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Abstract.
The G-strand equations for a map R × R into a Lie group G are associated to a G-invariant

Lagrangian. The Lie group manifold is also the configuration space for the Lagrangian. The G-strand
itself is the map g(t, s) : R × R → G, where t and s are the independent variables of the G-strand
equations. The Euler-Poincaré reduction of the variational principle leads to a formulation where the
dependent variables of the G-strand equations take values in the corresponding Lie algebra g and its
co-algebra, g∗ with respect to the pairing provided by the variational derivatives of the Lagrangian.

We review examples of different G-strand constructions, including matrix Lie groups and
diffeomorphism group. In some cases the G-strand equations are completely integrable 1+1
Hamiltonian systems that admit soliton solutions.

1. Introduction

We give a brief account of the G-strand construction, which gives rise to equations for a map R×R into
a Lie group G associated to a G-invariant Lagrangian. Our presentation reviews our previous works
[7, 5, 6, 3, 8] and is aimed to illustrate the G-strand construction with several simple but instructive
examples. The following examples are reviewed here:

(i) SO(3)-strand equations for the so-called continuous spin chain. The equations reduce to the
integrable chiral model in their simplest (bi-invariant) case.

(ii) SO(3) - anisotropic chiral model, which is also integrable,

(iii) Diff(R)-strand equations. These equations are in general non-integrable; however they admit
solutions in 2 + 1 space-time with singular support (e.g., peakons). Peakon-antipeakon collisions
governed by the Diff(R)-strand equations can be solved analytically, and potentially they can be
applied in the theory of image registration.

2. Ingredients of Euler–Poincaré theory for Left G-Invariant Lagrangians

Let G be a Lie group. A map g(t, s) : R×R → G has two types of tangent vectors, ġ := gt ∈ TG and
g′ := gs ∈ TG. Assume that the Lagrangian density function L(g, ġ, g′) is left G-invariant. The left
G–invariance of L permits us to define l : g× g → R by

L(g, ġ, g′) = L(g−1g, g−1ġ, g−1g′) ≡ l(g−1ġ, g−1g′).

Conversely, this relation defines for any reduced lagrangian l = l(u, v) : g × g → R a left G-invariant
function L : TG× TG→ R and a map g(t, s) : R× R → G such that

u(t, s) := g−1gt(t, s) = g−1ġ(t, s) and v(t, s) := g−1gs(t, s) = g−1g′(t, s).

Lemma 1. The left-invariant tangent vectors u(t, s) and v(t, s) at the identity of G satisfy

vt − us = − aduv . (1)
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Proof. The proof is standard and follows from equality of cross derivatives gts = gst.

Equation (1) is usually called a zero-curvature relation.

Theorem 2 ( Euler-Poincaré theorem for left-invariant Lagrangians).

With the preceding notation, the following two statements are equivalent:

i Variational principle on TG × TG δ
∫ t2
t1
L(g(t, s), ġ(t, s), g′(t, s)) ds dt = 0 holds, for variations

δg(t, s) of g(t, s) vanishing at the endpoints in t and s. The function g(t, s) satisfies Euler–
Lagrange equations for L on G, given by

∂L

∂g
− ∂

∂t

∂L

∂gt
− ∂

∂s

∂L

∂gs
= 0.

ii The constrained variational principle1

δ

∫ t2

t1

l(u(t, s), v(t, s)) ds dt = 0

holds on g× g, using variations of u := g−1gt(t, s) and v := g−1gs(t, s) of the forms

δu = ẇ + aduw and δv = w ′ + advw ,

where w(t, s) := g−1δg ∈ g vanishes at the endpoints. The Euler–Poincaré equations hold on
g∗ × g∗ (G-strand equations)

d

dt

δl

δu
− ad∗u

δl

δu
+

d

ds

δl

δv
− ad∗v

δl

δv
= 0 & ∂su− ∂tv = [ u, v ] = aduv

where (ad∗ : g × g∗ → g∗) is defined via (ad : g × g → g) in the dual pairing ⟨ · , · ⟩ : g∗ × g → R
by,

⟨
ad∗u

δℓ

δu
, v

⟩
g

=

⟨
δℓ

δu
, aduv

⟩
g

.

