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Abstract. Electrically-driven entangled-photon generation is demonstrated for the first time 

using a single InAs/GaAs quantum dot embedded in a light emitting diode structure. Under 

alternating-current injection, we found that the entanglement fidelity was of sufficient quality 

for quantum information applications such as quantum key distribution. 

1.  Introduction 

Quantum entanglement plays a central role in quantum information technology as sources of 

entangled-photon pairs are required for entanglement-based quantum key distribution  [1] and efficient 

linear-optical quantum computers  [2]. Existing sources of entangled-photon pairs all require a laser for 

optical excitation, imposing a practical limit on their potential for large-scale quantum information 

applications. For Poissonian sources, including the most widely used parametric down-conversion, 

zero or multiple-photon pairs can be emitted per laser excitation pulse due to the probabilistic nature 

of the non-linear process. This presents an additional fundamental limitation on large-scale systems, 

due to the limited success probability of quantum operations and errors. For successful future 

applications, these complications can be overcome with an electrically-driven on-demand source of 

entangled-photon pairs  [3], which currently does not exist.  

Here we report the realisation of the first electrically-driven source of entangled-photon pairs, 

which consists of a quantum dot embedded in a semiconductor light emitting diode (LED) structure 

 [4]. We show that the device emits entangled-photon pairs under direct- and alternating-current (dc 

and ac) injection; the latter indicates its potential function as an on-demand source and without the 

need for a complicated laser driving system. 

2.  Experiments 

2.1.  Entangled-LED design and operation 

Our device contains a single quantum dot, which in recent years have been manipulated to emit single 

pairs of entangled photons via the radiative decay of the biexciton state  [5] (Figure 1 (a)). The 

biexciton state is formed by capture of two electrons and two holes via electrical injection. The 

biexciton state radiatively decays to the ground state via one of two bright-exciton states, which 
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determines the polarisations of the resulting pair of photons. If the fine-structure splitting between the 

two exciton states is close to zero then the decay path can only be determined by measuring the 

polarisation of the photons  [6]. Consequently, the photons are entangled in polarisation and the 

emission is characterised by the two-photon Bell-state, ( ) 2LRRL +=+ψ , where RL  

corresponds to right- and left-hand circularly polarised photons being emitted from the biexciton and 

exciton states, respectively. 
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Figure 1. (a) Schematic of the active region of the entangled-

LED showing the emission of a polarisation entangled-photon 

pair via the biexciton cascade. Here the diode is in its ‘off’ state, 

just after non-resonant electrical injection of two electrons (open 

circles) and two holes (closed circles) into the quantum dot. (b) 

CCD-recorded electroluminescence (EL) spectrum of the 

quantum dot investigated in this report using dc electrical 

injection with current density (J) = 31 nAµm
-2

. 

 

The design of the LED is based on a single layer of quantum dots embedded in a p-i-n doped planar 

microcavity. Details of device growth, by molecular beam epitaxy, and fabrication can be found in 

reference  [4]. Two features of the design are crucial to successful operation as an entangled-LED. The 

first is an unusually thick cavity (2λ) and intrinsic region (~ 400nm). This is to suppress electrons 

tunneling into the dot from the n-doped region during biexciton decay, thereby minimising destruction 

of entanglement after emission of the first photon caused by charging of the intermediate exciton state 

and maximising the amount of light emitted from the neutral excitonic states. Secondly, careful control 

of the growth conditions created InAs quantum dots emitting ~ 1.4eV, which are suitable for 

entangled-light generation due to their very small fine-structure splitting  [5] [7]. 

Carrier injection into the quantum dots is achieved by biasing the diode beyond its turn-on voltage. 

We studied a quantum dot in our device which had almost zero fine-structure splitting, with magnitude 

0.4±0.1µeV  [8]. Its 5K electroluminescence (EL) spectrum is shown in Figure 1 (b), with emission 

from the exciton (X) and biexciton (XX) states labelled. The emission lines were identified by power 

dependence, time-resolved EL, and correlation measurements  [9]. 

2.2.  dc experiment 

Photons from the X and XX transitions were resolved in polarisation and in time in order to measure 

the co- and cross-polarised second order pair-correlation functions )()2(

XXX, τg  and )()2(

XXX,
τg , where τ is 

the time delay between the XX and X photons  [10]. 

Figure 2 shows the measurement of )()2(

XXX, τg  and )()2(

XXX,
τg  in the rectilinear (a), diagonal (b) and 

circular (c) polarisation bases when a direct current with density 31 nAµm
-2

 was injected into the 
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device. The co-polarised (VV) correlations in Figure 2 (a) show the characteristic shape of a radiative 

cascade. We expect the emission of an exciton photon to follow the emission of a biexciton photon. As 

a result, )()2(

XXX, τg  is increased for small positive delays and suppressed for small negative delays. 

Away from τ = 0 )(
)2(

XXX, τg  and )()2(

XXX,
τg  both tend to 1 due to uncorrelated emission events. A dip is 

seen for cross-polarised pairs (HV) in Figure 2 (a) due to the selection rule that the cascade must 

produce pairs with the same linear polarisation. Similar correlation behaviour is seen for photon pairs 

polarised in the diagonal basis in Figure 2 (b). Significantly we see the opposite correlation behaviour 

for circularly polarised photon pairs (Figure 2 (c)) than in the linear and diagonal cases. This is 

expected for entangled-photon pairs in the Bell state +ψ  [5] [10], as the two-photon wavefuntion can 

be expressed as the superposition of co-linearly, co-diagonally or cross-circularly polarised photon 

pairs. 
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Figure 2. Polarised pair-correlation results from dc electrical injection into the LED. 

