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Abstract. We present direct multi-point velocity measurements of the two-dimensional
velocity fields in a cylindrical Rayleigh-Bénard convection cell using the particle image
velocimetry (PIV) technique over the Rayleigh number range 5.9 × 109 . Ra . 1.1 × 1011.
The longitudinal integral length scale of the horizontal and vertical velocity fields are obtained
at the cell center, near the cell sidewall, and near the bottom plate of the cell, respectively. In
addition, the Reynolds number based on these scales, ReLx and ReLz, are obtained. It is found
that all measured ReL scales as ReL ∼ Raβ , with the exponent β ≃ 0.5, except ReLx for the
horizontal velocity at the cell center, which has a β ≃ 0.75. The local dissipation scale field η at
the three different places are also studied. Our results reveal two types of universality of η. The
first one is that, for the same flow, the probability density functions (PDF) of η are insensitive
to turbulent intensity and large-scale inhomogeneity and anisotropy of the system. The second
is that the small-scale dissipation dynamics in buoyancy-driven turbulence can be described
by the same models developed for homogeneous and isotropic turbulence. However, the exact
functional form of the PDF of the local dissipation scale is not universal with respect to different
types of flows, but depends on the integral-scale velocity boundary condition, which is found to
have an exponential, not Gaussian, distribution in turbulent Rayleigh-Bénard convection.

1. Introduction

Fluid turbulence exhibits intermittent nature ubiquitously, such as intense spikes of velocity
gradients and energy dissipation rates in both space and time. Such behaviors are usually studied
quantitatively by investigating the cascades of turbulent kinetic energy transferred continuously
from large to small scales (Frisch, 1995; Sreenivasan & Antonia, 1997; Ishihara et al., 2009).
In the classical Kolmogorov’s theory (Kolmogorov, 1941), this cascade process would stop at
the smallest length scale of turbulence, known as the Kolmogorov dissipation scale ηK , below
which energy is dissipated into heat. Based on dimensional arguments, ηK can be derived as
ηK = (ν3/⟨ϵ⟩)1/4, where ν is the kinematic viscosity of the fluid. As a mean length obtained
from the mean energy dissipation rate ⟨ϵ⟩, however, ηK precludes the intermittent nature of
turbulence. To establish a connection between the dissipation scale and the intensive and
localized turbulent events, Paladin & Vulpiani (1987) put forward the idea of a local dissipation
scale, i.e. the local Reynolds number associated with an eddy of length scale η is of order 1:

Reη = η|δηv|/ν ∼ 1. (1)
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Table 1. Experimental conditions and parameters for measurements performed at cell center.
Lx and Lz are the longitudinal integral length scales, respectively, in the horizontal and vertical
directions. ReLx and ReLz are Reynolds numbers based on Lx and Lz, respectively. The scales
η0x and η0z are calculated as η0x = LxRe

−0.72
Lx and η0z = LzRe

−0.72
Lz , and the averaged scale

η0 = (η0x + η0z)/2. ηK is the global Kolmogorov scale.

No. Ra Lx Lz ReLx ReLz η0x η0z η0 ηK ∆l/η0
(m) (m) (mm) (mm) (mm) (mm)

1 5.9× 109 0.091 0.066 219 136 1.77 1.83 1.80 1.30 0.33
2 1.1× 1010 0.103 0.070 379 217 1.34 1.37 1.36 1.07 0.44
3 2.9× 1010 0.111 0.069 717 367 0.91 0.93 0.92 0.79 0.64
4 5.7× 1010 0.130 0.062 1238 428 0.72 0.74 0.73 0.63 0.81
5 1.1× 1011 0.161 0.070 2068 709 0.61 0.58 0.59 0.51 1.00

Here, δηv = vr(r + η) − vr(r) is the longitudinal velocity increment over a separation η. Such
a definition implies a local balance between the inertial force (δηv)

2/η and the viscous force
ν|δηv|/η2 at a particular point in space and time. The resulting η is therefore a field that
fluctuates in both space and time and hence may be used to reflect intermittency. Recently,
the probability density function (PDF) of η, Q(η), within the range 0 < η < L (L is the
integral length scale of the turbulence) was proposed analytically by Yakhot (2006, 2008) based
on the Mellin transform of structure functions and by Biferale (2008) based on the multifractal
formalism. Both analytical predictions consist of distributions of scales varying from very fine
sub-Kolmogorov scales, related to the very intense velocity gradients in the form of slender
vortex filaments with diameters of order ηK or even less, to those much larger than ηK . Results
obtained later from high-resolution numerical simulations of homogeneous and isotropic box
turbulence (Schumacher, 2007; Schumacher, Sreenivasan & Yakhot, 2007) and experiments in
turbulent pipe flows (Bailey et al., 2009) were both found to agree well with the theoretical
distributions. These results seem to suggest a universality of the smallest-scale fluctuations
around ηK , but further tests in different types of turbulent flows are needed.

