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Abstract. We consider solution of linear ill-posed problem Au = f by Tikhonov method
and by Lavrentiev method. For increasing the qualification and accuracy of these methods
we use extrapolation, taking for the approximate solution linear combination of n ≥ 2
approximations of Tikhonov or Lavrentiev methods with different parameters and with
proper coefficients. If the solution u∗ belongs to R((A∗A)n) and instead of f noisy data fδ

with ‖fδ − f‖ ≤ δ are available, maximal guaranteed accuracy of Tikhonov and Lavrentiev
approximations is O(δ2/3) and O(δ1/2), respectively, versus accuracy O(δ2n/(2n+1)) and
O(δn/(n+1)) of corresponding extrapolated approximations. We propose several new rules
for a posteriori choice of the regularization parameter, including modifications of the
monotone error rule. Extensive numerical experiments show that in case u∗ ∈ R(A∗)
the extrapolated Tikhonov approximation with a posteriori parameter choice (not using
any smoothness information) is typically more accurate than Tikhonov approximation with
optimal parameter.

1. Introduction

We consider an operator equation

Au = f, f ∈ R(A),

where A ∈ L(H,F ) is a linear continuous operator between Hilbert spaces H and F . We
suppose that instead of exact f ∈ F noisy data fδ ∈ F with ‖fδ − f‖ ≤ δ are available. For
approximation to the solution u∗ ∈ H we use in case F = H, A = A∗ ≥ 0 (the selfadjoint
case) the Lavrentiev method uα = (αI +A)−1fδ and in general case (the non-selfadjoint case)
the Tikhonov method uα = (αI + A∗A)−1A∗fδ. Here α > 0 and I is the identity operator.
These approximations have low accuracy: if

u∗ ∈ R((A∗A)p/2), (1)

then for uappr = uα the order optimal error estimate

‖uappr − u∗‖ ≤ const δp/(p+1) (2)

can be reached only for small p: in Lavrentiev method for p ≤ 1, in Tikhonov method
for p ≤ 2. We propose to use for uappr a proper linear combination of n ≥ 2 terms uαi
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which has in case (1) the error estimate (2) for p ≤ n in selfadjoint case and for p ≤ 2n
in non-selfadjoint case. Note that in a posteriori choice of the regularization parameter α
often several approximations with different parameters are computed and then computation
of their linear combination is an easy task.

Extrapolation is widely used in well-posed problems: in discretization methods, numerical
integration, interpolation etc [1,2]. Extrapolation for increasing the accuracy of regularization
methods is much less studied. In case of exact data the extrapolated Tikhonov method was
studied in [2–6] for systems of linear algebraic equations and in [7] for operator equations,
the extrapolated Lavrentiev method was studied for linear systems [2, 6] and in case n = 2
for Fredholm integral equations of the first kind [8]. In case of noisy data extrapolation
of Lavrentiev and Tikhonov methods and iterated versions of these methods for operator
equations was briefly discussed in [9, 10], and a more detailed treatment of this subject was
given in [11]. In this paper we give a survey of the results of [11], propose several rules for
choosing a proper extrapolated approximation and present numerical examples.

Note also that extrapolation algorithms do not use any a priori information about solution
as some other algorithms do (e.g [12] uses information (1)).

2. Parameter choice in the Tikhonov method

For a posteriori choice of the regularization parameter α in Tikhonov method several rules
are proposed. In discrepancy principle [13,14] for Tikhonov approximation such α is chosen,
for which ‖Auα − fδ‖ = bδ, b ≥ 1. In the modified discrepancy principle [15,16] αMD and in
the monotone error rule [17] (ME-rule) αME are chosen from equations

(Auα − fδ, Au2,α − fδ) = bδ, b ≥ 1, u2,α = (αI + A∗A)−1(αuα − A∗fδ), (3)

(Auα − fδ, Au2,α − fδ)

‖Au2,α − fδ‖
= bδ, b ≥ 1, (4)

respectively. Here u2,α is the approximation of the iterated Tikhonov method. Discrepancy
principle, the modified discrepancy principle and the ME-rule guarantee in case (1) the error
estimate (2) for p ≤ 1, p ≤ 2 and p ≤ 2, respectively. The name of the ME-rule is justified
by the property

d

dα
‖uα − u∗‖ ≥ 0 for all α ∈ (αME,∞).

