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Abstract. We argue that to solve the foundational problems of quantum theory one has to
first understand what it means to quantize a classical system. We then propose a quantization
method based on replacement of deterministic c-numbers by stochastically-parametrized c-
numbers. Unlike canonical quantization, the method is free from operator ordering ambiguity
and the resulting quantum system has a straightforward interpretation as statistical modification
of an ensemble of classical trajectories. We then develop measurement without wave function
collapse à la pilot-wave theory and point out new testable predictions.

1. Introduction
While pragmatically quantum theory has shown spectacular successes, its foundation with
respect to quantum-classical correspondence and measurement problem, despite many attempts,
still resist unambiguous explanation. We believe that these difficulties originate from the
(physical) ambiguity of the quantization scheme through which many successful quantum
systems are obtained from the corresponding classical systems. In other words, to solve the
foundational problems of quantum theory, we have to first understand what is meant by
quantizing a classical system. In the canonical quantization, one first writes the classical
dynamical equation in Cartesian coordinate. Quantization is then done by promoting the pair of
canonical conjugate variables into the corresponding Hermitian operators, ◦ 7→ ◦̂, and Poisson
bracket is replaced by the commutator: {◦, ?} 7→ [◦̂, ?̂]/ih̄, where h̄ is the reduced Planck
constant. This procedure is usually said of as replacement of commuting c-number (classical
number) by non-commuting q-number (quantum number or Hermitian operators).

Such direct substitution rule however implies formal, conceptual, and foundational problems.
First, given a classical quantity, the above rule in general leads to infinitely many different
alternatives of Hermitian operators due to operator ordering ambiguity. Second, the physical
meaning of the resulting quantum systems can not be deduced “directly” from the quantization
processes: the quantization does not tell us the physical meaning of the Schrödinger equation,
nor offers it an explanation to the physical origin of Planck constant. In other words, the
quantum-classical correspondence is not physically transparent. Hence, unlike the original
classical system, we need to further introduce a physical interpretation to the resulting quantum
system. Unfortunately, there are many physical interpretations with the same empirical
prediction: standard Copenhagen interpretation, pilot-wave theory, many worlds etc. There is
then the foundational problem that some of the existing interpretations suffer from the infamous
measurement problem [1]. In the present paper, we shall discuss a new method of quantization
which is free from the above mentioned problems.
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2. Quantum fluctuations as statistical modification of classical ensemble
parametrized by unbiased hidden random variable
2.1. General formalism
Let us consider a classical dynamics with N degrees of freedom whose configuration coordinate
is q = (q1, . . . , qN ). Generalization to infinite degrees of freedom is straightforward at least
formally. In classical mechanics, all the dynamical information is contained in the Lagrangian
function L = L(q, q̇), where q̇

.
= dq/dt is the velocity. For simplicity, let us assume that the

Lagrangian is non-singular. From the Hamilton principle, one then has the Euler-Lagrange
equation (d/dt)(∂L/∂q̇i) − ∂L/∂qi = 0, i = 1, . . . , N . To go to the Hamiltonian formalism,
first, the canonical momentum is defined as p

i

.
= ∂L/∂q̇i, i = 1, . . . , N , which, due to non-

singularity of the Lagrangian, can be inverted to give q̇i = q̇i(q, p; t), i = 1, . . . , N . The classical
Hamiltonian is defined as H(q, p)

.
= pq̇(q, p; t) − L(q, p; t). The Euler-Lagrange equation can

then be put into the Hamilton equation

q̇i =
∂H

∂p
i

, ṗ
i

= −∂H
∂qi

, i = 1, . . . , N. (1)

Now let us consider a congruence of curves, {q(t;u), p(t; v)}, satisfying the Hamilton equation,
where u = {u1, . . . , uN} and v = {v1, . . . , vN} are parameters of the congruences. Namely, each
pair of the value of (u, v) corresponds to a single member of the congruence. Let us then assume
that there is a one-parameter family of hypersurfaces S(q; t) = τ , where S is a real-valued
function and τ is a parameter, satisfying the following relation:

pi = ∂qiS. (2)

Then, it can be shown that S(q; t) also satisfies the following Hamilton-Jacobi equation [2]:

∂tS +H(q, ∂qS) = 0. (3)

Conversely, defining p as in Eq. (2), the Hamilton-Jacobi equation of (3) can be shown to lead
to the Hamilton equation of (1).