In 1901 Poincaré in his famous work proves that, when a Lie algebra acts locally transitively on the
configuration space of a Lagrangian mechanical system, the well known Euler-Lagrange equations
are equivalent to a new system of differential equations defined on the product of the configuration
space with the Lie algebra. These equations are called now in his honor Euler-Poincaré equations. In
modern language the contents of the Poincaré’s article [12] is presented for example in [4, 11]. English
translation of the article [12] can be found as Appendix D in [4].

3. G-strand equations on matrix Lie algebras

Denoting m := δℓ/δu and n := δℓ/δv in g∗, the G-strand equations become

mt + ns − ad∗um− ad∗vn = 0 and ∂tv − ∂su+ aduv = 0.

For G a semisimple matrix Lie group and g its matrix Lie algebra these equations become

mT
t + nTs + adum

T + advn
T =0,

∂tv − ∂su+ aduv =0
(2)

where the ad-invariant pairing for semisimple matrix Lie algebras is given by⟨
m , n

⟩
=

1

2
tr(mTn),

the transpose gives the map between the algebra and its dual ( · )T : g → g∗. For semisimple matrix
Lie groups, the adjoint operator is the matrix commutator. Examples are studied in [7, 6, 3].

1 As with the basic Euler–Poincaré equations, this is not strictly a variational principle in the same sense as the standard
Hamilton’s principle. It is more like the Lagrange d’Alembert principle, because we impose the stated constraints on the
variations allowed.
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4. Lie-Poisson Hamiltonian formulation

Legendre transformation of the Lagrangian ℓ(u, v) : g × g → R yields the Hamiltonian h(m, v) :
g∗ × g → R

h(m, v) =
⟨
m , u

⟩
− ℓ(u, v) . (3)

Its partial derivatives imply

δl

δu
= m ,

δh

δm
= u and

δh

δv
= − δℓ

δv
= v.

These derivatives allow one to rewrite the Euler-Poincaré equation solely in terms of momentum m as

∂tm = ad∗δh/δmm+ ∂s
δh

δv
− ad∗v

δh

δv
,

∂tv = ∂s
δh

δm
− adδh/δm v .

(4)

Assembling these equations into Lie-Poisson Hamiltonian form gives,

∂

∂t

[
m
v

]
=

[
ad∗( · )m ∂s − ad∗v
∂s + adv 0

] [
δh/δm
δh/δv

]
(5)

The Hamiltonian matrix in equation (5) also appears in the Lie-Poisson brackets for Yang-Mills
plasmas, for spin glasses and for perfect complex fluids, such as liquid crystals.

5. Example: The Euler-Poincaré PDEs for the SO(3)-strand and the chiral model. The
2-time spatial and body angular velocities on so(3)

Let us make the following explicit identification:

u =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 ∈ g ↔ u ≡

 u1
u2
u3

 ∈ R3 (6)

and similarly for v. In terms of the corresponding group element g(s, t), describing rotation,
u(t, s) = g−1∂tg(t, s) and v(t, s) = g−1∂sg(t, s) resemble 2 body angular velocities. For G = SO(3)
and Lagrangian ℓ(u, v) : R3 × R3 → R, in 1 + 1 space-time the Euler-Poincaré equation becomes

∂

∂t

δℓ

δu
+ u× δℓ

δu
= −

(
∂

∂s

δℓ

δv
+ v × δℓ

δv

)
, (7)

and its auxiliary equation becomes
∂

∂t
v =

∂

∂s
u+ v × u . (8)

The Hamiltonian form of these equations on so(3)∗ are obtained from the Legendre transform relations

δℓ

δu
= m ,

δh

δm
= u and

δh

δv
= − δℓ

δv
.

