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Abstract.

1. Introduction

Cloud computing was an intensely discussed topic at this conference. This was inspired to a
large degree by Amazon Web Services (AWS) [1], which went for its core components from
the beta testing phase into commercial production including the availability of service level
agreements (SLAs). AWS offers several computing infrastructure services via well documented
web interfaces, i.e. these services are available through customized http requests and their
corresponding server reply messages. All services are charged for according to actual usage,
e.g. per GB·time for storage or per CPU·time for computing (there are more cost relevant
factors). Using AWS is described in detail in [2]. The services relevant for scientific computing
offered by AWS are these:

S3 The Simple Storage Service S3 stores data as “objects” in “buckets”, which are created by
the user. There is no hierarchy of buckets. Data can be uploaded, downloaded or deleted via
corresponding RESTful http requests [3]. Access to the data can be controlled with access
control lists (ACLs) or by creating so-called signed URIs, which give access to selected data
for a limited period of time. The service is charged in the US with $0.15 per GB·month,
and $0.10 ($0.17) per GB of transfer into (out of) S3. Transfer to/from EC2 (see below)
within the same region is not charged for.
The performance of internal data transfer between S3 and EC2 has been evaluated as
up to 12 MB/s for single streams and reaching a maximum of about 50 MB/s per EC2
instance [4, 5].

EC2 The Elastic Compute Cloud EC2 is a service where registered users can launch virtual
machines (VMs) from custom machine images (Amazon machine image AMI). Interaction
with the service is done with http queries which give full control over the running VMs
referred to as instances. The user can get root access to the VM and has to configure network
settings. The VM is run in a Xen virtualisation environment with a kernel provided by AWS.
The AMIs can be obtained from AWS prebuild from several popular Linux distributions or
they can be build using AWS software from a running system. An AMI provides one or
more EC2 compute units (ECUs) corresponding to a 1.0 − 1.2 GHz 2007 Opteron or Xeon
processor, 1.7− 1.9 GB RAM per ECU and 160− 211 GB of disk storage per ECU. Pricing
in the US is $0.10 per ECU·hour for standard instances. By booking instances in advance
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for up to three years the cost can be halved. The data stored on the instance disk is lost
when an instance is stopped (shutdown). In order to keep data over shutdowns they have to
be saved in S3 or on an so-called elastic block store (EBS) device, which behaves essentially
like an additional disk.

SQS The Simple Queue Service offers a reliable messenging service based on down- and
uploading of small data objects (up to 8 kB) via http queries. This system will not be
used in our work.

SimpleDB The Simple Database (SimpleDB) provides a database with http query access. The
SimpleDB does not offer the functionality of a complete relational database with SQL
interface.

Running the ATLAS software on AWS could be an interesting alternative to the current
model of the Worldwide LHC Computing Grid (WLCG) [6]. In the WLCG many (O(100))
sites run one of three grid middleware stacks (glite [7], Nordugrid [8] or OSG [9]) and offer
computing and storage services to the LHC experiments. The grid middleware development
projects are currently nearing completion and a transition towards stable production systems is
expected. Experience with the existing middleware and the experiments use of the grid shows
that the WLCG can support the expected computing needs of early LHC running. However, the
operation of the many middleware installations and the corresponding experiments applications
needs a large amount of highly qualified personnel due to the complexity of the software. As
a rough estimate two full time equivalents (FTEs) are needed to support a grid middleware
installation and a few virtual organisations (VOs) at any given site. These topics have been
discussed extensively at this conference.

In contrast AWS cloud computing offers a simple and well documented http based interface
to computing and storage services. As will be shown below this simplicity of interfaces allows to
construct correspondingly simple applications to run experiment software. It is clear that cloud
computing has the potential to provide computing and storage for the LHC experiments with
significantly fewer FTEs to operate the system.

The use of virtualisation to allow cloud computing users to run their own OS variants is an
essential element. Sites, e.g. AWS, are free to standartise on a particular OS without forcing
users to port their applications. The only requirement is that the users OS is compatible with
the virtualisation environment. By providing an isolated environment virtualisation makes it
possible to give root privileges to users, because the isolation layer prevents intrusion.

