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Abstract. The new generation of silicon detectors for particle physics requires very reduced 

mass and high resistance to radiations with very limited access to the detector for maintenance. 

The Silicon Pixel Detector (SPD) is one of the 18 detectors of the ALICE (A Large Ion 

Collider Experiment) experiment at the Large Hadron Collider (LHC) at CERN. It constitutes 

the two innermost layers of the Inner Tracking System (ITS) and it is the closest detector to the 

interaction point. 

An evaporative cooling system, based on C4F10 evaporation at 1.9 bar, was chosen to extract 

the 1.35 kW power dissipated by the on‐detector electronics. The whole system was 

extensively tested and commissioned before its installation inside the ALICE experimental 

area. Since then we had to deal with a decrease of the flow in some lines of the system that 

imposed severe restrictions on the detector operation. Recently, a test bench has been built in 

order to carry out a series of tests to reproduce the misbehaviour of the system and investigate 

proper actions to cure the problem. 

The performance of the systems and the most interesting results of the above mentioned tests 

will be presented. 

1.  The Silicon Pixel Detector (SPD) 

ALICE (A Large Ion Collider Experiment) is the experiment at the Large Hadron Collider (LHC) at 

CERN (European Organization for Nuclear Research), designed to address the physics of strongly 

interacting matter and the quark gluon plasma (QGP) at the extreme values of energy density and 

temperature reached in ultra-relativistic nucleus-nucleus collisions [1]. 

The ALICE detector consists of a central barrel measuring hadrons, electrons and photons, and a 

forward muon spectrometer. Its overall dimensions are 16x16x26 m
3
 for a total weight of 

approximately 10000 tons.  
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The tracking in the central barrel is based on the Inner Tracking System (ITS), a six layer, high 

resolution silicon vertex detector, and the Time Projection Chamber (TPC). 

The Silicon Pixel Detector constitutes the two innermost layers of the ITS [2] and it plays a 

fundamental role in the ALICE physics program. The SPD sensors consist of a two-dimensional 

matrix (sensor ladder) of reverse biased silicon diodes bump-bonded to 5 readout chips. 

The basic detector module is the half-stave (Fig.1), composed of two sensor ladders, one Multi-

Chip Module (MCM) and one multi-layer interconnect (pixel bus). The two sensors, 200 µm thick, are 

attached and wire bonded to the pixel bus, which carries data and control lines and power/ground 

planes. The Multi-Chip Module, located at one end of the half-stave, is wire bonded to the pixel bus 

and establishes the connection between the sensors and the off-detector readout electronics via optical 

fiber links. Two half-staves are attached head-to-head along the z direction to a Carbon Fiber Support 

Sector (CFSS), with the MCMs at the two ends to form a stave [3]. Each sector supports six staves, 

two on the inner layer, located at an average distance of 3.9 cm from the beam axis, and four on the 

outer layer, located at 7.6 cm. Ten sectors are then mounted together to form the SPD cylindrical 

barrel around the 800 µm thick beryllium beam pipe. 

 

 
 

Fig. 1 The SPD half-stave with its main components. 

 

The SPD front-end electronics dissipates ~23 W (nominal) in each stave, i.e. 1.35 kW for the whole 

detector. This power, if not correctly removed, could increase the temperature of the detector up to 

dangerous values at the rate of 1°C/s. A continuous monitoring of the detector’s temperature is 

therefore mandatory and a safety interlock is set up in order to switch off the detector in case of failure 

of the cooling system. 

1.1.  The SPD cooling system 

In order to remove the power dissipated by the on-detector electronics, the SPD is equipped with an 

embedded cooling system based on the Joule-Thomson cycle (rapid expansion at constant enthalpy 

and subsequent evaporation), with C4F10 (perfluorocarbon) as refrigerant fluid.  

The design of the cooling system was driven by several constraints, such as: 

 complete removal of the power dissipated by the on-detector electronics maintaining the 

sensor temperature around 25°C and assuring a uniform temperature distribution along the 

stave, in order to reduce mechanical stresses associated with thermal gradients; 

 low material budget contribution; 

 cooling duct temperature above the dew point;  

 long-term stability against corrosion; 

 dielectric fluid or leak less operation. 