Now let us consider an ensemble of copies of the system. Then, if the probability density of
the position of the ensemble of trajectories in configuration space is denoted by ρ(q; t), it must
also satisfy the following continuity equation:

∂tρ+ ∂q · (q̇(S)ρ) = 0, (4)

where the functional form of the velocity q̇ with respect to S is determined by substituting Eq.
(2) into the left equation of (1)

q̇i(S) =
∂H

∂p
i

∣∣∣
p=∂qS

, i = 1, . . . , N. (5)

Hence, the dynamics and statistics of the ensemble of trajectories is given by solving Eqs. (3),
(4) and (5).

Let us develop a general scheme to modify the above classical dynamics of the ensemble of
trajectories [3]. To do this, let us introduce two real-valued functions Ω(q, λ; t) and S(q, λ; t)
where λ is a non-vanishing hidden random variable, λ 6= 0. Ω(q, λ; t) is the joint-probability
density of the fluctuations of q and λ so that the marginal probability densities are given by

ρ(q; t)
.
=

∫
dλΩ, P (λ)

.
=

∫
dqΩ, (6)
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where we have assumed that the probability density of λ is stationary.
Now let us postulate the following rule of replacement of (deterministic) c-number by

(stochastic) c-number to be applied to Eqs. (3) and (4) governing the dynamics of the ensemble
of trajectories:

ρ 7→ Ω, ∂qS 7→ ∂qS +
λ

2

∂qΩ

Ω
, ∂tS 7→ ∂tS +

λ

2

∂tΩ

Ω
+
λ

2
∂q · q̇(S), (7)

where the functional form of q̇(S) in the third line is determined by the classical Hamiltonian
as in Eq. (5). That is, we just substitute S in Eq. (5) with S. Let us show that the
above rule of replacement has a consistent classical correspondence. First, expanding as
∆F = ∂tF∆t+∂qF ·∆q, using the last two equations of (7) one gets ∆S 7→ ∆S+(λ/2)(∆Ω/Ω+
∂q · q̇(S)∆t). In the limit of S → S, the second term on right hand side has to be vanishing
to give ∆Ω + Ω∂q · q̇(S)∆t = 0. This is just the classical continuity equation so that one has
ρ =

∫
dλΩ→ ρ.

The next question is then what is the statistics of λ. We shall show in the next subsection by
taking a concrete example that the above modification of classical dynamics of an ensemble
of trajectories leads to the Schrödinger equation with unique quantum Hamiltonian if the
probability density of λ is given by

P (λ) =
1

2
δ(λ− h̄) +

1

2
δ(λ+ h̄). (8)

Namely λ is a binary unbiased random variable which can take values ±h̄. Extension to a more
general continuous hidden random variable satisfying the unbiased condition

P (λ) = P (−λ), (9)

will be given in Section 4, suggesting a very small yet finite correction to the prediction of
quantum mechanics.

2.2. Particle in external potentials
Let us apply the above general formalism to a single particle subjected to external potentials.
The Lagrangian is given by L = 1

2gij(q)q̇
iq̇j + A · q̇ − V (q), where A = (A1, A2, A3) and V are

the vector and scalar potentials, respectively, gij(q) is an invertible matrix which might depend
on q (for example in the case of particle with position-dependent mass widely used in solid state
physics), and summation over repeated indices is implied. Writing the inverse of gij as gij so
that gikg

kl = δli, the momentum is related to the velocity as

q̇i = gij(p
j
−Aj). (10)

so that the classical Hamiltonian takes the following form:

H(q, p) =
gij(q)

2
(p
i
−Ai)(pj −Aj) + V. (11)

The Hamilton-Jacobi equation of (3) then reads

∂tS +
gij

2
(∂qiS −Ai)(∂qjS −Aj) + V = 0. (12)

On the other hand, putting Eq. (2) into Eq. (10), the functional relation between q̇ and S is
given by

q̇i(S) = gij(∂qjS −Aj). (13)
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Inserting this into Eq. (4), one thus has

∂tρ+ ∂qi

(
(gij(∂qjS −Aj))ρ

)
= 0. (14)