At this time there are only a few cloud computing services available. AWS is well known for
its functionality, reliability and ease of use. Comparable alternatives from academic computing
centres have appeared only very recently. We have thus chosen to evaluate cloud computing
using AWS. A full writeup is available [10].

2. System Design

The main subject of this study was to install and run a release of the ATLAS offline software
on AWS, and to use the EC2, S3 and other services to organise a small production of simulated
events from a client machine at our institute. The system design follows the usual client-server
structure, where servers running on AWS are controlled by clients running outside of AWS.

The server AMI based on SLC4 will be built using AWS client tools, see below. Since the
total size of an AMI is limited to 10 GB and an installed ATLAS software release occupies 7
to 8 GB we decide to work with an universal SLC4 based AMI and install an ATLAS software
release into the running instance. Also, the image creation process using a slightly outdated
version of Linux (SLC 4.6 or 4.7) is somewhat tedious and in this way we avoid repeating this
step for every release.
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The client software should support the basic functions of a production system, i.e. submit jobs
with individual configurations, monitor their progress, upload of input data sets and download
of output data sets and logfiles. The functions are offered to a user as a commandline interface
(CLI). Additional monitoring and interaction with EC2 and S3 can be done with plugins for the
firefox web browser (Elasticfox and s3fox), which can be obtained from the AWS web pages.

Several libraries for popular programming languages exist, which implement the documented
APIs for EC2, S3 and the other services. We choose to use the library boto [11] for use with
python. The boto library implements the construction of the http requests to AWS to perform
operations such as starting and stopping AMIs, up- or download of data sets from/to S3, or
using EBS or SimpleDB functions.

3. Image Preparation

For the preparation of an AMI one can start from one of many AMIs offered directly by AWS
or made available by AWS users. As an alternative an AMI can be built from an existing
system. The ATLAS offline software is developed, built and tested on the SLC4 [12] Linux OS
available from CERN. It turned out to be difficult to successfully install and run the ATLAS
offline software (release series 14) on SL5 or Fedora 7, 8 and 9. We thus chose to build an AMI
from SLC4.

We installed a fresh SLC4 system on a virtual machine 1 using the SLC4 installer and http
access to the online repository of packages. Security options such as firewalls or SELinux are
not used. In addition to the base system a complete set of gcc packages is installed.

In order to generate an AMI from the running system the AWS AMI tools package has to be
installed. This in turn required updates to the installations of tar and ruby. Both where replaced
by recent versions (tar 1.20 and ruby 1.8.7) compiled directly from source on the running system.

The resulting SLC4 AMI had problems with automatic hardware detection by the kudzu
service after starting on AWS for the first time and as a result there was no network connection.
AWS provides different virtual hardware compared with VMware player. SLC4 detects these
changes but fails to automatically configure the new hardware. After disabling the kudzu service
the SLC4 AMI could connect to the network on AWS.

In order to prepare the AMI for execution of ATLAS jobs we installed the AWS API tools,
a recent version of python (2.5.2) and the boto python library. Then our own shell and python
scripts (server software) are installed, which are triggered after system start via a modified
rc.local script.

The AMI is created from inside the running system using the AWS AMI tool command
ec2-bundle-vol. Due to an interference between the SLC4 kernel with high resolution timer
and the VMware virtualisation the SLC4 clock runs too slow. This can cause the upload of the
resulting AMI to AWS S3 to fail. As a workaround the clock on the system in the VMware player
is frequently reset to correct values. Since the SLC4 kernel is not run on AWS this problem does
not appear for AMIs launched on EC2.

As a last step the ATLAS offline software has to be made available to instances of our AMI.
An instance is launched and then used interactively to import an ATLAS software release on an
EBS with the ATLAS software distribution tool pacman [13]. The contents of an EBS can be
easily archived to S3 as a so-called EBS snapshot and restored from there to another EBS. In
this way every instance can be connected with an EBS with an ATLAS software release as long
as this release was archived in S3 before.