The layout of the SPD cooling plant is depicted in Fig. 2. The saturated liquid C4F10 coming from 

the condenser (7) is subcooled in a plate heat exchanger (6) before entering the pump (5), in order to 

avoid cavitation. The pump increases the liquid pressure so it can reach the detector (about 50 m 

away) still subcooled. After a hydrofilter (to remove water and HF compounds) and a molecular-sieve 
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filter (4), the fluid reaches the liquid manifold (3), which splits the flow in 10 lines, one for each 

sector. The pressure of each line can be set by a pressure regulator, and the flow is evaluated thanks to 

a Coriolis mass flow meter. Ten stainless steel 6/4 mm (in/out diameter) 50 m long pipes bring the 

fluid to the SPD detector inside the ALICE magnet: along its path the fluid loses ~100 mbar and 

reaches the ambient temperature (22°C). The fluid is then subcooled again in plate heat exchangers. 

Before entering the detector the flow of each line is divided in six lines inside a manifold box 

(Fig.3, right), each one of them feeding one capillary (0.5 mm ID) and the subsequent cooling duct (1). 

Inside the capillaries the fluid undergoes the required pressure drop to start evaporating. At the outlet 

of the detector the flow is recollected in another box and, after complete evaporation provided by an 

electrical heater (10), it reaches the compressor (8) that forces the gas inside the condensation tank. 

The evaporation pressure is controlled acting on the compressor speed. 

 

 
 

Fig. 2 Layout of the SPD cooling system 

 

Along the lines, before the detector, two 60 µm filter are installed in series in order to protect the 

capillaries from pollution: one is installed in the position called PP4, 6 m away from the detector and 

the other in the PP3 point, 1.5 m away from the detector. The filter installed in PP4 is reachable and 

can be regularly replaced, while the other (PP3) is not accessible without having to disassemble part of 

the ALICE experiment. 

Assuming an evaporation pressure of 1.9 bar, the minimum flow required in order to completely 

extract the 23 W of each stave is 0.3 g/s, corresponding to 1.8 g/s for one sector and 18 g/s for the 

whole detector.  
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The evaporative cooling ducts are housed in the CFSS and run underneath the on-detector 

electronics. The thermal coupling between the heat source and the cooling duct is established by the 

thermal grease (AOS 52029), also reducing the effects of anisotropic heat conduction typical of carbon 

substrates. 

 

  
 

 

 

 

The cooling duct is made by a 40 μm wall Phynox (Elgiloy) tube, a cobalt based austenitic alloy 

highly corrosion resistant. It is obtained from a 2.6 mm ID circular tube squeezed down to a flat 

profile with a thickness of 600 μm in the thin dimension (Fig. 3, center) in order to increase the 

exchange surface. This, however, reduces to 2.5 bar the maximum pressure tolerable by the pipe 

before deformation.  

 

1.2 SPD detector performances 

During the whole commissioning phase preceding the installation of the detector inside the ALICE 

experimental hall, the system showed full efficiency (100%) and a mean temperature of the sensors of 

28°C with an input pressure before the capillaries of 2.7 bar and no problem or misbehavior was 

observed. Each sector was individually tested and a thermal survey with an infrared camera was also 

performed [5]. 

After the installation in ALICE, the detector showed the first problems with 50% of sector #9 

switched off due to high temperature. After that, also other sectors started to show the same behavior, 

with the cooling flow clearly decreasing in their lines. Some attempts of increasing the flow by 

increasing the liquid pressure were only partially successful and did not allow the full recovery of the 

performance. The flow in some lines continuously kept decreasing despite the pressure rising, until 

only 60% of the detector could be switched on. 

 

2 Experimental setup 

In order to study the problems affecting the SPD cooling system, a test bench was realized at CERN to 

carry out dedicated tests. The layout includes a cooling plant and a test section (Fig. 4). The cooling 

plant is a down-scaled replica of the SPD cooling system installed in the ALICE experimental hall 

except for the absence of the compressor: in this case the evaporation pressure is not set by the 

compressor rotational speed but it is adjusted by changing the saturation temperature inside the 

condenser. 

The main part of the test section is the SPD dummy sector, which is a replica of the hydraulics of 

one of the 10 sectors that compose the SPD detector: in this case the power dissipated by the silicon 

sensors is simulated by some resistors located in the same position of the sensors. 