Hence, the dynamics and statistics of the classical trajectories are determined by solving Eqs.
(12), (13) and (14). On the other hand, using Eq. (13), Eq. (7) becomes

ρ 7→ Ω, ∂qS 7→ ∂qS +
λ

2

∂qΩ

Ω
, ∂tS 7→ ∂tS +

λ

2

∂tΩ

Ω
+
λ

2
∂qig

ij(∂qjS −Aj), (15)

Now let us apply the rule of replacement of Eq. (15) to Eqs. (12) and (14). First, imposing
the first two equations of Eq. (15) into Eq. (14), one has

∂tΩ + ∂qi

(
gij(∂qjS −Aj)Ω

)
+
λ

2
∂qi(g

ij∂qjΩ) = 0. (16)

On the other hand, inserting the last two equations of (15) into Eq. (12), one has, after
arrangement,

∂tS +
gij

2
(∂qiS −Ai)(∂qjS −Aj) + V − λ2

2

(
gij
∂qi∂qjR

R
+ ∂qig

ij ∂qjR

R

)
+
λ

2Ω

(
∂tΩ + ∂qi

(
gij(∂qjS −Aj)Ω

)
+

λ

2m
∂qi(g

ij∂qjΩ)
)

= 0, (17)

where we have defined R
.
=
√

Ω and used the following identity

1

4

∂qiΩ∂qjΩ

Ω2
=

1

2

∂qi∂qjΩ

Ω
−
∂qi∂qjR

R
. (18)

Inserting Eq. (16) into Eq. (17), the second line is vanishing to give

∂tS +
gij

2
(∂qiS −Ai)(∂qjS −Aj) + V − λ2

2

(
gij
∂qi∂qjR

R
+ ∂qig

ij ∂qjR

R

)
= 0. (19)

We have thus pair of coupled equations (16) and (19) which are parametrized by λ.
Now let us assume that Ω(q, λ; t) has the following symmetry:

Ω(q, λ; t) = Ω(q,−λ; t), (20)

so that the probability density of λ is unbiased, P (λ) =
∫
dqΩ(q, λ; t) = P (−λ). In this case,

S(q, λ; t) and S(q,−λ; t) satisfy the same differential equation of (19): namely, the last term of
Eq. (19) is not sensitive to the signs of λ. Hence, if initially one has S(q, λ; 0) = S(q,−λ; 0),
then the symmetry will be preserved for all the time

S(q, λ; t) = S(q,−λ; t). (21)

These properties can then be used to eliminate the last term of Eq. (16): taking the case when
λ is positive, add to it the case when λ is negative and divided by two, one gets

∂tΩ + ∂qi

(
gij(∂qjS −Aj)Ω

)
= 0. (22)

We have thus a pair of coupled equations (19) and (22) which are still parametrized by λ.
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Next, since λ is assumed to be non-vanishing, one can define the following complex-valued
function:

Ψ(q, λ; t)
.
= R exp

( i

|λ|
S
)
. (23)

It differs from the Madelung transformation in which S is divided by |λ| instead of h̄. Equations
(19) and (22) can thus be recast into the following modified Schrödinger equation:

i|λ|∂tΨ =
1

2
(−i|λ|∂qi −Ai)gij(q)(−i|λ|∂qj −Aj)Ψ + VΨ. (24)

Here we have assumed that the fluctuations of λ in space and time are ignorable as compared
to that of S. Let us proceed to assume that Ω is separable Ω(q, λ; t) = ρ(q; t)P (λ), where P (λ)
takes the form given by Eq. (8). In this case, Eq. (24) reduces to the celebrated Schrödinger
equation

ih̄∂tΨQ(q; t) = ĤΨQ(q; t), with ΨQ(q; t) =
√
ρe

i
h̄
SQ(q;t), and SQ(q; t) = S(q,±h̄; t), (25)

where the quantum Hamiltonian Ĥ is given by

Ĥ =
1

2
(p̂i −Ai)gij(q)(p̂j −Aj) + V, with p̂i

.
= −ih̄∂qi . (26)

From Eq. (25) we know that the Born’s statistical interpretation of wave function is valid by
construction for all time, ρ(q; t) = |ΨQ(q; t)|2.