In this paper we want to generalize these ideas into the thermally-driven turbulence, an
important class of turbulent flows that plays an essential role in many natural processes. The
flow at hand is turbulent convection in a fluid layer heated from below and cooled from above, i.e.
turbulent Rayleigh-Bénard convection (RBC), which has become a paradigm for understanding
the thermally-driven turbulence (Ahlers et al., 2009; Lohse & Xia, 2010). Cascades of velocity
and temperature fluctuations in such a system have been studied extensively in the past two
decades (Lohse & Xia, 2010). Here, we report measurements of the integral-scale Reynolds
number scaling and the local dissipation scale distribution at three representative locations in a
cylindrical turbulent RBC cell. Some of the results concerning local-dissipation scale presented
here have been previously reported elsewhere (Zhou & Xia, 2010), in the present paper we
provide more experimental details and measured parameters. In addition, we report new results
concerning the integral-scale Reynolds number scaling.

2. Experimental setup and parameters
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Table 2. Experimental conditions and parameters for measurements performed near the cell
sidewall.

No. Ra Lx Lz ReLx ReLz η0x η0z η0 ηK ∆l/η0
(m) (m) (mm) (mm) (mm) (mm)

1 5.9× 109 0.031 0.151 58 568 1.59 1.47 1.53 1.30 0.39
2 1.1× 1010 0.031 0.145 87 816 1.19 1.08 1.14 1.07 0.52
3 2.0× 1010 0.033 0.149 117 945 1.03 1.00 1.02 0.88 0.58
4 2.9× 1010 0.034 0.147 147 1091 0.89 0.89 0.89 0.79 0.66
5 4.0× 1010 0.029 0.143 144 1340 0.77 0.75 0.76 0.71 0.78
6 5.7× 1010 0.033 0.156 196 1820 0.69 0.65 0.67 0.63 0.88
7 8.1× 1010 0.033 0.146 229 1946 0.62 0.58 0.60 0.56 0.99
8 9.5× 1010 0.031 0.134 258 2160 0.54 0.49 0.52 0.54 1.15
9 1.1× 1011 0.031 0.155 252 2577 0.54 0.50 0.52 0.51 1.14

Table 3. Experimental conditions and parameters for measurements performed near the bottom
plate.

No. Ra Lx Lz ReLx ReLz η0x η0z η0 ηK ∆l/η0
(m) (m) (mm) (mm) (mm) (mm)

1 5.9× 109 0.093 0.029 353 67 1.29 1.32 1.30 1.30 0.45
2 1.1× 1010 0.101 0.028 496 94 1.09 1.03 1.06 1.07 0.56
3 2.0× 1010 0.109 0.029 695 122 0.92 0.86 0.89 0.88 0.67
4 2.9× 1010 0.105 0.028 883 152 0.74 0.72 0.73 0.79 0.81
5 4.0× 1010 0.104 0.028 966 174 0.69 0.64 0.67 0.71 0.90
6 5.7× 1010 0.105 0.028 1098 206 0.63 0.57 0.60 0.63 0.99
7 8.1× 1010 0.103 0.028 1315 246 0.55 0.50 0.52 0.56 1.13
8 9.5× 1010 0.113 0.029 1599 273 0.52 0.48 0.50 0.54 1.18

