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Abstract. We demonstrate that a single reconnection of two quantum vortices can lead to
the creation of a cascade of vortex rings. Our analysis, motivated by the analytical results in
localized induction approximation, involved high resolution Biot-Savart and Gross-Pitaevskii
simulations. The latter showed that the rings cascade starts on the atomic scale, with rings
diameters orders of magnitude smaller than the characteristic line spacing in the tangle, and
thus capable of penetrating the tangle and annihilating on the boundaries. That way such
process can be an efficient decay mechanism for sparse or moderately dense vortex tangle at
very low temperatures.

1. Introduction

Turbulence in 4He II is the state when the superfluid is penetrated by a tangle of quantum
vortices of very small thickness. Such a tangle is created when the relative velocity of the
superfluid and normal fluid component exceeds a certain threshold. The relative motion can
be driven either mechanically, like in the spin-up experiment, or thermally as counterflow
caused by non-uniform heating of the 4He II mass. One of many issues related to superfluid
turbulence is the question posed by Feynman (2) about the mechanism of quantum turbulence
decay in the low temperature limit, T → 0. All explanations of such free decay in a nearly
frictionless situation invoke reconnections of quantum vortices as a starting point. The original
Feynman’s picture was reminiscent of the Richardson’s cascade in classical turbulence. Quantum
vortex loop would self-reconnect yielding two loops of smaller length. Such repeatedly occurring
process would eventually transform the original vortex loop of macroscopic length into a sea of
quantum excitations such as phonons and rotons. The currently prevailing view is that the energy
contained in the tangle is transferred to smaller scales by a cascade of Kelvin waves triggered
by reconnections and subsequently propagating along vortices (3; 4; 5; 6). The mechanism we
propose here is also based on reconnections. We argue that vortices that are nearly antiparallel,
when they reconnect, give rise to a sequence of very small vortex rings. The smallest rings in
this cascade would be dissipated by friction and the somewhat larger rings could escape from the
tangle disappearing into the container wall. The unusual characteristics of this sequence of rings
is that the smallest rings are created first. Therefore, such type of reconnection, when it occurs,
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bypasses the cascade-type transfer from macroscopic scales to microscopic scales by generating
microscopic scales first.

Our simulation on three different levels of physical description of 4He II (LIA, BS and GP)
clearly show that such sequences of vortex rings do indeed emerge from the reconnections of nearly
antiparallel quantum vortices (1). Simple estimates of their importance in the overall dissipation
of the tangle at T → 0 suggest that they can play a role, at least in some parameter regimes
(temperature and tangle density). The greatest remaining uncertainty is the frequency of such
events in a real tangle and the statistics of the total line length in the created sequence. In our
presentation we will give geometrical arguments and show the results of numerical simulations
giving the statistics of the line-length loss.

2. Three levels of description of quantum vortices

The phenomenon of superfluidity is related to the Bose-Einstein condensation, and the flow in
the superfluid in the 0K limit can be described with the Gross-Pitaevskii equation

i~∂tψ =

(
− ~2

2m
∇2 + g |ψ|2 − µ

)
ψ, ψ =

√
ρ exp(iφ), (1)

where ψ is a 3D, complex scalar field of the order parameter. The flow itself is then given by the
gradient of phase, u = ~

m∇φ. Although this fact implies potential flow, vorticity can still exist
in connection with density singularities called quantum vortices. They are very thin (the vortex
core radius as is of the order of 1 in superfluid 4He) and have constant circulation κ = h/m.

This way, quantum vortex is almost perfect realisation of the vortex filament concept. Thus,
in absence of the external driving agents, the flow can be fully understood as the motion of a
‘gas’ of vortex lines moving in the flow they induce:

u(x) =
κ

4π

∫
s′ × (x− s)dξ
|x− s|3

, (2)

where s(ξ) denotes the curve representing vortex. This is called the Biot-Savart approximation
(BS).

Obviously this theory fails to describe the event of vortex collision. Then, guided by the results
of the GP considerations, one assumes that vortices reconnect. Because of this fact, results of the
numerical simulations in BS regime might be dependent on the details of the phenomenological
procedure used to handle reconnections. While on the other hand GP simulations can’t handle
structures larger than few hundred as due to computational complexity, one must blend the
results from both regimes to obtain reasonable numerical view on any reconnection-dependent
phenomenon.

The Biot-Savart regime gives an occasion to easily generalise the theory up to the lambda point
by introducing modifications to the vortex reaction on the flow depending on the temperature-
dependent parameter α. This takes into account ‘friction’ appearing at non-zero temperatures
which causes the lines to shrink and eventually decay if not pinned to the boundaries.