Let us mention that there are many approaches to derive Schrödinger equation with quantum
Hamiltonian of the type of Eq. (26) [4]. The advantage of our approach is that it can be applied
directly as soon as the classical Hamiltonian (or Lagrangian) is given, if a solution exists. Our
method of deriving the Schrödinger equation can thus be regarded as to provide a method of
quantization of a classical Hamiltonian. For the case gij = mδij where m is constant so that
gij = δij/m, we regain the result of canonical quantization. For the case where gij depends on
q, then in contrast to canonical quantization which leads to infinite different alternatives with
different ordering of operators, our model imposes a unique ordering. The same ordering is
also obtained in Ref. [5]. However in contrast to the method reported there which can only be
applied to classical Hamiltonian without linear term in classical momentum, our method can be
applied to such a case.

Moreover, in this specific case where Ω is separable Ω(q, λ; t) = ρ(q; t)P (λ) and P (λ) is given
by Eq. (8), Eq. (22) becomes

∂tρ+ ∂qi

(
gij(∂qjSQ −Aj)ρ

)
= 0. (27)

We can then identify an “effective” velocity field given by

vie = gij(∂qjSQ −Aj). (28)

Since SQ(q; t) is just the phase of the Schrödinger wave function, it turns out that the above
effective velocity field is equal to the “actual” velocity of particle (beable) in pilot-wave theory
[6]. This allows us to draw a conclusion that our model will reproduce the prediction of pilot-
wave theory on statistical wave-like interference pattern in slits experiment and tunnelling over
potential barrier [7]. However unlike pilot-wave theory, in our model, the dynamics is strictly
stochastic, the wave function is not physically real-field and the Born’s statistical interpretation
of wave function is valid for all time by construction.
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3. Measurement without wave function collapse and external observer
Now let us apply the quantization method developed in the previous Section to a class of von
Neumann measurement model. To do this, let us consider the dynamics of two interacting
particles, the first particle with coordinate q1 represents the system whose properties being
measured, and the second particle with coordinate q2 represents the measuring apparatus. Let
us first discuss how classical dynamics describes the whole system. Let us suppose that one
wants to measure a quantity A1 = A1(q1, p1

). To do this, let us choose the following classical
measurement-interaction Hamiltonian:

H = gA1(q1, p1
)p

2
, (29)

where g is a coupling constant. Let us further assume that the interaction is impulsive so that
the individual free Hamiltonians of the particles are ignorable.

In classical mechanics we first have dA1/dt = {A1, H} = 0. A1 is thus conserved during the
measurement-interaction. The idea is then to correlate the value of A1(q1, p1

) with the classical
momentum of the apparatus p

2
while keeping the value of A1(q1, p1

) unchanged. On the other
hand, one also has dq2/dt = {q2, H} = gA1, which can be integrated to give

q2(T ) = q2(0) + gA1T, (30)

where T is the time span of the measurement-interaction. The value of A1 prior to the
measurement can thus be inferred from the observation of the initial and final values of q2. In
other words, the position of the second particle plays the role of the pointer of the measurement
apparatus. The above model is of course far from realistic. Especially, our model excludes the
irreversibility of the registration process which can only be done by realistic apparatus plus bath
with large degree of freedom. See for example Ref. [8] for a realistic model of measurement.
Here we shall focus on the issue of wave function collapse.

Now let us consider an ensemble of identically prepared system whose classical Hamiltonian
is given by Eq. (29), and quantize it as in the previous section. For concreteness, without
loosing generality, let us consider measurement of angular momentum. To make explicit the
three dimensional nature of the problem, let us put q1 = (x1, y1, z1). First let us consider the
measurement of z−part angular momentum of the first particle

Lz1 = x1py1
− y1px1

, (31)

where p
x1

is the conjugate momentum of x1 and so on. The measurement-interaction classical

Hamiltonian of Eq. (29) thus reads

H l = gLz1p2
= g(x1py1

− y1px1
)p

2
. (32)

The Hamilton-Jacobi equation of (3) then becomes

∂tS + g(x1∂y1S − y1∂x1S)∂q2S = 0. (33)

On the other hand, substituting Eq. (32) into Eq. (5), the classical velocity field is given by

ẋ1(S) = −gy1∂q2S, ẏ1(S) = gx1∂q2S, ż1(S) = 0, q̇2(S) = g(x1∂y1S − y1∂x1S). (34)