The convection cell is similar to that used in previous experiments (Sun et al., 2005), but
has a different size (Zhou & Xia, 2010; Zhou et al., 2011). Briefly it is a vertical cylinder with
top and bottom copper plates and plexiglas sidewall, with its height H and inner diameter both
being 50 cm. During the experiment the entire cell was wrapped by several layers of Styrofoam
and the cell was tilted by a small angle of about 0.5◦ so that the measurements were carried
out within the vertical plane of the large-scale circulation. The mean temperature of water was
kept at 29◦, corresponding to a Prandtl number Pr = ν/κ = 5.5. The experiment covered the
range 5.9× 109 . Ra . 1.1× 1011 of the Rayleigh number Ra = αg∆TH3/νκ, with g being the
gravitational acceleration, ∆T the temperature difference across the fluid layer, and α and κ
being, respectively, the thermal expansion coefficient and the thermal diffusivity of the working
fluid (water). The velocity field was measured by the particle image velocimetry (PIV) technique
with a measuring area of 3.7 × 3.7 cm2 and a spatial resolution ∆l = 0.59 mm, corresponding
to 63 × 63 measured velocity vectors. Hollow glass spheres of 10-µm-diameter were used as
seed particles. The PIV measurements were performed at three different places of the cell: its
center, 2 cm from the sidewall at mid-height, and 2 cm above the center of the bottom plate.
Denote the laser-illuminated plane as the xz plane, the horizontal velocity component u(x, z)
and the vertical one w(x, z) were then obtained. Each measurement lasted 3 hours in which a
total of 25 000 two-dimensional vector maps were acquired with a sampling rate ∼ 2.3 Hz. The
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Figure 1. The Ra-dependence of Lx/H (open symbols) and Lz/H (sold symbols) measured
at cell center (red circles), near the cell sidewall (blue up-triangles), and near the bottom plate
(green down-triangles). The lines represent power-law fits to the data: Lx/H ∼ Ra0.18±0.05 and
Lz/H ∼ Ra−0.0016±0.05 at the cell center, Lx/H ∼ Ra0.0028±0.04 and Lz/H ∼ Ra−0.026±0.04 near
the sidewall, and Lx/H ∼ Ra0.043±0.04 and Lz/H ∼ Ra−0.0046±0.04 near the bottom plate.
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Figure 2. The Ra-dependence of ReLx and ReLz measured at cell center (red circles), near the
cell sidewall (blue up-triangles), and near the bottom plate (green down-triangles). Reside and
Rebot are also plotted for comparison. The lines represent power-law fits to the data.

flow conditions and parameters for each measurement are provided in tables 1, 2, and 3 for the
center, sidewall, and bottom-plate measurements, respectively.

3. Results and discussions

3.1. Properties of integral scales
A key response of the RBC system to the imposed Ra is the extent of turbulence, characterized
by a Reynolds number. Experimentally, the magnitude of the velocity field at different locations
and the circulation frequency of the large-scale circulation are often used to define the system
Reynolds number (see, for a recent review, Ahlers et al., 2009). However, the study on the
relationship between Ra and the Reynolds number based on the integral length scale, ReLi,
defined as

ReLi =
σLiLi

ν
, (2)
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is very limited. Here, i = x, y, and z, Li is the longitudinal integral length scale obtained by
integrating the longitudinal autocorrelation function of the ith component of the velocity, and
σLi = ⟨|vi(x+Li)−vi(x)|2⟩1/2 is the RMS value of the longitudinal velocity increment across the
scale Li. In the present study, the technique of spatial multi-point velocity measurements, i.e.
the PIV technique, enables us to measure directly Li and σLi, and hence ReLi. Figure 1 shows
the Ra-dependence of Lx/H and Lz/H at the three different locations. It is seen that Lx/H
increases with increasing Ra at the cell center, whereas all other Lx/H and Lz/H are essentially
independent of Ra within the error bar. A possible reason for this is that with increasing Ra
the sloshing motion of the large-scale circulation (Xi et al., 2009; Zhou et al., 2009) may increase
the coherence of the horizontal motion of the fluid at the cell center, resulting in an increases of
Lx/H of the flow field. Figure 2 shows in a log-log plot the measured ReLx and ReLz vs Ra at
the three different locations. The lines are power-law fits to the data, which give

At the cell center,

{
ReLx = (9.9± 1.0)× 10−6Ra0.75±0.05

ReLz = (9.8± 1.0)× 10−4Ra0.53±0.05.
(3)

Near the cell sidewall,

{
ReLx = (8.4± 0.8)× 10−4Ra0.50±0.04

ReLz = (8.4± 0.8)× 10−3Ra0.49±0.04.
(4)

Near the bottom plate,

{
ReLx = (3.7± 0.4)× 10−3Ra0.51±0.04

ReLz = (1.1± 0.1)× 10−3Ra0.49±0.04.
(5)