1 VMware player
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4. Server Software

The server software consists of a series of shell and python scripts, which are initialised after
system start via a modified rc.local script. The first script awsac-autorun sets up environment
variables and reads the so-called user-data string, which can be passed to launching AMIs via
the EC2 API. This string contains the location of an archive which was prepared on the client.
This archive is downloaded to the server and contains job processing scripts as well as the
job scripts themselves. The script awsac-all-instances-autorun obtains information about the
running instance and starts the script awsac-processjobs, which connects the required ATLAS
software releases as EBS devices and starts the actual ATLAS jobs. Awsac-processjobs also
monitors the jobs and puts job status information into SimpleDB. Once a job has finished its
output files and logfile are transferred to S3. When all jobs on an instance are finished awsac-
processjobs unmounts the EBS device, uploads its own logfile to S3 and initiates a shutdown of
the instance.

5. Client Software

The client software is written in python using the boto library. Its purpose is to help the user
to prepare input data for a run on AWS, to launch instances on AWS, to upload input data sets
and to download job output. In addition the client tools can display job monitoring information.

In order to start a production on AWS the user has to prepare job shell scripts, which
configure and run the ATLAS offline software and finally collect output files in an archive, e.g.
results.tar.bz2. A small file called job.cfg connects releases of the ATLAS offline software as EBS
snapshots with the job scripts. These files are bundled together with awsac-all-instances-autorun
and awsac-processjobs into an archive sessionarchive.tar.bz2 for upload to the instances. The
file session.ini stores information about the instance type, AMI, S3 bucket, EC2 user and total
number of jobs.

Once these files have been created invocation of awsac-session.py --start -i

session.ini -a sessionarchive.tar.bz2 will make sessionarchive.tar.bz2 available on S3,
check the availability of the requested AMI and then launch the required number of instances.
These will obtain the sessionarchive.tar.bz2 as described above and start the jobs. After
completion the command leaves a file behind which stores all information needed to interact
with the running instances.

Monitoring of running jobs can be done by issuing on the client e.g. awsac-session.py

--check -c session-081215 1646--eventgen--1816.cfg. This will query entries in
SimpleDB which have been stored by the server software as the jobs were progressing.

When the jobs have completed successfully the results can be extracted from S3 to the client
with e.g. awsac-session.py --getresults -c session-081215 1646--eventgen--1816.cfg

-o sessionresults. The job output archive (e.g. results.tar.bz2) and the corresponding logfiles
will appear on the client.

Finally, when the results of the run have been verified the ressources on AWS can be cleaned
up completely using e.g. awsac-session.py --cleanup -c session-081215 1646--eventgen--1816.cfg.
This avoids charges for storing data in S3 or SimpleDB.

6. Experience

The project was realised by a summer student and two physicists with some background in HEP
computing. As members of the ATLAS collaboration and managers of a local Tier-2 site we
knew the ATLAS offline software and ATLAS usage of grid computing in the WLCG. All of us
had no prior experience with cloud computing and the AWS services.

The simple and well documented AWS interfaces for EC2, S3 and SimpleDB allowed us
to agree quickly on the basic system design. The availability of the boto python library to
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encapsulate the AWS APIs behind simple python methods was essential to set up a working
prototype.

We encountered greater difficulties in the creation of the SLC4 based AMI, because this
comparatively old version of Linux is not directly compatible with the AWS API and AMI
tools. In addition, the hardware detection and automatic configuration algorithm of SLC4 did
not work on the virtual hardware provided by AWS. We did not try the cernvm [14] images,
since these where not available in stable versions during project development and because they
implement a special software distribution mechanism.

Another problem was the provision of the large ATLAS software releases to instances of
our SLC4 AMIs. We solved the problem using the AWS EBS devices, which became available
during project development. This solution still involves the transfer of the complete ATLAS
software release from S3 to an EBS for every instance. In a more permanent setup on AWS
one could implement virtual fileservers to provide the releases. Another alternative would be
to use extensions such as s3fs [15] for S3 to emulate a filesystem based on data in S3. This
would minimise the volume of transferred data needed to provide an ATLAS software release in
a similar way to the cernvm solution.

As a test of our system we executed a small run with a predefined so-called job transform
implementing the simulation of artificial single pion events in the ATLAS detector. The job
transform performed all steps from the generation of pion 4-vectors, calculation of the detector
response, running of the offline reconstruction to the final data reduction. The jobs ran
successfully.

7. Cost Considerations

The total costs charged by AWS for the period of project development including test runs were
about $35.