The continuity equation of (4) then becomes

∂tρ− gy1∂x1(ρ∂q2S) + gx1∂y1(ρ∂q2S) + gx1∂q2(ρ∂y1S)− gy1∂q2(ρ∂x1S) = 0. (35)
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Next, keeping in mind Eq. (34), the rule of replacement of Eq. (7) thus becomes

ρ 7→ Ω, ∂x1S 7→ ∂x1S +
λ

2

∂x1Ω

Ω
, ∂y1S 7→ ∂y1S +

λ

2

∂y1Ω

Ω
, ∂q2S 7→ ∂q2S +

λ

2

∂q2Ω

Ω
,

∂tS 7→ ∂tS +
λ

2

∂tΩ

Ω
+ gλ(x1∂y1∂q2S − y1∂x1∂q2S). (36)

Let us proceed to see how Eq. (36) modifies Eqs. (33) and (35). Imposing the first four
equations of (36) into Eq. (35) one obtains, after a simple calculation

∂tΩ− gy1∂x1(Ω∂q2S) + gx1∂y1(Ω∂q2S) + gx1∂q2(Ω∂y1S)

−gy1∂q2(Ω∂x1S)− gλ(y1∂x1∂q2Ω− x1∂y1∂q2Ω) = 0. (37)

On the other hand, imposing the last four equations of (36) into Eq. (33), one has, after an
arrangement

∂tS + g(x1∂y1S − y1∂x1S)∂q2S − gλ2
(
x1
∂y1∂q2R

R
− y1

∂x1∂q2R

R

)
+
λ

2Ω

(
∂tΩ− gy1∂x1(Ω∂q2S) + gx1∂y1(Ω∂q2S) + gx1∂q2(Ω∂y1S)− gy1∂q2(Ω∂x1S)

−gλ(y1∂x1∂q2Ω− x1∂y1∂q2Ω)
)

= 0, (38)

where we have again defined a real-valued function R
.
=
√

Ω and used the identity of Eq. (18).
Substituting Eq. (37) into Eq. (38), the last term in the bracket vanishes to give

∂tS + g(x1∂y1S − y1∂x1S)∂q2S − gλ2
(
x1
∂y1∂q2R

R
− y1

∂x1∂q2R

R

)
= 0. (39)

The dynamics of ensemble of trajectories is then determined by pair of coupled Eqs. (37) and
(39) which are parametrized by the hidden random variable λ.

Again, assuming the symmetry of Eq. (20), one can see that S(q, λ; t) and S(q,−λ; t) satisfy
the same differential equation of (39). Hence, assuming that initially S(q, λ; 0) = S(q,−λ; 0),
one obtains S(q, λ; t) = S(q,−λ; t). As in the previous section, this can then be used to eliminate
the last term on the left hand side of Eq. (37) to give

∂tΩ− gy1∂x1(Ω∂q2S) + gx1∂y1(Ω∂q2S) + gx1∂q2(Ω∂y1S)− gy1∂q2(Ω∂x1S) = 0. (40)

Further, defining complex-valued wave function as in Eq. (23), Eqs. (39) and (40) can then be
rewritten into the following modified Schrödinger equation:

i|λ|∂tΨ = −gλ2(x1∂y1 − y1∂x1)∂q2Ψ = g
λ2

h̄2 L̂z1 p̂2Ψ, (41)

where L̂z1
.
= −ih̄(x1∂y1 − y1∂x1) and p̂2

.
= −ih̄∂q2 are the quantum mechanical z−angular

momentum and linear momentum operators pertaining to the wave functions of the first and
second particle, respectively, and again we have assumed that the spatiotemporal fluctuations
of λ is ignorable as compared to that of S. Finally, assuming that Ω(q, λ; t) = ρ(q; t)P (λ) is
separable and taking the case when P (λ) is given by Eq. (8), the above modified Schrödinger
equation reduces to

ih̄∂tΨQ = ĤlΨQ, with Ĥl
.
= gL̂z1 p̂2, (42)

where ΨQ(q; t) is the Schrödinger wave function defined as in Eq. (25). This result can be
extended to the measurement of angular momentum along the x− and y− directions by cyclic
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permutation of (x, y, z). In this case, L̂z1 in Eq. (42) is replaced by L̂x1 and L̂y1 , the quantum
mechanical angular momentum operators along the x− and y− directions, respectively. We have
thus reproduced the results of canonical quantization as a specific case of our hidden variable
model. Further, in this case, Eq. (40) becomes