It means that the optimal parameter αopt = argmin{‖uα − u∗‖, α > 0} ≤ αME. Usually
αME < 1, hence there exists c ≥ 1 with αopt = αc

ME. In numerical experiments of Section 8
we get good results with estimated parameter αMEE = α1.09

ME .
Recently many papers [18–29] advocate the balancing principle (called also Lepskii

principle). Here the approximations uαi are computed for values α1 = δ2 and αk = α1q
k−1,

k = 2, 3, . . . , M , where q > 1 and M is such that αM−1 < 1 ≤ αM . For the regularization
parameter αm is taken, where m is the first index, for which a certain condition is fulfilled.
For Tikhonov method this condition is in [26,27]

‖uαm+1 − uαm‖ >
cδ√
αm

(5)

with c = 2 and in [22,29]

∃j ∈ {1, . . . ,m} : ‖uαm+1 − uαj‖ >
cδ
√

αj
(6)
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with c = 2. In [24] for nonlinear problem condition (6) with c ≥ 8 is used. However, evidently
a proper c must depend on q, in such way that c → 0 as q → 1. Otherwise, after finding
αm ≈ αopt on coarse mesh and then refining the mesh, left hand side of (5) tends to zero as
q → 1, hence αm chosen by (5) increases. More exactly, one can show that if in conditions (5),
(6) constant c satisfies c > q − 1 and c > q − qj−m, respectively, then the error of Tikhonov
approximation is a monotonically increasing function of c. As proven in [30], the balancing
principle with condition (5) is quasioptimal if c ≥ 3

√
3(q−1)/(16

√
q). We recommend to use

the last constant in condition (5) and c = (q−qj−m)/(4
√

qj−m+1) in condition (6). However,
in our numerical experiments with the last c in (6) always such αm was chosen for which (6)
was satisfied with j = m − 1 or j = m. Condition (6) needs huge computation time, and
resulted in large error in numerical experiments, therefore we used in Section 8 instead of (6)
the condition

∃j ∈ {m − 1,m} :
4‖uαm+1 − uαj‖

√

qj−m+1

q − qj−m
>

δ
√

αj
. (7)

In Lavrentiev method αMD from the modified discrepancy principle [31] is found as the
solution of the equation

‖Au2,α − fδ‖ = bδ, b ≥ 1, u2,α = (αI + A)−1(αuα − fδ). (8)

3. Extrapolation of methods of Tikhonov and Lavrentiev

Let uαi , i = 1, . . . , n be approximations of Tikhonov or Lavrentiev methods with different
parameters αi = qiα (qj 6= qj, if i 6= j). The corresponding extrapolated approximation vn,α

has the form

vn,α =
n

∑

i=1

diuαi , di =
n

∏

j=1,j 6=i

(1 − αi/αj)
−1. (9)

As shown in [11], extrapolated Lavrentiev approximation (9) and extrapolated Tikhonov
approximation (9) coincide with corresponding approximations

un = (αnI + A)−1(αnun−1 + fδ), (n = 1, 2, . . . , u0 = 0)

un = (αnI + A∗A)−1(αnun−1 + A∗fδ) (n = 1, 2, . . . , u0 = 0)

of nonstationary implicit iterative methods. In vn,α both indexes can be viewed as
regularization parameters.

4. Choice of parameters in extrapolated approximation

In the following we consider separately the cases, when one of parameters n and α is fixed
and other parameter is regularization parameter.