Hence, the Euler-Poincaré equation implies the Lie-Poisson Hamiltonian structure in vector form

∂t

[
m
v

]
=

[
m× ∂s + v×

∂s + v× 0

] [
δh/δm
δh/δv

]
.

This Poisson structure appears in various other theories, such as complex fluids and filament dynamics.

When

ℓ =
1

2

∫
(u ·Au+ v ·Bv) ds (9)
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this is the SO(3) spin-chain model, which is in general non-integrable- eq. (7) and (8) give:

∂

∂t
Au+ u×Au+

∂

∂s
Bv + v ×Bv = 0 , (10)

∂

∂t
v =

∂

∂s
u+ v × u . (11)

When A = −B = 1, this is the SO(3) chiral model, which is an integrable Hamiltonian system.

ut − vs = 0 , (12)

vt − us + u× v = 0 . (13)

6. Integrability

Some of the G-strands models are well known integrable models. They have a zero-curvature
representation for two operators L and M of the form

Lt −Ms + [L,M ] = 0, (14)

which is the compatibility condition for a pair of linear equations

ψs = Lψ, and ψt =Mψ.

For the SO(3) chiral model for example these operators are

L =
1

4

[
(1 + λ)(u− v)−

(
1 +

1

λ

)
(u+ v)

]
,

M = −1

4

[
(1 + λ)(u− v) +

(
1 +

1

λ

)
(u+ v)

]
.

(15)

Another integrable matrix example: SO(3) anisotropic Chiral model [2]

∂tv(t, s)− ∂su(t, s) + u× Pv − v × Pu = 0 ,

∂sv(t, s)− ∂tu(t, s)− v × Pv + u× Pu = 0 .
(16)

P = diag(P1, P2, P3) is a constant diagonal matrix. Under the linear change of variables

X = u− v and Y = −u− v (17)

equations (16) acquire the form of the following SO(3) anisotropic chiral model,

∂tX(t, s) + ∂sX(t, s) + X× PY = 0 ,

∂tY(t, s)− ∂sY(t, s) + Y × PX = 0 .
(18)

The system (18) represents two cross-coupled equations for X and Y. These equations preserve the
magnitudes |X|2 and |Y|2, so they allow the further assumption that the vector fields (X,Y) take
values on the product of unit spheres S2×S2 ⊂ R3×R3. The anisotropic chiral model is an integrable
system and its Lax pair in terms of (u, v) utilizes the following isomorphism between so(3)⊕so(3) and
so(4):

A(u, v) =


0 u3 −u2 v1

−u3 0 u1 v2
u2 −u1 0 v3
−v1 −v2 −v3 0

 . (19)

Physics and Mathematics of Nonlinear Phenomena 2013 (PMNP2013) IOP Publishing
Journal of Physics: Conference Series 482 (2014) 012018 doi:10.1088/1742-6596/482/1/012018

4



The system (16) can be recovered as a compatibility condition of the operators

L = ∂s −A(v,u)(λ Id + J), (20)

M = ∂t −A(u, v)(λ Id + J), (21)

where the diagonal matrix J is defined by

J = −1

2
diag(P1, P2, P3, P1 + P2 + P3). (22)

This Lax pair is due to Bordag and Yanovski [1]. The O(3) anisotropic chiral model can be derived
as an Euler-Poincaré equation from a Lagrangian with quadratic kinetic and potential energy. The
details are presented in [7].

Remark 3. If P = Id, equations (16) recover the SO(3) chiral model.

7. The Diff(R)-strand system

The constructions described briefly in the previous sections can be easily generalized in cases where
the Lie group is the group of the Diffeomorphisms. Consider Hamiltonian which is a right-invariant
bilinear form given by the H1 Sobolev inner product

H(u, v) ≡ 1

2

∫
M
(uv + uxvx)dx. (23)

The manifold M is S1 or in the case when the class of smooth functions vanishing rapidly at ±∞ is
considered, we will allow M ≡ R.
Let us introduce the notation u(g(x)) ≡ u ◦ g. If g(x) ∈ G, where G ≡ Diff(M), then

H(u, v) = H(u ◦ g, v ◦ g)

is a right-invariant H1 metric.

