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Abstract. Electrical impedance tomography (EIT) image reconstruction is ill-posed, and the
spatial resolution of reconstructed images is low due to the diffuse propagation of current and
limited number of independent measurements. Generally, image reconstruction is formulated
using a regularized scheme in which `2 norms are preferred for both the data misfit and image
prior terms due to computational convenience which result in smooth solutions. However, recent
work on a Primal Dual-Interior Point Method (PDIPM) framework showed its effectiveness in
dealing with the minimization problem. `1 norms on data and regularization terms in EIT
image reconstruction address both problems of reconstruction with sharp edges and dealing with
measurement errors. We aim for a clinical and experimental evaluation of the PDIPM method
by selecting scenarios (human lung and dog breathing) with known electrode errors, which
require a rigorous regularization and cause the failure of reconstructions with `2 norm. Results
demonstrate the applicability of PDIPM algorithms, especially `1 data and regularization norms
for clinical applications of EIT showing that `1 solution is not only more robust to measurement
errors in clinical setting, but also provides high contrast resolution on organ boundaries.

1. Introduction
Electrical impedance tomography (EIT) shows promise to help patient ventilation in an intensive
care unit (ICU) by monitoring the distribution of inspired air in mechanically ventilated patients.
However, EIT image reconstruction is an ill-posed inverse problem. Due to limited independent
measurements, the spatial resolution of reconstruct images is low. The Jacobian (sensitivity)
matrix is ill-conditioned, which implies that measurement noise or errors due to electrode
detachment and patient movement cause solutions to be unstable with large image artifacts. In
order to stabilize the problem, regularization techniques are commonly used by introducing forms
of filtering to reduce these artifacts. Regularization introduces a priori information regarding
smooth conductivity changes which limits reconstructing sharp images. However, sharp edges
are physiologically realistic and are desired to image better inter-organ boundaries and step
changes in the tissue conductivity.

Total Variation (TV) regularization (the use of 1-norm on the regularization term) was
demonstrated on simulation and clinical data [1], which allowed the reconstruction of sharp
image transitions. The Primal Dual-Interior Point Method (PDIPM) was proposed by [2],
where `1 and `2 norms were applied to data and regularization terms using simulated data only.
The simulated results of the paper suggested that `1 norm (Least-absolute values) on both data
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and regularization terms improved image resolution and provided robustness to noise and data
outliers (errors).

In this paper, we evaluated the PDIPM algorithms [2] on the experimental and clinical data
by applying `1 and `2 norms for both the data-fidelity and regularization terms. Subsequently,
we analyze and compare the algorithms’ management of measurement errors in the data.

2. Methodology
2.1. Formulation of PDIPM
In EIT, the measurements (data) are the surface potentials on the boundary of the object.
Let f(x) = y represent the nonlinear relationship between the data (voltage data) and model
parameters (electrical properties), x : x ∈ RN and y : y ∈ RM , respectively. In difference
EIT, y is the normalized difference data (y = (v − vr) /vr) between the current measured
voltages v and the reference measurements vr. x is the image of relative conductivity changes
between the background (or reference) conductivity σr and the corresponding conductivity σ
for the measurement v.

Generally, the number of the unknown model parameters are much more than the available
number of data, i.e.,M < N , which results in an underdetermined set of equations. The
corresponding inverse problem of recovering x from y based on the mapping f can be stated in
the form of a minimization problem as follows:

arg min
x

{
F(x) := ||f(x)− y||pp + λ||L(x− x0)||nn

}
, (1)

where the ||f(x) − y||pp is the data fidelity term and ||L(x − x0)||nn is the regularization term,
and x0 is a prior conductivity distribution (in our case the initial estimate was set to zero);
L : L ∈ RM×N is usually referred to as the regularization matrix and constructed based on
the a priori information about the model parameters. The trade-off between these two terms is
determined by the regularization parameter λ. p and n respectively specify the types of norms
for the data fidelity and regularization terms. The characteristics of the solutions are dependent
on the choice of the norms:

• Using `2-norm for both data and regularization terms is widely used and the most convenient
way regarding computational time and convergence stability. The resultant solutions are
commonly referred to as the least-squares solution with Tikhonov regularization.

• Using a `1-norm instead of `2-norm in the regularization term allows high frequency
components in the solutions to be preserved. For instance, when the regularization matrix
is constructed as a gradient operator, the variations in the solution are penalized. Such a
scheme is referred to as the total variation (TV) regularization with an appropriate choice
of L. The regularization method preserves the edge information in the restored images,
while filtering out noise.

• The `1-norm of the data fidelity is much more resilient to outliers than the `2-norm since
it does not square the measurement misfit. Thus, it is usually preferred to suppress errors
originating from outliers.

• For `1`1 case, the solutions are resilient to data outliers because of the `1-norm of the data
fidelity term and the `1-norm of the regularization term permits reconstruction of sharp
edges. However, it is computationally challenging due to the non-differentiability of the
absolute value function at a number of points.