1) Let the sequence α1, α2, . . . be given (α is fixed) and consider choice of n in extrapolated
Tikhonov approximation vn,α. We give condition for checking, whether vn,α is more accurate
solution than vn−1,α. Denote rn ≡ Avn,α − fδ. Let C = const > 1.

Theorem 1. [11]. The functions dD(n) = ‖rn‖, dME(n) = (rn + rn+1, rn+1)/(2‖rn+1‖) are
monotonically decreasing and dD(n + 1) < dME(n) < dD(n) for all n. Let nD, nME be the
first numbers with dD(n) ≤ Cδ, dME(n) ≤ Cδ respectively. Then nD − 1 ≤ nME ≤ nD and

‖vn,α − u∗‖ < ‖vn−1,α − u∗‖ for n = 1, 2, . . . , nME.
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If the monotonically decreasing infinite sequence α1, α2, . . . satisfies conditions

∞
∑

i=1

α−1
i = ∞, α−1

n ≤ const

n−1
∑

i=1

α−1
i ,

then existence of finite nD and nME is guaranteed and for n ∈ {nD, nME}, ‖vn,α − u∗‖ → 0
(δ → 0) and in case (1) the error estimate (2) holds for all p > 0.

In extrapolated Lavrentiev method we recommend to choose n by the discrepancy
principle: n = n(δ) is the first n with ‖Avn,α − fδ‖ ≤ Cδ. It guarantees the convergence
‖vn,α − u∗‖ → 0 (δ → 0) and under assumption (1) the error estimate (2) for all p > 0.

2) Let n ≥ 2 and q1, . . . , qn+1 be fixed. Consider choice of α in extrapolated approximation
vn,α.

Theorem 2. [11] The functions dD(α) = ‖Avn,α − fδ‖, dMD(α) = (Avn,α − fδ, Avn+1,α − fδ)
are monotonically decreasing. If α is chosen from the discrepancy principle dD(n) = Cδ,
then ‖vn,α − u∗‖ → 0 (δ → 0) and in case (1) for uappr = vn,α the error estimate (2)
holds in extrapolated Tikhonov method with p ≤ 2n − 1 and in extrapolated Lavrentiev with
p ≤ n − 1. If α in extrapolated Tikhonov method is chosen from the modified discrepancy
principle dMD(α) = Cδ, then ‖vn,α − u∗‖ → 0 (δ → 0) and in case (1) for uappr = vn,α the
error estimate (2) holds with p ≤ 2n. If α in extrapolated Lavrentiev method is chosen from
the modified discrepancy principle ‖Avn+1,α − fδ‖ = Cδ, then ‖vn,α − u∗‖ → 0 (δ → 0) and
in case (1) for uappr = vn,α the error estimate (2) holds with p ≤ n.

5. Extrapolation of iterated methods of Lavrentiev and Tikhonov

Consider now extrapolation of m times iterated methods of Lavrentiev and Tikhonov

uα = um,α, uk,α = (αI + A)−1(αuk−1,α + fδ) (k = 1, . . . ,m), u0,α = 0,

uα = um,α, uk,α = (αI + A∗A)−1(αuk−1,α + A∗fδ) (k = 1, . . . ,m), u0,α = 0.

For different αi = qiα (i = 1, . . . , n) different number of iterations m1, . . . , mn may be used.
We take for approximate solution (see [11])

vn,α =

n
∑

i=1

mi
∑

k=1

di,kuk,αi
,

where the coefficients di,k can be uniquely determined from relation

n
∑

i=1

mi
∑

k=1

di,k(1 + λ/qi)
−k =

n
∏

i=1

(1 + λ/qi)
−mi (∀λ ∈ R).