Let us further consider an one-parametric family of diffeomprphisms, g(x, t) by defining the t -
evolution as

ġ = u(g(x, t), t), g(x, 0) = x, i.e. ġ = u ◦ g ∈ TgG; (24)

u = ġ ◦ g−1 ∈ g, where g, the corresponding Lie-algebra is the algebra of vector fields, Vect(M). Now
we recall the following result:

Theorem 4. (A. Kirillov, 1980, [9, 10]) The dual space of g is a space of distributions but the
subspace of local functionals, called the regular dual g∗ is naturally identified with the space of quadratic
differentials m(x)dx2 on M. The pairing is given for any vector field u∂x ∈ Vect(M) by

⟨mdx2, u∂x⟩ =
∫
M
m(x)u(x)dx

The coadjoint action coincides with the action of a diffeomorphism on the quadratic differential:

Ad∗g : mdx2 7→ m(g)g2xdx
2

and
ad∗u = 2ux + u∂x

Indeed, a simple computation shows that

⟨ad∗u∂xmdx
2, v∂x⟩ = ⟨mdx2, [u∂x, v∂x]⟩ =

∫
M
m(uxv − vxu)dx =∫

M
v(2mux + umx)dx = ⟨(2mux + umx)dx

2, v∂x⟩,

i.e. ad∗um = 2uxm+ umx.

Physics and Mathematics of Nonlinear Phenomena 2013 (PMNP2013) IOP Publishing
Journal of Physics: Conference Series 482 (2014) 012018 doi:10.1088/1742-6596/482/1/012018

5



The Diff(R)-strand system arises when we choose G = Diff(R). For a two-parametric group we have
two tangent vectors

∂tg = u ◦ g and ∂sg = v ◦ g ,
where the symbol ◦ denotes composition of functions.

In this right-invariant case, the G-strand PDE system with reduced Lagrangian ℓ(u, v) takes the form,

∂

∂t

δℓ

δu
+

∂

∂s

δℓ

δv
= − ad∗u

δℓ

δu
− ad∗v

δℓ

δv
,

∂v

∂t
− ∂u

∂s
= aduv .

(25)

Of course, the distinction between the maps (u, v) : R × R → g × g and their pointwise values
(u(t, s), v(t, s)) ∈ g× g is clear. Likewise, for the variational derivatives δℓ/δu and δℓ/δv.

8. The Diff(R)-strand Hamiltonian structure

Upon setting m = δℓ/δu and n = δℓ/δv, the right-invariant Diff(R)-strand equations in (25) for maps
R × R → G = Diff(R) in one spatial dimension may be expressed as a system of two 1+2 PDEs in
(t, s, x),

mt + ns = − ad∗um− ad∗vn = −(um)x −mux − (vn)x − nvx ,

vt − us = − advu = −uvx + vux .
(26)

The Hamiltonian structure for these Diff(R)-strand equations is obtained by Legendre transforming
to

h(m, v) = ⟨m, u⟩ − ℓ(u, v) .

One may then write the equations (26) in Lie-Poisson Hamiltonian form as

d

dt

[
m
v

]
=

[
− ad∗( · )m ∂s + ad∗v
∂s − adv 0

] [
δh/δm = u
δh/δv = −n

]
. (27)

9. Peakon solutions of the Diff(R)-strand equations

With the following choice of Lagrangian,

ℓ(u, v) =
1

2
∥u∥2H1 −

1

2
∥v∥2H1 , (28)

the corresponding Hamiltonian is positive-definite and the Diff(R)-strand equations (26) admit peakon
solutions in both momenta

m = u− uxx and n = −(v − vxx),

with continuous velocities u and v. This is a two-component generalization of the CH equation.