One sees that all measured ReLi scales as Ra1/2 except ReLx obtained at the cell center,
which scales as Ra0.75. Such a large scaling exponent between ReLx and Ra may be due to the
increase of Lx/H with increasing Ra. For comparison with the traditional Reynolds number
of the large-scale circulation, we also plot in figure 2 the Ra-dependence of Reside and Rebot.
Here, Reside = wsmH/ν and Rebot = ubmH/ν with wsm being the maximum vertical velocity
near the cell sidewall and ubm the maximum horizontal velocity near the bottom plate. The
best power-laws to the data give

Reside = (0.052± 0.005)Ra0.49±0.04

Rebot = (0.034± 0.003)Ra0.50±0.04,
. (6)

which share the same scaling exponents as those previously found in cylindrical (Lam et al.,
2002) and rectangular (Xia et al., 2003, 2005) cells. It can be seen that except for ReLx at
the cell center, all ReLx and ReLz share the same scaling exponents as Reside and Rebot within
experimental uncertainty, but Reside and Rebot have a much larger magnitude.

It is usually assumed that velocity increments δLv across the integral length scale L are
Gaussian distributed, i.e. P (δLv) ∼ exp(−δLv

2/2). However, such an assumption of Gaussianity
has not been verified in the turbulent RBC system. To test this, we measured the global velocity
field over an area of 49× 49 cm2 (∆ℓ = 7.76 mm) in the convection cell using the PIV method
and obtained the integral-scale velocity increments at the three locations. Figure 3 shows the
PDF of δLw at cell center and near the sidewall and that of δLu near the bottom plate. One finds
surprisingly that the measured PDFs exhibit decaying exponential tails at all three locations,
rather than Gaussian distribution (dashed curve in the figure). This is different from all known
experiments and simulations of isotropic turbulence. To offer a plausible explanation, we note
that the turbulent flow in our system is driven by buoyancy in the vertical direction, which is also
believed to be the dominant force governing the cascade dynamics above the so-called Bolgiano
scale (Lohse & Xia, 2010). In the time domain, it has been found that the Bolgiano timescale
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Figure 3. PDFs of the vertical velocity increments δLw at cell center (left) and near the sidewall
(center) and that of the horizontal velocity increments δLu near the bottom plate (right) at
Ra = 9.5× 1010 and Pr = 5.5. The dashed line is a Gaussian distribution for reference.
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Figure 4. PDFs of the local dissipation scales for the horizontal and vertical velocity
components, Q(ηx/η0) (open circles) and Q(ηz/η0) (solid triangles), measured at different
locations and for Ra = 5.9 × 109 (a) and 5.7 × 1010 (b). For clarity, results obtained near the
sidewall and near the bottom plate are shifted upwards by one and two decades, respectively,
with respect to those obtained at cell center.

in turbulent RBC is of order one second (Ching et al., 2004; Zhou & Xia, 2008), which is only
a factor of 2 or 3 smaller than the integral timescale. The observed exponential distributions of
δLu and δLw may thus come from the buoyancy-induced intermittency, which is then transferred
from large to small scales.

3.2. Properties of local dissipation scales
The PDF Q(η) is determined from the measured velocity fields in the following way. We first fix
a length ℓ that is an integral multiple of the spatial resolution ∆l, i.e. ℓ = n∆l. The longitudinal
velocity increments across the separation ℓ in both horizontal and vertical directions, δℓu and
δℓw, are then calculated for each velocity vector measured at each discrete time t. If either of
the obtained values of ℓ|δℓu|/ν and ℓ|δℓw|/ν are between 0.9 and 2 Bailey et al. (2009), they
contribute to the occurrence of local dissipation at a scale ℓ = η. Q(η) is then determined as

Q(η) = qn(η)/N(η), (7)

where N(η) is the total number of calculated velocity increments over a separation η, n(η) is the
count of events among N(η) that satisfy the local balance at scale η, and q is a normalization
parameter determined from

∫
Q(η)dη = 1. In the following, three PDFs are presented. Q(ηx) is

obtained from the u component only and Q(ηz) from the w component. Whereas, Q(η) contains
contributions from both the horizontal and vertical velocity components.
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Figure 5. The measured Q(η/η0) for various values of Ra.