∂tρ− gy1∂x1(ρ∂q2SQ) + gx1∂y1(ρ∂q2SQ) + gx1∂q2(ρ∂y1SQ)− gy1∂q2(ρ∂x1SQ) = 0, (43)

from which we can extract an effective velocity field which is equal to the actual velocity field
of particles in pilot-wave theory. This then allows us to follow all the argumentation of pilot-
wave theory to describe measurement without wave function collapse and external observer
reproducing the prediction of quantum mechanics.

As is discussed in Ref. [3], the above method can also be applied to measurement of
position and momentum. Let us remark however that unlike measurement of linear and angular
momentum, the measurement of position is special. Namely, we can show that in this case the
pair of classical quantities {ρ, S} and the corresponding quantum quantities {ρ, SQ} satisfy the

same Schrödinger equation with quantum Hamiltonian Ĥ = gq1p̂2. Hence, there is no quantum
correction to the original classical equations. In other words, unlike measurement of linear and
angular momentum, the measurement of position can reveal the value of the position of the
particle prior to measurement. This implies important consequence. Recall that the results
of measurement of linear and angular momentum (or measurement of any physical quantities)
are inferred from the position of the second particle, namely the apparatus pointer (in reality,
any model of measurement should be reducible to position measurement). Then one might
argue that one needs another particle, the third particle, as the second apparatus to probe the
position of the second particle (the first apparatus). Proceeding in this way thus will lead to
infinite regression: one will further need the forth particle (the third apparatus) to probe the
position of the third particle (the second apparatus) and so on. In our model, however, since
the quantum treatment of the position measurement is equivalent to the classical treatment
revealing the position of the particle prior-measurement, then the second measurement on the
position of the second particle (the first apparatus) is in principle not necessary. Namely, the
results of position measurement by the second, third, forth apparatuses and so on are all equal
to each other.

4. Possible correction to quantum mechanical prediction
We have shown in the previous two Sections that the prediction of quantum mechanics is
reproduced corresponding to a specific distribution of hidden random variable λ given by Eq.
(8). It is then imperative to see the implications if one allows |λ| to fluctuate around h̄ with
small yet finite width. In this case, instead of using Eqs. (25) or (42), one has to work with
Eqs. (24) or (41), and regard them as the natural generalization of the Schrödinger equation.

Let us first discuss measurement of angular momentum in an ensemble of identically prepared
systems so that the initial wave function of the system (first particle) ψ(q1) is given by one of

the eigenfunctions of the angular momentum operator ψ(q1) = φl(q1), L̂z1φl = lφl, where l is the
eigenvalue. Let us denote the initial wave function of the apparatus (second particle) by ϕ0(q2),
assumed to be sufficiently localized. The total initial wave function of the system-apparatus is
thus given by

Ψ(q; 0) = φl(q1)ϕ0(q2). (44)

We have thus made an idealization that the initial wave function is independent of λ. Recall
that in this case, according to the standard quantum mechanics, each single measurement event
will give outcome l with certainty (probability one). This is one of the postulates of quantum
mechanics in addition to the Schrödinger equation.
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Let us solve Eq. (41) with the initial condition given by Eq. (44). To do this, let us
assume that after time-span t of measurement-interaction, the wave function can be written as
Ψ(q, λ; t) = φl(q1)ϕ(q2, λ; t). Inserting this into Eq. (41) and keeping in mind that L̂z1φl = lφl,

one has ∂tϕ + gl′∂q2ϕ = 0, with l′(λ) = |λ|
h̄ l. It can then be directly integrated with the

initial condition ϕ(q2, λ; 0) = ϕ0(q2) to give ϕ(q2, λ; t) = ϕ0(q2 − gl′t). One thus finally has
Ψ(q, λ; t) = φl(q1)ϕ0(q2−g|λ|lt/h̄). Hence, in each single measurement event, the wave function
of the apparatus becomes correlated to the initial state of the system and is shifted by an amount
of gl′(λ)t. This means that at the end of each single measurement event, the initial position of
the second particle (the apparatus pointer) is shifted uniformly and randomly as

q2(t, λ) = q2(0) + gl′(λ)t. (45)