Theorem 5. The Diff(R)-strand equations (26) admit singular solutions expressible as linear
superpositions summed over a ∈ Z

m(s, t, x) =
∑
a

Ma(s, t)δ(x−Qa(s, t)) ,

n(s, t, x) =
∑
a

Na(s, t)δ(x−Qa(s, t)) ,

u(s, t, x) = K ∗m =
∑
a

Ma(s, t)K(x,Qa) ,

v(s, t, x) = −K ∗ n = −
∑
a

Na(s, t)K(x,Qa) ,

(29)

that are peakons in the case that K(x, y) = 1
2e

−|x−y| is the Green function the inverse Helmholtz
operator (1− ∂2x):

(1− ∂2x)K(x, 0) = δ(x)
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The solution parameters {Qa(s, t),Ma(s, t), Na(s, t)} with a ∈ Z that specify the singular solutions
(29) are determined by the following set of evolutionary PDEs in s and t, in which we denote
Kab := K(Qa, Qb) with integer summation indices a, b, c, e ∈ Z:

∂tQ
a(s, t) = u(Qa, s, t) =

∑
b

Mb(s, t)K
ab ,

∂sQ
a(s, t) = v(Qa, s, t) = −

∑
b

Nb(s, t)K
ab ,

∂tMa(s, t) = − ∂sNa −
∑
c

(MaMc −NaNc)
∂Kac

∂Qa
(no sum on a),

∂tNa(s, t) = −∂sMa +
∑
b,c,e

(NbMc −MbNc)
∂Kec

∂Qe
(Keb −Kcb)(K−1)ae .

(30)

The last pair of equations in (30) may be solved as a system for the momenta, i.e., Lagrange multipliers
(Ma, Na), then used in the previous pair to update the support set of positions Qa(t, s).

10. Single-peakon solution of the of the Diff(R)-strand system

The single-peakon solution of the Diff(R)-strand equations (26) is straightforward to obtain from (30).
Combining the equations in (30) for a single peakon shows that Q1(s, t) satisfies the Laplace equation,

(∂2s − ∂2t )Q
1(s, t) = 0 .

Thus, any function h(s, t) that solves the wave equation provides a solution Q1 = h(s, t). From the
first two equations in (30)

M1(s, t) =
1

K0
ht(s, t) N1(s, t) =

1

K0
hs(s, t),

where K0 = K(0, 0).

The solutions for the single-peakon parameters Q1,M1 and N1 depend only on one function h(s, t),
which in turn depends on the (s, t) boundary conditions. The shape of the Green’s function comes
into the corresponding solutions for the peakon profiles

u(s, t, x) =M1(s, t)K(x,Q1(s, t)) , v(s, t, x) = −N1(s, t)K(x,Q1(s, t)) .

11. Peakon-Antipeakon collisions on a Diff(R)-strand
Denote the relative spacing X(s, t) = Q1 − Q2 for the peakons at positions Q1(t, s) and Q2(t, s) on
the real line and the Green’s function K = K(X). Then the first two equations in (30) imply

∂tX = (M1 −M2)(K0 −K(X)) ,

∂sX = −(N1 −N2)(K0 −K(X)) ,
(31)

where K0 = K(0).

The second pair of equations in (30) may then be written as

∂tM1 = −∂sN1 − (M1M2 −N1N2)K
′(X) ,

∂tM2 = −∂sN2 + (M1M2 −N1N2)K
′(X) ,

∂tN1 = −∂sM1 + (N1M2 −M1N2)
K0 −K

K0 +K
K ′(X) ,

∂tN2 = −∂sM2 + (N1M2 −M1N2)
K0 −K

K0 +K
K ′(X) .

(32)

Asymptotically, when the peakons are far apart, the system (32) simplifies, since K0−K
K0+K → 1 and

K ′(X) → 0 as |X| → ∞.
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The system (32) has two immediate conservation laws obtained from their sums and differences,

∂t(M1 +M2) = − ∂s(N1 +N2) ,

∂t(N1 −N2) = −∂s(M1 −M2) .
(33)

These may be resolved by setting

M1 −M2 =
∂tX

K0 −K
, N1 −N2 = − ∂sX

K0 −K
,

M1 +M2 = ∂sϕ , N1 +N2 = − ∂tϕ ,

(34)

and introducing two potential functions, X and ϕ, for which equality of cross derivatives will now
produce the system of equations (31) and (32).