Figures 4(a) and (b) show log-log plots of Q(ηx/η0) (open circles) and Q(ηz/η0) (solid
triangles) measured at the three locations. As one can see in tables 1, 2, and 3, the scales
η0x = LxRe

−0.72
Lx and η0z = LzRe

−0.72
Lz (Schumacher, 2007) are nearly the same at all locations

and for all Ra. Therefore, we use the averaged scale η0 = (η0x + η0z)/2 to rescale the results.
One sees that at each measuring location the distributions obtained in horizontal and vertical
directions coincide excellently with each other within all measured scales, suggesting that the
turbulent dynamics of the dissipative range in buoyancy-driven turbulence is isotropic. As the
flow is driven by buoyancy in the vertical direction, this result is somewhat unexpected and
surprising, especially for data obtained in the plume-dominated regions near the sidewall and
near the bottom plate where the turbulent flow is highly anisotropic. The results shown in
figure 4 reveal that such buoyancy-induced anisotropy cannot be captured efficiently by Q(η)
for velocity components along different directions. Hereafter, we will discuss only Q(η).

Figure 5 shows Q(η/η0) for all values of Ra. The figure appears to show that the shape of
Q(η) is independent of Ra. However, as we shall see below, predictions of theoretical models, i.e.
equations (8) and (9), both show a dependence on ReL (thus Ra). This is because comparing
to the dependence on η, the dependence on ReL is weak and over the parameter range of our
experiment this weak ReL-dependence cannot be manifested clearly in the measured Q(η). With
the measured Q(η/η0), one can estimate a mean dissipation scale from its first moment. Here,
we find that ⟨η⟩ = 7.1η0, 7.7η0, and 8.1η0 for distributions obtained at cell center, near the
sidewall, and near the bottom plate, respectively. These mean values of η are close to 10ηK ,
which is located at the lower end of the inertial range (Sun et al., 2006; Zhou et al., 2008). Note
that because of the limited resolution our present results could not properly resolve the left tail
of Q(η/η0) when Ra & 5.7× 1010 [figure 4(b)].

In figure 6, we compare Q(η/η0) measured at the three representative locations: at nearly
homogeneous and isotropic cell center (circles) and in the plume-dominated regions near the
sidewall (up-triangles) and near the bottom plate (down-triangles). It is seen that the three
distributions are nearly identical with each other. This suggests that Q(η/η0) is insensitive to
the large-scale inhomogeneity of turbulent RBC, further indicating the universality of Q(η/η0)
(for the same type of flow). Nevertheless, one can also see that Q(η/η0) measured in the plume-
dominated regions exhibit a less-steep left tail than that measured at cell center. An increase of
the probabilities at the smallest values of η/η0 indicates the enhanced velocity gradients at these
scales and hence is a manifestation of the increased level of small-scale intermittency. As the
Ra-dependence of Q(η/η0) is weak, this feature could be attributed to the presence of coherent
structures, like plumes, in the near-wall regions. In the figure, numerical and experimental data
from homogeneous isotropic box turbulence (Schumacher, 2007) and from turbulent pipe flows
(Bailey et al., 2009) are also shown. (The two data were both taken from figure 4 of Bailey et al.
(2009) using a data capturing software.) Good agreements can be seen in the right tails, whereas,
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according to Eqs. (8), (9), (10), and (11) obtained with ReL = 217 (the Reynolds number
obtained at cell center for Ra = 1.1× 1010).

for the left tail at small η, our results exhibit much higher probabilities. This suggests a much
higher level of small-scale intermittency possessed by our thermal turbulence in comparison to
those of box turbulence and turbulent pipe flows, although the nominal Reynolds numbers for
our flow are comparable or even smaller than the latter two cases. This may be understood
by the presence of thermal plumes, which have a characteristic dimension of thermal boundary
layer that is smaller than ηK .