)()2(
XXX, τg  and )(

)2(

XXX,
τg  measured in the (a) rectilinear, (b) diagonal and (c) circular bases. 

Correlations measured for photons of the same (orthogonal) polarisation are shown in 

black (blue). (d) Fidelity, f
+
, as a function of time delay, τ. 

 

 

The entanglement fidelity (f
+
) of the emitted light, projected onto the maximally entangled state 

+ψ , is plotted in Figure 2 (d). The fidelity was determined directly by combining correlations 

measured in the rectilinear, diagonal and circular polarisation bases  [6]. The peak at τ = 0 gives a 

maximum dc fidelity f
+
= 0.707 ± 0.023. This exceeds the 0.5 threshold for a source emitting a 

classically polarisation-correlated state by 9 standard deviations, proving that entangled photons have 

been electrically generated for the first time. The measured fidelity is limited by several factors  [6], 

including the timing jitter on the photon detectors and re-excitation of the quantum dot part way 

through the cascade.  

 

2.3.  ac experiment 

Figure 3 shows the results of polarised photon-pair correlation experiments conducted when the device 

was pulsed with an alternating current at a repetition rate of 80MHz. As in the dc case above, for 
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entangled-photon pairs in the Bell state +ψ  we expect to measure co-polarised photon pairs in the 

rectilinear and diagonal bases and cross-polarised photon pairs in the circular basis. Figure 3 (a) shows 

the measurement of )()2(

XXX, τg  and )()2(

XXX,
τg  in the rectilinear (a), diagonal (b) and circular (c) 

polarisation bases.  The dominant peak at zero time delay in each of these traces has a higher number 

of coincidences than the others, corresponding to emission of an X photon shortly after a XX photon. 

In both Figure 3 (a) and (b) this large peak belongs to the co-polarised trace, indicating measurement 

of co-polarised photon pairs in the rectilinear and diagonal bases. In contrast the cross-polarised peak 

dominates in Figure 3 (c), indicating measurement of cross-polarised photons pairs in the circular 

basis. This data gives a peak ac fidelity of f
+ 

= 0.785 ± 0.022. This ac fidelity is larger than the dc 

fidelity (0.707) presented above in Figure 2 (d). This direct comparison is possible as the timing 

resolution is the same in both experiments at 0.2 ns. It is likely that the ac fidelity is larger due to the 

lower level of re-excitation of the quantum dot when driven by a short voltage pulse. 
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Figure 3. Polarised pair-correlation results from ac electrical injection 

into the diode. )(
)2(

XXX, τg  and )(
)2(

XXX,
τg  measured in the (a) rectilinear, (b) 

diagonal and (c) circular polarisation. (d) Fidelity and (e) Bell’s 

parameters at τ = 0 as a function of the proportion of the total biphoton 

intensity that is analysed. The biphoton intensity is varied by changing 

the gate width (top axis). 
 

The entanglement fidelity available to an application may be enhanced by limiting the time the 

detectors remain active. We explore this possibility in Figure 3 (d) by changing the gate width used in 

the measurement of f
+
. For the zero period, gate width is defined as the maximum permitted time delay 

between the two photons to register a detection event. This changes the proportion of the detected 

biphotons to be accepted in the measurement of f
+
. Without rejecting any detected photon pairs (i.e. 

biphoton intensity = 1.0), f
+ 

= 0.530 ± 0.010, which is above the classical threshold of 0.5, proving 

entangled-light emission. The fidelity rises quickly as the proportion of biphoton intensity accepted is 
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reduced. This leads to a maximum ac fidelity of f
+ 

= 0.826 ± 0.027, when 6% of biphoton coincidences 

closest to τ = 0 are accepted (0.1ns gate width). 

Using these results it is also possible to determine Bell’s parameters within a quantum mechanics 

framework  [8]. The three different Bell parameters measured here, SRD, SDC and SRC defined in 

reference  [8], are non-equivalent and correspond to three different planes of the Poincaré sphere. A 

value greater than 2 for any of these parameters represents a violation of Bell’s inequality on the 

corresponding plane. Figure 3 (e) displays these three Bell parameters measured as a function of the 

biphoton intensity (bottom axis) and gate width (top axis). Bell’s parameters increase as we decrease 

the gate width due to an improving degree of correlation in all three polarisation bases. SRD is less than 

SRC and SDC, as the circular basis has the highest degree of correlation. At the smallest gate width of 

0.1ns we find; SRD = 2.12 ± 0.13, SDC = 2.18 ± 0.12 and SRC = 2.22 ± 0.12. The latter two violate Bell’s 

inequality by more than one standard deviation. Overcoming this threshold shows that the entangled-

LED is of high enough quality for applications such as a quantum relay and entanglement-based 

quantum key distribution  [1]. 

3.  Conclusions 
We have eliminated the need for large and complicated laser driving systems in future quantum 

information applications by demonstrating high fidelity entangled-light emission triggered from an 

entangled-LED. Entangled-photon pairs with such high fidelity are sufficient for teleportation  [12] and 

entanglement swapping  [13], which are important components in a quantum computer. Improvements 

to the LED such as reducing the background light emission  [10] [14] and increasing the speed of the 

device to minimise re-excitation during pulsing could be made to push the fidelity even higher to 

eventually realise electrically-operated fault-tolerant quantum computing. 
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