At the time of writing the AWS costs for computing were 10$ct/h for one ECU, see above.
We take an exchange rate of 0.7e for 1$. An AWS ECU corresponds to about 1.8 kSI2k, thus
we find 4ect/(kSI2k·h). With advance reservation over three years and running the instance for
75% of the reserved time we find 2ect/(kSI2k·h).

On the other hand, a typical compute server purchased in 2008 in Germany and operated at
a german computer center for three years will cost about 1.3ect/(kSI2k·h) at an assumed usage
efficiency of 75% 2. This cost estimate includes a hosting fee of 16ect/kWh and assumes that
10% of the cost of the computing servers are neccessary for infrastructure such as racks, LAN,
etc. The hosting fee covers essentially only the costs for electric power and cooling and does not
include administration costs.

The ratio of costs for providing compute power for three years at a usage efficiency of 75%
between AWS and a purchased system operated in a computing centre is thus about 3 without
advance reservation and about 1.5 with advance reservation.

The cost for storing data is 15$ct/GB/month for the first 50 TB and decreases slowly for
larger amounts of data to 12$ct/GB/month for data volumes above 500 TB. AWS clearly is
prepared to store data volumes in the PB range. Thus storing 1 TB for three years will cost
3780e. The data transfer into S3 costs 10$ct/GB and thus importing 1 TB will cost 100$.

A typical high performance system with direct attached storage to provide fileserving e.g.
for dCache will cost 1211e/TB of net storage including infrastructure and operation costs over
three years 3. However, the usage efficiency of the storage system needs to be taken into account
and we assume that on average 50% of the available storage will be used over three years. The

2 IBM BladeCenter with HS21 servers equipped with dual Intel Xeon E5440, 16 GB RAM and a 146 GB SAS
disk.
3 Intel SSR212MC2 (MacKay Creek) with dual Intel Xeon 5405, 8 GB RAM, 12 750 GB SATA II disks connected
via SAS expansion with a Xyratex DAS 1220 with 16 750 GB SATA II disks.
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cost of importing the data is difficult to account for, since bandwidth costs are typically not
charged to users by the computing centres.

The nominal cost ratio between AWS S3 and a fileserver operated in a computer centre for
storing 1 TB for three years thus becomes 1.6. This ratio does not consider that in a more
centralised cloud computing model there is less need for multiple copies of data sets in different
sites. The ATLAS collaboration foresees in its computing model [16] 10 Tier-1 and about 30
Tier-2 sites. These provide among other things storage for reduced data sets for analysis, i.e.
AODs, and on average one Tier-1 site and three Tier-2 sites together will each hold a complete
copy of the AOD sets. This implies a factor of about twenty for the total cost of providing
storage for AOD sets for ATLAS. AWS S3 is designed to scale with load and thus there would
be less need to hold multiple copies of popular data sets in S3. We therefore conclude that the
total cost of providing storage services for data sets with multiple copies on the grid, e.g. AOD
sets, is comparable for AWS S3 and fileservers operated in a computing centre.

8. Summary and Outlook

As a small team of three physicists with no prior experience in cloud computing and some
background in traditional HEP computing and grid computing we were able to setup a prototype
job handling system for ATLAS on AWS. This was largely possible, because AWS has simple
interfaces, it is well documented, and libraries implementing the AWS APIs exist. The fact that
on AWS one has few constraints for choosing a version of the Linux OS allowed us to use the
recommended SLC4 and thus to avoid porting problems.

Performance of the combined EC2/S3 system seems adequate even for the demanding task of
ATLAS AOD processing, where high bandwidth between storage and compute nodes is needed.
At the current AOD size of 0.17 MB/event a single process can read events with a rate of up to
70 Hz until the bandwidth limit of 12 MB/s is reached. Thus, assuming a bandwidth of 10 MB/s
per stream, 100 processes can read 100 TB of AOD in about 105 s.

Open questions are the verification of the performance scaling of many jobs accessing the
same data sets, and a more in-depth study of the costs of using AWS. Furthermore, scientific
computing centres may be able to set up their own cloud computing infrastructures using toolkits
such as Nimbus [17] or Eucalyptus [18]. In this scenario the total cost of providing computing
and storage for the LHC experiments is expected to fall below the total cost of running the
WLCG, because in a more centralised system multiple data copies can be reduced and because
fewer FTEs are needed for VO site support and maintainance of middleware installations.
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