Theorem 3. [11] If n and q1, . . . , qn are fixed and α is chosen from the discrepancy principle
dD(n) = Cδ, then ‖vn,α−u∗‖ → 0 (δ → 0) and in case (1) for uappr = vn,α the error estimate
(2) holds in non-selfadjoint case with p ≤ 2(m1 + m2 + · · · + mn)− 1 and in selfadjoint case
with p ≤ m1 + m2 + · · · + mn − 1.
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6. Use of extrapolation for parameter choice in Tikhonov method

Consider a posteriori choice of the regularization parameter α in methods of Lavrentiev and
Tikhonov. In rules (3), (4), (8) of Section 3 iterated approximation u2,α is used, hence
one additional equation must be solved. Following theorems show that order optimal error
estimates for source-like solutions remain true, if in these rules u2,α is replaced by a proper
linear combination of two approximations.

Theorem 4. [11] Let uα and uqα with q < 1 be approximate solutions of Au = f , found by
Tikhonov method and let v2,α be their linear combination

v2,α = (1 − q−1)
−1

uα + (1 − q)−1uqα. (10)

Let us choose α = α(δ) in uα according to the rule

b1δ ≤ (Auα − fδ, Av2,α − fδ)
1/2 ≤ b2δ, b2 ≥ b1 > 1 (11)

or to the rule

b1δ ≤ (Auα − fδ, Av2,α − fδ) / ‖Av2,α − fδ‖ ≤ b2δ, b2 ≥ b1 > 1/q. (12)

Then ‖uα − u∗‖ → 0 as δ → 0. In case (1) the error estimate (2) holds with p ≤ 2.

Theorem 5. [11] Let F = H, A = A∗ ≥ 0. Let uα and uqα be approximate solutions of
Au = f , found by Lavrentiev method. Let us choose the regularization parameter α = α(δ)
in uα according to the rule

b1δ ≤ ‖Av2,α − fδ‖ ≤ b2δ, b2 ≥ b1 > 1. (13)

Then ‖uα(δ) − u∗‖ → 0 as δ → 0. In case (1) the error estimate (2) holds with p ≤ 1.

7. The monotone error rule for choosing an approximation from sequence

In balancing principle a sequence of approximate solutions {uαi} is computed and a rule for
choice of one approximation uαi is given. It motivates us to give another rule, the monotone
error rule, for choice of proper approximation from sequence.

Theorem 6. Let ui = A∗wi, i = 1, 2, . . . be a sequence of approximations to solution u∗ of
the equation Au = f . Let iME be the first index i satisfying

dME(i) =
(Aui − fδ + Aui+1 − fδ, wi+1 − wi)

2‖wi+1 − wi‖
≤ δ.

Then
‖ui − u∗‖ ≤ ‖ui−1 − u∗‖ for all i = 2, . . . , iME.

Proof. We have

‖ui − u∗‖2 − ‖ui−1 − u∗‖2 = (ui−1 + ui − 2u∗, ui − ui−1)

= (Aui−1 + Aui − 2f,wi − wi−1)

= (Aui−1 − fδ + Aui − fδ + 2(fδ − f), wi − wi−1)

≤ 2‖wi − wi−1‖[δ − dME(i − 1)].

Therefore, if dME(i − 1) > δ, then ‖ui − u∗‖ < ‖ui−1 − u∗‖.
For using the functional dME(i) elemets wi are needed. They may be get, computing

at first wi and on final step ui = A∗wi. Last theorem may be applied for many kind of
approximations: for approximations ui = uαi with decreasing parameters α1 > α2 > . . . in
Tikhonov method or in iterated Tikhonov method. In extrapolated Tikhonov method i in
ui may refer to number of terms n in linear combination (9) or to αi in (9) or to some other
element in arbitrary sequence of extrapolated approximations.
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8. Numerical experiments

We solved 12 test problems, 10 of which were from [32] and the other two were slight
modifications of these. We used discretization parameter 100 and if the problem had more
parameters, these were taken 1 (except the problem deriv2). Besides solutions u∗ of [32] we
used smoothened solutions (A∗A)p/2u∗ with p = 0.25, 0.5, 1, 1.5, 2, 4, 8 and the right-hand
side was computed as f = A(A∗A)p/2u∗. All problems were normalized in such way that the
norms of operator and right-hand side were 1.

