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Abstract. Negative Magnus lift acting on a sphere rotating about the axis perpendicular to an
incoming flow is investigated using large-eddy simulation at three Reynolds numbers of 1.0×104,
2.0× 105, and 1.14× 106. The numerical methods adopted are first validated on a non-rotating
sphere and the spatial resolution around the sphere is determined so as to reproduce the laminar
separation, reattachment, and turbulent transition of the boundary layer observed at around the
critical Reynolds number. In the rotating sphere, positive or negative Magnus effect is observed
depending on the Reynolds number and the rotating speed imposed. At the Reynolds number
in the subcritical or supercritical region, the direction of the lift force follows the Magnus effect
to be independent of the rotational speed tested here. In contrast, negative lift is observed at
the Reynolds number at the critical region when particular rotating speeds are imposed. The
negative Magnus effect is discussed in the context of the suppression or promotion of boundary
layer transition around the separation point.

1. Introduction

The Magnus effect is the phenomenon by which a clockwise-rotating sphere or cylinder subjected
to a left-to-right flow experiences a lift force (Magnus, 1853). While the mechanism is usually
explained in terms of the inviscid flow, the same phenomenon is also applied to explain the
curious and unpredictable motions of spinning balls used in sports such as baseball, volleyball,
and football. The phenomenon becomes complicated by viscous effects in the flow as the
boundary layer on the surface of the ball separates due to an adverse pressure gradient.
Generally, the difference in the relative velocity of the sphere surface with respect to the incoming
uniform flow makes the boundary layer on the forward-moving side (upper side in this context)
thinner than that on the backward-moving side. Thus, the boundary-layer separation is delayed
on the forward-moving side, while it is accelerated on the backward-moving side. As a result, the
wake flow is distorted downward, and a positive lift force acts on the sphere based on the principle
of action and reaction. In addition, the laminar-turbulent transition of the boundary layer
complicates the phenomenon even more, as it causes the separation point to shift considerably
downstream along the surface. Thus, the drag of the non-rotating sphere substantially decreases
around the critical Reynolds number. As a result of the interaction of these separation and
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transition phases, some experimental studies have reported a negative lift force on a rotating
sphere, which contradicts the Magnus effect, at some specific rotational speed around the critical
Reynolds number (Maccoll, 1928; Davies, 1949; Taneda, 1957). However, at the same time, it
is indeed difficult to measure the minute positive or negative lift force on the rotating sphere
in experiments without the influence of supporting rods or wires. The difficulty appears as a
quantitative disagreement among the existing experimental data regarding the magnitude of
the lift force, the Reynolds-number range, or the rotational speed where the negative Magnus
effect is observed. Hence, little knowledge has so far been obtained concerning the mechanism
of the negative Magnus effect. Subsequently, the objectives of this study are to investigate
characteristics of the boundary layer when the negative Magnus lift occurs on a rotating by
using a numerical simulation.

2. Numerical Methods

2.1. Computational domain and boundary conditions
The computational domain consisted of a rectangular duct and the sphere was fixed in the center
of the domain as shown in Fig. 1. Thirty prism-mesh layers were inserted on the sphere surface
to resolve the velocity profile of the boundary layer. The spatial resolution around the sphere
was determined so as to reproduce the drag reduction at the critical Reynolds number. The
other region of the domain was divided by tetrahedral grids except for several prism layers on
the inlet, outlet, and sidewall boundaries. An overview of the spatial resolution near the sphere
at each Reynolds number is shown in Fig. 2. A no-slip boundary condition was adopted on the
sphere surface and the clockwise rotation of the sphere was represented by a rotating velocity
distribution on the surface. A uniform velocity profile without any perturbation was imposed
as the inlet boundary condition. The gradient-free condition for the pressure and velocity was
applied to the duct outlet. The difficulty of the numerical treatment on the target flow lies in the
fact that the grid resolution in the vicinity of the surface should be fine enough for the normal
surface direction to capture the boundary-layer distortion during the separation phenomena. In
addition, the grid allocation should be homogeneous along the flow direction to properly capture
the transition to turbulence. Thus, the spherical or cylindrical coordinate (Constantinescu &
Squires, 2004; G. Yun & Choi, 2006) was avoided, and instead, an unstructured finite volume grid
was adopted. For that reason, if we assume an incompressible Newtonian flow, the continuity
and the Navier-Stokes equations were discretized based on the vertex-centered finite volume
method.