The dummy sector is equipped with several measurement points: six pressure sensors installed at 

the end of each capillary are used to measure the pressure drop through the capillaries. Five NTC 

temperature sensors are installed in each of the six staves: four are installed just above the cooling duct 

along the axial direction in order to evaluate the development of the fluid temperature. The fifth NTC 

is installed on the surface of the resistor in order to evaluate the temperature gradient in the normal 

direction: this is also the same position where the temperature sensors are installed in the real detector. 

Fig. 3 The cooling ducts installed on the carbon fibre support of an SPD sector (left), the cross 

section of a cooling duct (center) and the inlet manifold feeding the six capillaries of a sector (right). 
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Fig. 4 Layout of the test section setup. 

 

As can be seen in Fig. 5, the resistor is composed by a sandwich of materials in order to better 

simulate the thermal behavior of the SPD silicon sensors. 

 

 

Fig. 5 Scheme of the resistors of the dummy sector. 

 

 

3 Test campaign 

Analyzing the reduced efficiency of the detector cooling, it seemed that the filters located in PP3 were 

partially clogged, causing an important decrease of the flow and thus the increase of the pressure in 

PP4. A SEM analysis of the filters from PP4 showed traces of graphite and metals that might indicate 

a similar contamination of the downstream filters in PP3. 

In order to study the effects of small particles contaminating the fluid flowing inside the systems, a 

set of tests was performed by inserting in the lines small quantity (˞0,25 g) of sized carbon particles 

with diameter ranging from 0,4 up to 200 µm. 

The following considerations came out from these tests:   

 the clogging effect of the powder is very high; 

 a relatively small amount of powder can obstruct the flow up to levels compatible with those 

observed in the real system; 

 particles can flow across the first filter and stack on the second one. 

These results proved that obstruction caused by small particles on the PP3 filter mesh can explain 

the misbehavior of the SPD cooling system. 

Another effect that could affect the behavior of the system is a premature evaporation of the fluid 

before it enters into the capillaries, caused by the high pressure drop located in the clogged PP3 filter, 

which may imply obstruction and misdistribution of the flow in the supply manifold box described 

above. This phenomenon was clearly observed in the test bench, where transparent pipes are used to 

examine the flow patterns: usually plug/slug and stratified flow were detected, as expected for the low 

title and small velocity. 

Instabilities of the evaporation pressure and temperature were also observed when two-phase flow 

enters the capillaries, as can be seen in Fig. 6. In case of subcooled liquid at the inlet (Fig. 6, top), 

temperature profiles along the stave are steady, even increasing the power applied on the sector step 
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by step up to the nominal value. On the other hand, if two-phase flow was observed entering the sector 

(Fig. 6, bottom), temperature and pressure evaporation instabilities were registered and a higher 

temperature on the sensors was detected for the same power applied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6 Temperature profiles at increasing heat flux: normal profiles (top) and temperature instabilities 

due to two-phase flow entering the capillaries (bottom).  

 

In order to verify if a higher sub cooling of the liquid could improve the performance of the system by 

moving its state far from the saturation zone, two kinds of test were performed: first different 

temperatures were set in the thermal bath and then the sub cooling position was changed along the line 

closer to the detector. The first test was made by setting all the parameters as they are in the cavern 

with the aim to evaluate the minimum flow rate to avoid two-phase flow before the capillaries. The 

thermal bath temperature was then set at 8°C as in the real system. In this situation the flow rate was 

decreased step by step by simulating the pressure drop between PP4 and PP3 with a needle valve. In 

this situation, two-phase flow was observed starting at 1.4 g/s, which implies that in the real system if 

the flow gets below this value, a two-phase state can be expected before the sector entrance, with a 

high chance to drastically affect the flow distribution inside the capillaries. 

Another test was carried out decreasing the temperature of the bath at 4°C: in this case the 

minimum flow to prevent evaporation before the capillaries decreased to 1.25 g/s (Fig. 7). 
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The effectiveness on the flow rate of installing the sub-cooling as close as possible to the detector 

was also proven; however this option is limited on the real system because the detector closest 

accessible point is only about 6 m far away. 

An attempt to reduce the evaporation of the fluid before the capillaries was carried out also 

increasing the pressure of the fluid in PP3 point: this was obtained by increasing the evaporation 

pressure and the pressure in the return line by setting a higher saturation temperature inside the 

condenser. 