The BS approximation can be further simplified by assuming that the motion of a fragment
of the vortex line is mainly driven by the velocity induced by its local neighbourhood, giving
purely geometrical theory, called Local Induction Approximation (LIA). In dimensionless units
and Frenet–Serret frame, the equation of motion for vortex reads

ṡ = cb̂+ cαn̂, (3)

where c is the local curvature and b̂ and n̂ are the binormal and normal versors, respectively.
Superfluid turbulence is the state when the fluid is penetrated by a random tangle of numerous

quantum vortices. It can be generated in the laboratory and is known to decay effectively even
at very small temperatures, which implies that there exists a non-friction mechanism of decay.
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3. Vortex loops cascade

In our analysis, we are interested in the angle- or corner-like structures which can be considered
as an approximation of the configuration occurring immediately after the reconnection of two
straight lines. When the initial vortex configuration consists of two half-lines with a common
origin, the line motion is equivalent to a homothety s(ξ, t) = S(l)

√
βt, with l := ξ/

√
βt. Analytic

solutions of such evolution in the LIA approximation have been found by Buttke (7), for T = 0,
and Lipniacki (8; 9; 10), for T > 0. As showed by Svistunov (11) for T = 0 and later extended
by us for the general case, such solutions may contain self-crossings of the vortex filament for
certain values of temperature and sufficiently small (8.5◦) asymptotic angle between the lines far
away, see Figure 1A.
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Figure 1. A) Self-similar solution in the LIA approximation for γ = 5◦ and α = 0.01. B)
Corresponding solution in the BS regime. Grey line shopws the initial condition. C) The critical
angle γLIA(α) below which self-similar solutions contain self-crossings and γBS(α) below which
the Biot-Savart solutions generate vortex rings.

Such solutions are not consistent with the assumptions behind the LIA approximation from
which they are derived, but their existence suggests that the reconnection of two straight vortex
lines at a sufficiently small angle may lead to a series of vortex self-reconnections and the creation
of a cascade of vortex rings of increasing diameter. We have confirmed the creation of such a
scenario by performing a series of numerical Biot-Savart simulations starting form a configuration
of slightly rounded angle, see Figure 1B. Due to non-local interactions, the critical angle for
that process (γBS) predicted from the BS simulations is slightly higher and less dependent on
temperature than that computed under the LIA and reaches 10.4◦ in 0K, see Figure 1C. In
the T = 0 limit, the radii of consecutive rings are following geometric sequence, with quotient
inversely proportional to the reconnection angle – starting from one for almost antiparallel lines
and reaching infinity when the angle approaches critical angle.

We have checked whether this mechanism persists when one starts the simulation from the
configuration of two straight vortex lines inclined at small angle and separated by a small distance
instead of rounded angle (which is an idealised effect of their reconnection). Sample propagation
of such setting is showed on Figure 2A. One can see that the vortex lines are first approaching
each other forming a pyramid-like structure; then they collide and reconnect in the tip point,
reconnect and form two rounded-angle-like structures which then undergo vortex loop separation
analogous to this previously observed. Our analysis show that the angle at the vertex for both
of them is equal to the asymptotic angle, for angles in the range analysed in this study (0-15◦).
Thus, the critical angle in this setting is the same as for idealised case.
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Finally, we have performed simulations in Gross-Pitaevskii regime to verify that this
phenomenon is not artefact caused by phenomenological resolving of reconnections in Biot-Savart
regime. We have been simulating the the behaviour of two straight vortices inclined at small
angle (1-7◦), with initial separation of 4as. Example evolution for 4◦ inclination is shown on
Figure 2B.

A B

Figure 2. A) Biot-Savart and B) Gross-Pitaevskii simulations of the reconnection of two initially
straight vortex lines in T = 0K, inclined at 5◦ angle. The initial separation is 2 × 103as in the
BS and 4as in the GP simulation.

These simulations have confirmed the course of events observed in the BS regime (Figure 2A)
— the creation of a pyramid-like structure, the reconnection in its tip and the creation of a series
of vortex loops. Moreover, it showed that the first produced rings are of an atomic scale, having
radii of about 3as.

4. Conclusion

In this work we analyse the faith of a two reconnecting vortex filaments in the case of small
reconnection angles. Our analysis was motivated by analytic results obtained in Localised
Induction Approximation (LIA), in which self-similar solutions corresponding to a shape of vortex
lines after reconnection proved to have self-crossings. Based on both fine-scale Biot-Savart regime
simulations, we have shown that at more exact level this effect corresponds to a production of
a series of vortex loops of an increasing diameter, provided that the asymptotic angle between
reconnecting lines is smaller than 10.4◦. Because the Biot-Savart simulations of the processes
heavily dependent on reconnection may be biased by the implementation of the simulator, we
have also analysed the problem in the Gross-Pitaevskii regime. The results of those simulations
have confirmed the previous findings, moreover showed that the first vortex rings produced in
the process have diameters of an order of vortex core thickness. This way this phenomenon leads
to a direct transfer of energy to even smallest scales; furthermore, small rings have a greater
chance of penetrating the tangle and anihilate on container boundary.
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