Figure 1. Coordinate system and
geometry of computational domain.

13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 032021 doi:10.1088/1742-6596/318/3/032021

2



Figure 2. Spatial resolution of numerical grids allocated around the sphere: (a)Rep=1.0× 104;
(b)Rep=2.0× 105; (c)Rep=1.14× 106.

2.2. Numerical conditions
The non-dimensional rotational speed, or more conventionally called the spin parameter, is
defined as the ratio of the circumferential velocity to the incoming flow velocity as Γ = Dpω/U0,
in whichDp is the sphere diameter, ω is the rotating angular velocity, and U0 is the incoming flow
velocity. According to previous experimental studies, the negative Magnus effect was observed
at a Γ less than 0.5. Thus, two non-dimensional velocities of Γ = 0.2 and 1 were considered in
this study. On the other hand, as noted above, a relatively large discrepancy was acknowledged
concerning the Reynolds number at which the negative lift was observed (Maccoll, 1928; Davies,
1949). As the Reynolds numbers Rep = U0Dp/ν (ν is the kinetic viscosity), 1.0× 104, 2.0× 105,
and 1.14 × 106 in the subcritical, critical, and supercritical flow ranges (Achenbach, 1972),
respectively, were considered. To investigate the high Reynolds-number turbulent flow including
transition, large-eddy simulation (LES) with a dynamic subgrid-scale model was adopted as a
numerical method.

2.3. Validation of methods
The numerical schemes and grids described in the previous section were first validated on the
flow around a non-rotating sphere. Fig. 3 plots the drag coefficient profiles obtained for each
Reynolds-number condition, in which experimental data (Achenbach, 1972; Schlichting, 1955;
Wieselsberger, 1922) are also shown for reference. In addition to the three Reynolds numbers
indicated in previous section, two additional Reynolds-number conditions of Rep = 1.6 × 105

and 2.4× 105 were also used to see whether our numerical method properly reproduces the drag
crisis in the critical flow range, in which we used the same numerical grids as for Rep = 2.0×105.
The drag coefficient CD is defined as CD = FD/(

1
2ρU

2
0A), where FD, ρ, and A are the drag force,

fluid density, and the projected area of the sphere, respectively. The drag crisis phenomena in
which the drag substantially decreases as the Reynolds number increases from 1×105 to 3×105

is remarkable, while quantitative disagreement among the three experimental data parts is not
negligible. The critical Reynolds number Rep = 3.7 × 105 observed by Achenbach (1972) is
about twice that of Wieselsberger (1922). Our numerical results qualitatively reproduce the
drag crisis and show good agreement with those measured by Wieselsberger (1922). From these
results, we can say that our simulation properly captured the flow characteristics around the
critical Reynolds number.

2.4. An effect of the rotating speed on the lift coefficient
Fig. 4 shows the time-averaged velocity magnitude and the pressure distribution on the sphere
surface for three Reynolds numbers and Γ = 0.2. The positive lift of the sphere is verified by
the distorted wake for the downward direction in the case of the conventional Magnus effect
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Figure 3. Drag coefficient as a
function of the Reynolds number in
subcritical, critical and supercriti-
cal flow range.

(Rep = 1.0 × 104 and Γ = 0.2). On the other hand, when negative Magnus force is observed
(Rep = 2.0 × 105 and Γ = 0.2), the wake is inclined upward, suggesting the negative lift force
acting on the sphere. In fact, contrary to the case with positive lift, the separation point of
the boundary layer in the forward-moving side shifts downstream, while it is vice versa in the
backward-moving side. As a result, the reverse flow region behind the separation point indicated
by the blue region is wider in the forward-moving side, as shown in the figure. The negative
Magnus effect disappears as Reynolds number increases (Rep = 1.14 × 106 and Γ = 0.2), the
wake is inclined downward again.