12. A simplification.

A simplification arises if ϕ = 0, in which case the collision is perfectly antisymmetric, as seen from
equation (34). This is the peakon-antipeakon collision, for which the equation for X reduces to

(∂2t − ∂2s )X +
K ′

2(K0 −K)
(X2

t −X2
s ) = 0 . (35)

This equation can be easily rearranged to produce a linear equation:

(∂2t − ∂2s )F (X) = 0 , where F (X) =

∫ X

X0

(K0 −K(Y ))−1/2 dY . (36)

When K(Y ) = 1
2e

−|Y |, we have

F (X) =
√
2

∫ X

X0

1√
1− e−|Y |

dY. (37)

We can take for simplicity X0 = 0, this would change F (X) only by a constant. The computation
gives

F (X) = 2
√
2 sign(X) cosh−1

(
e|X|/2

)
. Hence the solution X(t, s) can be expressed in terms of any solution h(t, s) of the linear wave
equation (∂2t − ∂2s )h(t, s) = 0 as

X(t, s) = ± ln
(
cosh2(h(t, s))

)
. (38)

h(t, s) is any solution of the wave equation.

M1 = −M2 =
∂tX

2(K0 −K(X))
, N1 = −N2 = − ∂sX

2(K0 −K(X))
.

Complex Diff(R)-strand equations

The Diff(R)-strands may also be complexified. Upon complexifying (s, t) ∈ R2 → (z, z̄) ∈ C where
z̄ denotes the complex conjugate of z and setting ∂zg = u ◦ g and ∂z̄g = ū ◦ g the Euler-Poincaré
G-strand equations in (26) become

∂

∂z

δℓ

δu
+

∂

∂z̄

δℓ

δū
= − ad∗u

δℓ

δu
− ad∗ū

δℓ

δū
,

∂ū

∂z
− ∂u

∂z̄
= aduū .

(39)

Here the Lagrangian ℓ is taken to be real:

ℓ(u, ū) =
1

2
∥ν∥2H1 =

1

2

∫
u (1− ∂2x) ū dx. (40)
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Upon setting m = δℓ/δu, m̄ = δℓ/δū, for the real Lagrangian ℓ, equations (39) may be rewritten as

mz + m̄z̄ = − ad∗um− ad∗ū m̄ = −(um)x −mux − (ū m̄)x − m̄ ūx ,

ūz − uz̄ = − adū u = −u ūx + ū ux ,

(41)

where the independent coordinate x ∈ R is on the real line, although coordinates (z, z̄) ∈ C are
complex, as are solutions u, and m = u−uxx. This is a possible comlexification of the Camassa-Holm
equation. These equations are invariant under two involutions, P and C, where

P : (x,m) → (−x,−m) and C : Complex conjugation.

They admit singular solutions just as before, modulo R×R → C. For real variables m = m̄, u = ū and
real evolution parameter z = z̄ =: t, they reduce to the CH equation. Their travelling wave solutions
and other possible CH complexifications are studied in [5].

Conclusions

The G-strand equations comprise a system of PDEs obtained from the Euler-Poincaré (EP) variational
equations for a G-invariant Lagrangian, coupled to an auxiliary zero-curvature equation. Once the G-
invariant Lagrangian has been specified, the system of G-strand equations in (2) follows automatically
in the EP framework. For matrix Lie groups, some of the the G-strand systems are integrable. The
single-peakon and the peakon-antipeakon solution of the Diff(R)-strand equations (26) depends on a
single function of s, t. The complex Diff(R)-strand equations and their peakon collision solutions have
also been solved by elementary means. The stability of the single-peakon solution under perturbations
into the full solution space of equations (26) would be an interesting problem for future work.
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