The theoretical Q(η) can be derived in several ways. Using the Mellin transform of structure
functions, Yakhot (2006) showed that

Q(η) = 2/{πη[b log(L/η)]1/2}
∫ ∞

0
dx exp[−x2 −

{log[
√
2xReL
c

(
η

L
)a+1]}2

4b log(L/η)
], (8)

within the range 0 < η < L, where a = 0.383, b = 0.0166, and c = O(1) is a fitting parameter
(Schumacher, 2007; Bailey et al., 2009). Based on the multifractal formalism and using the
Batchelor parametrization, Biferale (2008) obtained

Q(η̃) =

∫
dhA4−h−D(h)Re

[3h+3D(h)−10]/4
L η̃1−h−D(h) exp[−0.5A2(1−h)Re

(3h−1)/2
L η̃−2(1+h)], (9)

where A = O(1) is a fitting parameter, h is the local scaling (or Hölder) exponent, D(h) is the

multifractal dimension spectrum, and η̃ = η/ηK with ηK = LRe
−3/4
L .1 In figure 6 we compare

directly the theoretical Q(η/η0) according to equations (8) and (9) with our measured results.2

1 In the evaluations of euqations (9) and (11), the log-Poisson spectrum (She & Leveque, 1994), D(h) =
3(h − 1

9
)/ log( 2

3
)[log(3( 1

9
− h)/2 log( 2

3
)) − 1] + 1, was chosen and the integral was evaluated within the range

hmin < h ≤ hmax, where hmin = 1
9
and hmax = 0.38 is obtained such that D(h) reaches its maximum value of 3

at h = hmax.
2 Note that both the parameters A and c essentially control the peak position of the theoretically-predicted Q(η),
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Here we see that our measured Q(η) have much higher values at small η than both theoretical
predictions.

To understand such a discrepancy, we note that both theoretical approaches (Yakhot, 2006;
Biferale, 2008) used the assumption that velocity increments δLv across the integral length scale
L are Gaussian distributed, i.e. P (δLv) ∼ exp(−δLv

2/2). Specifically, the left tail of Q(η) is
dominated by contributions from the stretched exponential in equation (9), which stems from the
Gaussian-distributed integral-length-scale velocity. However, in the present system, figure 3 has
shown that the measured PDFs of δLv exhibit decaying exponential tails at all three locations,
rather than Gaussian distribution. Motivated by this, we now modify the two models proposed
by Yakhot and Biferale, respectively. Following the same derivations as in references Yakhot
(2006) and Biferale (2008), but instead using the exponential distribution P (δLv) ∼ exp(−|δLv|)
for the integral-length-scale velocity increments, we obtain, respectively,

Q(η) = 1/{η[bπ log(L/η)]1/2}
∫ ∞

0
dx exp[−x−

{log[xReL
c

(
η

L
)a+1]}2

4b log(L/η)
], (10)

and

Q(η̃) =

∫
dhA4−h−D(h)Re

[3h+3D(h)−10]/4
L η̃1−h−D(h) exp[−A(1−h)Re

(3h−1)/4
L η̃−(1+h)]. (11)

Figure 6 shows direct comparison of Q(η/η0) according to equations (10) (blue solid line) and
(11) (red solid line) and our measured results. The excellent agreement between the experimental
and theoretical results for nearly all measured η can be seen, except for equation (10) at large η.
This excellent agreement with both predictions suggests that the models developed for isotropic
and homogeneous turbulence can also be applied to buoyancy-driven turbulence, like turbulent
RBC. It is in this sense that our results reveal that the local dissipation scale dynamics is
universal, whereas the exact shape of the local dissipation scale PDF (specifically, its left part)
obviously depends on the integral-scale velocity boundary condition.

4. Acknowledgments

This work was supported by the Research Grants Council of Hong Kong SAR (No. CUHK403807
and 404409). Q. Z. thanks the support of Natural Science Foundation of China (No. 11002085),
“Pu Jiang” project of Shanghai (No. 10PJ1404000), “Chen Guang” Project of Shanghai (No.
09CG41), and Shanghai Program for Innovative Research Team in Universities.

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in
turbulent Rayleigh-Bénard convection. Rev. Mod. Phys. 81, 503–537.

Bailey, S. C. C., Hultmark, M., Schumacher, J., Yakhot, V. & Smits, A. J. 2009
Measurement of local dissipation scales in turbulent pipe flow. Phys. Rev. Lett. 103, 014502.

Biferale, L. 2008 A note on the fluctuation of dissipative scale in turbulence. Phys. Fluids
20, 031703.

in the two models respectively. Here, we choose A = 4 and c = 2 to fit our experimental results. If different
values of A and c were chosen, the predictions of the two models would fit the data of turbulent pipe flow and box
turbulence much better than they appear in figure 6 (see, e.g., Schumacher, 2007; Biferale, 2008; Bailey et al.,
2009). These fittings are not shown here to avoid overcrowding the figure and also because the purpose here is to
compare the theoretical predictions with our measured data.