2.2. Evaluation Data Set
We considered difference imaging to reflect the physiological changes during the breathing for a
certain time duration. We used EIT data acquired during mechanically ventilation of humans
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and dogs. These data are known to contain a certain level of electrode errors in the measurement
data.

Human data: The human breathing data were based on [3], where pediatric patients with
ALI/ARDS were recruited for an open lung treatment protocol. The experimental protocol was
consisted of a baseline ventilation stage, a lung recruitment stage with sequentially increased
airway pressure, and a PEEP (Positive end-expiratory pressure) titration stage with sequentially
decreased airway pressure. A tidal volume of 6 mL/kg of body weight was used as baseline
ventilation using volume-controlled mode. During the PEEP titration stage, the PEEP level was
decreased sequentially to the lowest possible setting. The EIT system used for the measurement
was the Goe-MT II EIT device (CareFusion, Hoechberg, Germany) operated in single frequency,
where 16 electrodes were used, and adjacent stimulation and measurement patterns were applied.

Dog data: 16-electrode EIT system was used to take measurements of conductivity changes
due to lung ventilation and lung fluid instillation in mongrel dogs [4]. ECG was used to record
cardiac activity and synchronize EIT measurements 100 ms after the QRS peak of the ECG.
Measurements were taken before and after 100 ml of fluids (5 % bovine albumin and Evans blue
dye) were injected to a lobe of the right lung at the presence of 700 ml tidal volume. The same
reference data was used before fluid instillation.

3. Results
Fig. 1 shows the time difference EIT image of a human thorax. A series of λ values were tested
for the first measurement data (R1) taken from a ventilated patient for the protocol steps (R-R4
and T1-T4). The λ value that produces good reconstructed image was heuristically selected and
fixed for the rest of the data sets. Different `-norms have different fixed λ values.

L1L1

L2L1

L1L2

L2L2

        R1    R2              R3            R4        T1                 T2              T3            T4

Figure 1: Time difference images of a human thorax for the PDIPM algorithms with four
different `-norms on the data and regularization terms. R1–R4 are the protocol steps of lung
recruitment stage and T1–T4 are the protocol steps of the PEEP titration stage.

Fig. 1 showed that the `2-norm on the regularization term produced smooth reconstruction
while the `1-norm on the regularization term produced high contrast conductivity distributions
(sharper images). Interestingly, at the protocol steps R3 and T1, `2`2 and `2`1 produced a
clinically unrealistic (failed) reconstruction, while `1`2 and `1`1 showed expected images. Further
analysis showed 3 times higher noise levels at the two steps compared to the rest of the protocol
steps.

Fig. 2 illustrates the use of PDIPM algorithms for imaging the conductivity changes in dog’s
lung immediately after fluid injection (row 1) and 60 minutes after the fluid injection (row 2)
with the presence of certain level of electrode errors.
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(`2`2) (`1`2) (`2`1) (`1`1)

Figure 2: Reconstructed cross-section of conductivity changes in dog’s lung right after injection
(row 1) and 60 minutes after the injection (row 2). Difference images were reconstructed using
PDIPM algorithms, where the presence of electrode errors in the measured data a affected all
reconstructions, except those using the l1 norm on the data term (robust reconstruction).

As shown in Fig. 2, `2`2 and `2`1 showed large image artifacts as they suffered from noise
from measurement system. `1`2 and `1`1 reconstructed cleaner and meaningful images, where
particularly `1`1 produced sharp images with little image artifacts.

4. Discussion
In this study, we evaluated PDIPM algorithms for the EIT real-measurement on clinical patient
and experimental dog data (with electrode errors) using `1/`2 data and image norms. The
results (Fig. 1 and 2) showed that `1`2 and `1`1 are less affected by data outliers because of
1-norm for the data term, while `2`1 and `1`1 produces sharper reconstructed images because of
1-norm on the regularization term. `1`1 provided both sharp conductivity image and robustness
to data outliers. However, `1 solution is not efficient compared to Gauss-Newton based solution,
since `1 solution involves with the minimization of a non-differentiable function, thus requires
more computation time and more iterations to reach the convergence. Most traditional image
reconstruction is based on `2 norm, which produces smooth solutions without clear edges and is
sensitive to measurement noise (data outliers). Nevertheless, `2`2 takes least computation time
as it is the one-step linearized image reconstruction, which is also widely used in EIT imaging.

PDIPM algorithms with 1-norm (`1`1) present significant advantages in medical applications
of EIT, since high contrast sharper images are more desired in clinical scenario. In reality, noise
from the acquisition system, and patient movement or electrode errors are unavoidable, while
measurement noise has been modeled as Gaussian. This greatly affects reconstructed image
quality (especially `2 data norm solution). This paper demonstrated the advantages of `1 norm
solutions in clinical applications of EIT, where `1 solution is not only more robust to unavoidable
measurement errors in clinical setting, but it also could provide high contrast resolution.
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