To discuss the mechanism of the negative Magnus effect, the time-averaged pressure coefficient
Cp distribution along the sphere surface experiencing the positive or negative lift are respectively
plotted in the left and right graphs in figure 5. The experimental data of the still sphere
at the subcritical and supercritical conditions, which correspond respectively to the laminar
(Achenbach, 1972) and turbulent separation (Fage, 1936), are also plotted. According to the
surface pressure distribution in the left graph in figure 5, the separation point in the forward-
moving side shifts downstream, whereas the separation point in the backward-moving side shifts
upstream, compared with the non-rotating case. Then the pressure distribution on the sphere
becomes axisymmetric, causing the ordinary Magnus lift. The boundary layers on both sides
of the sphere are considered to be in the laminar state, and no reattachment or reseparation is
identified at this smaller Reynolds number. In contrast, in the center graph in figure 5, it is
acknowledged that the profile on the forward-moving side deviates from the case without rotation
and comes close to the one in the subcritical case. This result can be explained by the suppression
of the turbulent transition caused by the decrease in the relative velocity in the boundary layer
with respect to the incoming flow on the forward-moving side. Then the laminarized boundary
layer separates slightly faster than the transient case, and the separation point shifts upstream.
On the other hand, the separation bubble observed in the non-rotating case becomes smaller
on the backward-moving side, and the profile comes close to the one in the supercritical case.
It is reasonable to say that the relative velocity in the boundary layer increases because of
the rotation, which promotes the turbulent transition at this region. Finally, at supercritical
Reynolds number region shown in the right graph in figure 5, the pressure distribution becomes
similar to the case of subcritical region and negative Magnus effect disappears.
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Figure 4. Contours of the instantaneous streamwise velocity on the central cross section and
the static pressure coefficient on the sphere surface at Γ = 0.2: (a) Rep = 1.0 × 104; (b)
Rep = 2.0× 105; (c) Rep = 1.14× 106.

-1.5

-1

-0.5

 0

 0.5

 1

 0  120

 (a)  (b)  (c)

[deg]ϕ [deg]ϕ

C
p

 60  180

Subcritical    (Rep=1.65×10
5
)

Supercritical (Rep=4.2×10
5
)

Achenbach (1972)

Fage (1972)

-1.5

-1

-0.5

 0

 0.5

 1

 0  120

Backward-moving side

Non-rotating

Forward-moving side

C
p

 60  180

Subcritical    (Rep=1.65×10
5
)

Supercritical (Rep=4.2×10
5
)

Achenbach (1972)

Fage (1972)

Backward-moving side

Non-rotating

Forward-moving side

Backward-moving side

Non-rotating

Forward-moving side

-1.5

-1

-0.5

 0

 0.5

 1

 0  120  180

ϕ [deg]

C
p

 60

Subcritical    (Rep=1.65×10
5
)

Supercritical (Rep=1.14×10
6
)

Achenbach (1972)

Figure 5. Time averaged pressure coefficient Cp distribution around drag crisis region with
rotation at Γ = 0.2: (a) Rep = 1.0× 104; (b) Rep = 2.0× 105; (c) Rep = 1.14× 106.

3. Visualization of boundary layer separation

3.1. Boundary layer transition with rotation
Fig. 6 to 8 show instantaneous vortical structures around the non-rotating and rotating sphere
at the each Reynolds numbers. In those figures, vortical structure is obtained as an iso-surface
of the second invariance of the velocity gradient tensor. In both non-rotating and rotating cases
at Rep = 1.0×104 as shown in Fig. 6(a) to 6(c), we cannot identify remarkable structural vortex
on the sphere surface compared to other Reynolds number cases. While at Rep = 2.0 × 105,
in the non-rotating case as shown in Fig. 7(a), tubelike vortex structures are not identified
around the first separation point (In this study, the first separation point of the boundary
layer is determined as the streamwise velocity of the first nearest grid point from where the
sphere surface becomes negative. In the same way, the reattachment point is identified when
the velocity becomes positive again. Based on this definition, the separation point is located
at ϕ = 87◦, 92◦, and 103◦ at Rep = 1.0 × 104, 2.0 × 105, and 1.14 × 106, respectively. Here,
ϕ is the polar angle from the frontal stagnation point), suggesting that the separation is in the
laminar state. On the other hand, the azimuthal tubelike vortex structures partially cover the
sphere surface indicating that transition of the boundary layer occurs around the reattachment
region. When the sphere rotates at Γ = 0.2 and the negative Magnus effect appears, as shown
in Fig. 7(b), the boundary layer on the backward-moving side is perturbed around the first
separation point and the laminar separation becomes indistinct. However, as Γ increases up to
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1, the negative Magnus effect disappears because the relative velocity become close to zero on
forward-moving side and separation is suppressed. In both non-rotating and rotating cases at
Rep = 1.14× 106 as shown in Fig. 8(a) to 8(c), vortex structures cover the sphere surface from
around the first separation point suggesting that the boundary layer in both forward-moving
side and backward-moving side sufficiently transit to turbulent state. Therefore the different
state between forward-moving side and backward-moving side in boundary layer or separation
seen in critical region number does not appear at Γ = 0.2.