13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 042016 doi:10.1088/1742-6596/318/4/042016

9



Ching, E. S. C., Chui, K. W., Shang, X.-D., Qiu, X.-L., Tong, P. & Xia, K.-Q. 2004
Velocity and temperature cross-scaling in turbulent thermal convection. J. Turbulence 5, 27.

Frisch, U. 1995 Turbulence: the legacy of A. N. Kolmogorov . Cambridge Univ. Press.

Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds number isotropic
turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165–180.

Kolmogorov, A. N. 1941 The local structure of turbulence in the incompressible viscous fluid
for very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 30, 301–305.

Lam, S., Shang, X.-D., Zhou, S.-Q. & Xia, K.-Q. 2002 Prandtl number dependence of the
viscous boundary layer and the Reynolds numbers in Rayleigh-Bénard convection. Phys. Rev.
E 65, 066306.

Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh-Bénard convection.
Annu. Rev. Fluid Mech. 42, 335–364.

Paladin, G. & Vulpiani, A. 1987 Degrees of freedom of turbulence. Phys. Rev. A 35, 1971–
1973.

Schumacher, J. 2007 Sub-Kolmogorov-scale fluctuations in fluid turbulence. Europhys. Lett.
80, 54001.

She, Z.-S. & Leveque, E. 1994 Universal scaling laws in fully developed turbulence. Phys.
Rev. Lett. 72, 336–339.

Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence.
Annu. Rev. Fluid Mech. 29, 435–472.

Sun, C., Ren, L.-Y., Song, H. & Xia, K.-Q. 2005 Heat transport by turbulent Rayleigh-
Bénard convection in 1 m diameter cylindrical cells of widely varying aspect ratio. J. Fluid
Mech. 542, 165–174.

Sun, C., Zhou, Q. & Xia, K.-Q. 2006 Cascades of velocity and temperature fluctuations in
buoyancy-driven thermal turbulence. Phys. Rev. Lett. 97, 144504.

Xi, H.-D., Zhou, S.-Q., Zhou, Q., Chan, T.-S. & Xia, K.-Q. 2009 Origin of the
temperature oscillation in turbulent thermal convection. Phys. Rev. Lett. 102, 044503.

Xia, K.-Q., Sun, C. & Zhou, S.-Q. 2003 Particle image velocimetry measurement of the
velocity field in turbulent thermal convection. Phys. Rev. E 68, 066303.

Xia, K.-Q., Zhou, S.-Q. & Sun, C. 2005 Statistics and scaling of the velocity field in
turbulent thermal convection. In Progress in Turbulence (ed. J. Peinke, A. Kittel, S. Barth &
M. Oberlack), pp. 163–170. Springer.

Yakhot, V. 2006 Probability densities in strong turbulence. Physica D 215, 166–174.

Yakhot, V. 2008 Dissipation-scale fluctuations and mixing transition in turbulent flows. J.
Fluid Mech. 606, 325–337.

Zhou, Q., Li, C.-M., Lu, Z.-M. & Liu, Y.-L. 2011 Experimental investigation of longitudinal
space-time correlations of the velocity field in turbulent Rayleigh-Bénard convection. J. Fluid
Mech. in press.

Zhou, Q., Sun, C. & Xia, K.-Q. 2008 Experimental investigation of homogeneity, isotropy and
circulation of the velocity field in buoyancy-driven turbulence. J. Fluid Mech. 598, 361–372.

Zhou, Q., Xi, H.-D., Zhou, S.-Q., Sun, C. & Xia, K.-Q. 2009 Oscillations of the large-scale
circulation in turbulent Rayleigh-Bénard convection: the sloshing mode and its relationship
with the torsional mode. J. Fluid Mech. 630, 367–390.

Zhou, Q. & Xia, K.-Q. 2008 Comparative experimental study of local mixing of active and
passive scalars in turbulent thermal convection. Phys. Rev. E 77, 056312.

Zhou, Q. & Xia, K.-Q. 2010 Universality of local dissipation scales in buoyancy-driven
turbulence. Phys. Rev. Lett. 104, 124301.

13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 042016 doi:10.1088/1742-6596/318/4/042016

10




