 59.03 337K 88.26 337K 

1 day 1 0.013 13 0.019 144 0.206 144 
1 week 1 0.018 98 0.074 1K 0.977 1K 
1 month 1 0.101 431 0.473 5.4K 2.25 5.4K 

1 day 2 0.010 5 0.010 28 0.20 28 
1 week 2 0.013 28 0.021 178 0.681 178 
1 month 2 0.055 123 0.122 925 1.692 925 

a “1st hit” implies scanning without using the Oracle cache. 

Table 2. Job Accounting: Oracle VS Elasticsearch. 

Scan type Oracle 1st hita  Elasticsearch  
Period Filter Avg. rows Time in secs. Time in secs. 
1 day 0 116 0.031 0.017 

1 week 0 807 0.2 0.118 
1 month 0 3.6K 0.956 0.138 
2 months 0 7K 2.27 0.160 

1 day 1 13 0.013 0.016 
1 week 1 98 0.018 0.021 
1 month 1 431 0.101 0.056 
2 months 1 864 0.16 0.062 

1 day 2 5 0.010 0.003 
1 week 2 28 0.013 0.004 
1 month 2 123 0.055 0.031 
2 months 2 259 0.101 0.097 

a “1st hit” implies scanning without using the Oracle cache. 
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2.2.  WLCG Transfers 
The WLCG Transfers application [13] is extensively used to monitor the data transfers occurring 
within the WLCG collaboration and it mainly offers two possibilities:  
 

• Matrix statistics that allow filtering and grouping by multiple fields. 
• Plot statistics that are time series data and allow filtering and grouping by multiple fields. 

 
A small benchmarking test was performed directly on the Hadoop cluster, thus eliminating any 

delay of transferring data from the cluster to the server where the client was running, the results of 
which can be seen in table 3. It shows that querying HBase directly using a native Java client is many 
times faster than going through the THRIFT interface with Python. 

 
Table 3. HBase scan comparison between 
native Java and THIFT. 

# records Native Java 
Client 

THRIFT 
Client 

69K 0.629 secs 11.04 secs 
 

Given the poor performance on HBase with time series data, it was decided to evaluate the WLCG 
Transfers application’s performance on Elasticsearch. 1 month’s worth of data statistics (July 2013) 
were imported in 10 minute bins from the WLCG Transfers application, comprising 12.8 million rows 
and approximately 2.9 GB of CSV file. 

The current version of Elasticsearch (0.90.5) does not support grouping by multiple fields for 
statistical aggregations, but this will be supported in version 1.0. Since the WLCG Transfers 
application offers grouping by multiple fields, many workarounds were investigated, resulting in the 
following options: 

 
• Oracle Grouping (OG). Query using ‘group by’ for user selected grouping fields. 
• Elasticsearch No Grouping (ENG). Query for all data and then perform the grouping in the 

web action from the Python side. 
• Elasticsearch Index Grouping (EIG). Add a single field in index with all possible grouping 

fields concatenated as strings. 
• Elasticsearch Query Grouping (EQG). Query to list number of distinct combinations of 

selected grouping fields and then query that many times, filtering by distinct combinations. 
 
In figure 2, the comparison between Oracle 1st hit (un-cached result) and Elasticsearch for the plot 

and the matrix loading times can be seen. ENG is much faster than Oracle for small row counts but it 
won’t scale with bigger row counts as large volumes of data have to be transferred from the 
Elasticsearch cluster to the client over the network. EIG is faster than Oracle in all cases but is 
inflexible. For example, if grouping by a new field is required in the future, all of the data would need 
to be removed and re-imported with the new grouping column in the index along with all possible 
grouping fields. EQG is much faster for a few distinct grouping values but won’t scale if there are 
many distinct combinations and thus, distinct queries. 
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Figure 2. Comparison between Oracle 1st hit (un-cached result) and multiple grouping methods of 
Elasticsearch.  

2.3.  Site Status Board 
Site Status Board [14] is a core system for monitoring the health of sites and services within the 
WLCG collaboration. It is widely used for the distributed computing shifts, site commissioning and 
testing activities. The application provides two possibilities to the users:  
 

• Check the current status of a site or a service that supports filtering by multiple fields. 
• Present historical time series data and support filtering by multiple fields and grouping by a 

single field. 
 

For this application, one metric with 3 years’ worth of data was imported in Elasticsearch, 
comprising approximately 4 million rows. The comparison between Oracle and Elasticsearch can be 
seen in table 4. As shown in the table, Elasticsearch outperforms Oracle by at least a factor of 3. 

 

 

3.  Future work 
This evaluation is still very much a work in progress. For HBase, Coprocessors will be used to 
aggregate the data and then perform benchmarking once again, this time by querying the aggregated 
data directly. Additionally, Jython will be used instead of HappyBase to investigate whether scan 
times will be reduced by interacting with Hadoop directly through Java. Elasticsearch will be re-
evaluated when version 1.0 becomes available, which will support grouping by multiple fields for 
statistical aggregation. Its performance on a shared physical cluster in a multi-user environment will 
also be evaluated. 

Table 4. Site Status Board: Oracle VS Elasticsearch. 

Scan type Avg. rows Oracle 1st hit 

a (in secs.) 
Elasticsearch 

(in secs.) 
1 day all sites 3K 5.6 0.2 

1 week all sites 29K 7.76 0.8 
1 month all sites 130K 29 4 
3 months all sites 440K 53 16 

1 month multiple times 22K 3.3 0.6 
a “1st hit” implies scanning without using the Oracle cache. 
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4.  Conclusions 
Considering the first results of this evaluation, the conclusion was reached that there is no single 
solution for every possible use-case in the WLCG monitoring domain. Current experience with HBase 
showed poor performance with sorted time series data. Better performance was achieved with 
Elasticsearch than with the current Oracle cluster (comparing performance with non-cached query 
results). At the same time, integrating Elasticsearch with an application is straightforward only for use-
cases requiring at most a single field grouping. For applications that require multi-field grouping, 
diverse workarounds are required and these use-cases will have to be re-evaluated using the next 
release of Elasticsearch. 

In general, these early results are quite positive. Experiment Dashboard’s design principles provide 
for the decoupling of the data storage implementation from the User Interface which greatly simplifies 
the evaluation process. For some WLCG monitoring applications, appropriate solutions were already 
identified. For others, more investigation is required. 
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