Now let us interpret the above formalism in a similar way as with classical measurement. As
discussed in the previous section, in the latter case, after time-span of measurement-interaction
t, the position of the apparatus-particle is shifted as q2(t) = q2(0) + gLz1t. From this, one infers
the result of measurement to be given by Lz1 . Similarly, it is natural to interpret Eq. (45)
that the outcome of each single measurement event is given by l′(λ) = |λ|l/h̄. Hence, instead
of obtaining a sharp value l as postulated by the standard quantum mechanics, one obtains
a random value l′(λ) which depends on the value of the hidden variable λ. One can also see
that when the distribution of λ is given by Eq. (8) so that λ = ±h̄, then the randomness
of the outcome of single measurement disappears and one regains the prediction of quantum
mechanics: l′(±h̄) = l with probability one. For general distribution of λ satisfying Eq. (9), we
have thus a random correction to the prediction of quantum mechanics: even when the initial
wave function of the system is given by one of the eigenfunctions of the angular momentum
operator, the result of each single measurement will still be random with statistical properties
determined by the distribution of λ. This observation in turn leads to a finite broadening of
the spectral line purely induced by the hidden random variable. Detailed elaboration of these
observations is reported somewhere else [9].

Next, let us notice that the generalized Schrödinger equation of Eqs. (24) or (41) is still linear.
Hence, given two solutions Ψi(q, λ; t) =

√
Ω exp(iS/|λ|), i = 1, 2, one can construct new solution

through linear superposition Ψ12 = aΨ1 +bΨ2, where a and b are complex numbers. Calculating
the probability density of the position, assuming that Ωi is separable Ωi(q, λ; t) = ρi(q; t)P (λ),
the interference term then takes the following form

I12(q; t) ∼ √ρ1ρ2

∫
dλP (λ) exp

( iS1

|λ|
− iS2

|λ|

)
, (46)

which, for general type of P (λ) = P (−λ) and Si(q, λ; t), will give results different from the
quantum mechanics. In particular if P (λ) takes a form of symmetric log-normal function then
there will be Gaussian suppression of the quantum mechanical interference even in a closed
system [10].

5. Conclusion and discussion
We have proposed a quantization method based on replacement of c-number by another c-number
parametrized with hidden random variable. The result of canonical quantization is reproduced if
the hidden random variable λ can only take discrete values ±h̄ with equal probability. Of course
λ can be a function of other continuous hidden random variables. Unlike canonical quantization,
the method is free from operator ordering ambiguity and has a straightforward interpretation as
statistical modification of classical dynamics of ensemble of trajectories. Hence, the quantum-
classical correspondence is kept physically transparent in the quantization processes. The
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classical limit of the Schrödinger equation is given by the classical dynamics of an ensemble
of trajectories.

In particular, for all the systems considered, we can identity an “effective” velocity field which
turns out to be equal to the “actual” velocity of the particle in pilot-wave theory. This then allows
us to conclude that the model reproduces the statistical wave-like interference pattern in slits
experiments; and further we can borrow all argumentation of pilot-wave theory on measurement
without wave function collapse and external classical observer. However unlike pilot-wave theory,
the model is stochastic, the wave function is not physically real and the Born’s statistics is valid
for all time by construction. Moreover, the construction is unique given the classical Lagrangian
or Hamiltonian. Finally, assuming that |λ| fluctuates around h̄ with a very small yet finite width,
the model predicts a small correction to the prediction of quantum mechanics. This might lead
to precision tests of quantum mechanics against our hidden variable model.

It is then imperative to ask how our model will deal with Bell’s no-go theory. Since our model
reproduces the prediction of quantum mechanics for specific distribution of λ, then for this case,
it must violate Bell inequality which implies that it is non-local in the sense of Bell [11], or there
is no global Kolmogorovian space which covers all the probability spaces of the incompatible
measurement in EPR-type of experiments [12], or both. We believe that this question can be
discussed only if we know the physical origin of the the general rules of replacement postulated
in Eq. (7). To this end, a discussion on the derivation of the rules from Hamilton-Jacobi theory
with random constraint will be given somewhere else [13].
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