Figure 6. Contours of the streamwise velocity (x component) on the central cross section
(y = 0) and the static pressure coefficient on the sphere surface with instantaneous vortical
structures around the sphere (iso-surface of the second invariance of the velocity gradient tensor)
at Rep = 1.0× 104: (a) non-dimensional rotational speed Γ = 0; (b) Γ = 0.2; (c) Γ = 1.0.

Figure 7. Contours of the streamwise velocity (x component) on the central cross section
(y = 0) and the static pressure coefficient on the sphere surface with instantaneous vortical
structures around the sphere (iso-surface of the second invariance of the velocity gradient tensor)
at Rep = 2.0× 105: (a) non-dimensional rotational speed Γ = 0; (b) Γ = 0.2; (c) Γ = 1.0.

3.2. Spatial distribution of separation point on the sphere surface
Figs. 10 to 12 show instantaneous iso-line of the zero-shear stress on the sphere surface for
non-rotating and rotating cases at each Reynolds numbers. At Rep = 1.0× 104 as shown in Fig.
10(a) to 10(c), iso-line is relatively smooth compared to other Reynolds number cases though
the line shifts along with a rotation direction of the sphere in Fig. 10(b) and (c). While at
Rep = 2.0 × 105, distribution of the iso-line in the rotating case at Γ = 0.2 as shown in Fig.
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Figure 8. Contours of the streamwise velocity (x component) on the central cross section
(y = 0) and the static pressure coefficient on the sphere surface with instantaneous vortical
structures around the sphere (iso-surface of the second invariance of the velocity gradient tensor)
at Rep = 1.14× 106: (a) non-dimensional rotational speed Γ = 0; (b) Γ = 0.2; (c) Γ = 1.0.

11(b) shows that by rotation the iso-line shapes small discrete regions on the backward-moving
side that indicates the boundary layer transition occurs on the side and the velocity distribution
is more perturbed compared to the non-rotating case as shown in Fig. 11(a). When Γ increases
up to 1, the iso-line in the forward-moving side becomes smooth due to a reduce of relative
velocity between uniform flow and the sphere surface. Finally at Rep = 1.14× 106 as shown in
Fig. 12(a) to 12(c), the iso-line is no more smooth and shapes small regions on both backward
and forward-moving side of the sphere not depending on the rotation. This is because the
boundary layer on the sphere is fully transit to turbulent state.

z

Mean flow x

y

Figure 9. Coordinate system and
rotating direction for Figures 10, 11
and 12.

4. Summary

Numerical simulation on the flow field around a rotating sphere was conducted by large-eddy
simulation. Unsteady characteristics of the boundary layer is visualized at Rep = 1.0 × 104,
2.0 × 105, and 1.14 × 106 and the physical mechanism leading to the generation of negative
Magnus lift was discussed in the context of the suppression or promotion of the boundary layer
transition. In summary, the following results were obtained:

• In the critical flow range at Rep = 2.0× 105, spatial fluctuation of velocity field generated
from much upstream on the backward-moving side compared to forward-moving side. That
causes spatially perturbed distribution of zero-shear iso-line on the backward-moving side.

• In the subcritical flow range at Rep = 1.0 × 104 in which the surface boundary layer is
subjected to fully laminar separation, zero-shear iso-line is distributed smoothly on both
the backward- and forward-moving side.
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Figure 10. Instantaneous static pressure coefficient on the sphere surface and the iso-line of
the zero-shear stress on the sphere surface at Rep = 1.0 × 104: (a) non-dimensional rotational
speed Γ = 0; (b) Γ = 0.2, (c) Γ = 1.0.

Figure 11. Instantaneous static pressure coefficient on the sphere surface and the iso-line of
the zero-shear stress on the sphere surface at Rep = 2.0 × 105: (a) non-dimensional rotational
speed Γ = 0; (b) Γ = 0.2, (c) Γ = 1.0.

• Finally, in the supercritical flow range at Rep = 1.14 × 106 in which the surface boundary
layer is subjected to fully turbulent separation, zero-shear iso-line is not distributed
smoothly not depending on the sphere rotational speed. And the lift force on the sphere
monotonically increases as the rotational speed increases.
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