 

 
 

Fig.7 Results of the tests with sub-cooling at 4°C plotted on the C4F10 p-h diagram 

 

In this condition, although the temperature of the staves is expected to increase because of the 

higher evaporation pressure, a higher amount of power should be removed because of a better 

distribution of the flow. Once set the flow rate at 1.5 g/s with the flow regulation valve, the gas 

pressure was increased from 1.5 to 2.1 bar in steps of 100-150 mbar: the increase of gas pressure 

results in a higher amount of power that can be dissipated at constant flow rate, increasing from 85 W 

to 150 W. A confirmation of this result was then obtained repeating the same test on the real system: 

in this case, increasing the gas pressure from 1.65 to 1.9 bar, the mean temperature on the detector’s 

sensors increased from 29.6 to 32.8 °C, as expected, but it was possible to switch on 6 more modules. 

 

4 Drilling intervention 

The results described above show that a clogging of the PP3 filter installed on the lines of the SPD 

cooling system can explain the misbehavior of the system dramatically affecting the number of half-

staves that can be operated. Further studies and the very low effectiveness of all attempts to clean the 

clogged filters by counter-flow flushing and ultra-sound showed that to substantially improve the 

cooling performance the removal of the filters was mandatory. However to get access to the filters in 

PP3 a heavy effort is necessary because it requires a partial dismount of ALICE, which can be 

performed only during a long shutdown of LHC. Therefore during the last winter shutdown an 

intensive campaign of tests was launched in order to understand if the filters could be drilled while in 

place and whether this intervention would be effective to recover the cooling performance. One of the 

main problems in this kind of intervention is to reach the filter that is located 5 meters downstream 

inside the 4 mm inner diameter pipe with an 80 degrees bend in between. 

For this reason, a dedicated tool was built by welding a tungsten carbide tip (Fig. 9) at the end of a 

5 m long, 2,5 mm thick twisted stainless steel wire. The shape of the tip was developed step by step in 

order to improve the drilling procedure avoiding the breaking of the tip and/or the filter and paying 

attention to limit the number of residual particles, since also very small particles flowing towards the 

detector can obstruct the capillaries severely damaging the detector. 

A careful cleaning procedure was developed and optimized, consisting of particles aspiration at the 

drilling point performed by inserting up to the filter a plastic pipe connected to a vacuum pump; 

magnetic particles collection performed by inserting up to the filter a strong magnet welded at the end 

of a 5 m long stainless steel twisted wire and counter flow cleaning with liquid C6F14. The whole 

procedure was extensively tested in order to prove its effectiveness: in particular, the cleaning 
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procedure was tested by placing a filter after the drilled filter and flowing liquid towards the detector 

like during normal operation: the filter was then analyzed at the electronic microscope in order to 

evaluate the number and the size of the remaining particles. At the end of the optimization process, the 

number of particles detected was very small (5-6) and their dimension was well below the limit to 

become dangerous for the capillaries. 

 

 
                                                  

Fig.9 Tool used for the drilling intervention. 

 

The first intervention on the detector was performed on February 2012 and it was very successful: 

3 out of 10 sectors were drilled and in all of them the flow increased up to nominal values allowing 

powering all the half-staves. Another intervention was performed during the following LHC technical 

stop on 2 other sectors confirming the previous results and increasing the cooling efficiency up to 

100%. The enhanced flow rate inside the lines of the cooling system increased the number of 

operating half-staves from 75 up to 116, also allowing a better configuration of the modules and safer 

working conditions. The detector has successfully passed the first stress tests after the intervention and 

it is now under observation for the long term behavior. 

 

Conclusions 

The paper reports the results of the test campaign carried out at CERN in order to explain the 

misbehaviors observed in the cooling system of the SPD detector installed in the ALICE experiment 

dramatically affecting the performance of the detector. In particular a continuous decreasing of the 

flow in some lines of the system was observed after its installation in the ALICE experimental hall. 

These tests showed that a partial clogging of a 60 µm filter installed in the cooling lines and not 

reachable without a partial disassembling of the whole experiment could be the cause of the 

anomalous behavior observed.  

Some attempts to solve the problem are also described but no one of these, in the end, was found to 

be effectively implemented in the real cooling system. As results of the test campaign a drilling 

intervention was then scheduled after a careful study and an extensive experimentation. This critical 

intervention allowed restoring the nominal flow rate in the lines of the SPD cooling system 

significantly improving the efficiency of the detector. 
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