Instead of exact data f randomly perturbed data fδ were used with error ‖f − fδ‖ = δ,
where values of δ were 0.5 and 10−i, i = 1, . . . , 7. The problems were regularized by the
Tikhonov method. As in balancing principle, Tikhonov approximations were computed on
the set of alpha-values Ω = {αi} with αN = 1, αi−1 = αi/q, N = 1000. For q we took
16
√

2 ≈ 1.04, 4
√

2 ≈ 1.19, and 2. In case q = 2 and δ ∈ {0.5, 0.1} we used also the values αi

with i ≤ N + 5.
For choice of αi ∈ Ω, the following rules were used.
1) Discrepancy principle: αD is the first αi in the sequence αN , αN−1, . . . , for which

‖Auαi − fδ‖ ≤ δ; αDE is the nearest alpha-value to α0.86
D in Ω.

2) Monotone error rule: αME is the first αi in the sequence αN , αN−1, . . . , for which
(Auαi − fδ, hi)/‖hi‖ ≤ δ, hi = A

(

uαi−1/(1 − q−1) + uαi/(1 − q)
)

− fδ (see (10)); αMEE is the
nearest alpha-value to α1.09

ME in Ω.
3) Balancing principle: αL1a and αL1b were chosen as the first αm in the sequence α1, α2,

. . . , for which (5) holds with c = 3
√

3(q − 1)/(16
√

q) and c = 2, respectively; αL2 was chosen
as the first αm in the sequence α1, α2, . . . , for which (7) holds.

We computed the extrapolated approximations

v(k)
n =

k
∑

i=k−n+1

diuαi , di =

n
∏

j=1,j 6=i

αj

αj − αi
=

n
∏

j=1,j 6=i

1

1 − qi−j
. (14)

For n = 2, . . . , 5, various rules for choosing k lead to the following extrapolated
approximations.

1) vnME = v
(nME)
n , where N − nME + 1 is index iME from Theorem 6, applied to the

sequence ui = v
(N−i+1)
n .

2) vnMEE = v
(nMEE)
n , where nMEE is the nearest index for alpha-value α1.083

nME .

3) vnD = v
(nD)
n , where nD is the first k in sequence N , N−1, . . . , for which ‖Av

(k)
n −fδ‖ ≤ δ.

4) vnDE = v
(nDE)
n , where nDE is the nearest index for alpha-value α

cn,1

nD α
cn,2

D , where
(c21, c22) = (1.22,−0.12), (c31, c32) = (1.16,−0.04), (c41, c42) = (1.11,−0.01), (c51, c52) =
(1.1, 0). These constants and constants for αDE, αMEE, and vmaxDE below were found by
optimization on a large data set. The exponent less than 1 for αD was good only for p ≥ 1.

We computed also vmaxD = v
(N)
n , choosing n as nD in Theorem 1, and vmaxDE = v

(N)
n with

n as the nearest integer to 1.1(N − nmaxD).
In model equations the exact solutions are known. We found αopt as αi ∈ Ω with the

smallest error: ‖uαopt − u∗‖ = min{‖uαi − u∗‖, αi ∈ Ω}. We solved these problems 10
times. Tables 1 and 2 show the averages (over all problems, all q, all δ and 10 runs)
of error ratios eD = ‖uαD

− u∗‖/‖uαopt − u∗‖, eME = ‖uαME
− u∗‖/‖uαopt − u∗‖, . . . ,

evmax = ‖uαvmax − u∗‖/‖uαopt − u∗‖. Table 2 does not contain results for v4MEE and v5MEE,
which were by about 0.05 larger than the ratios for v4DE and v5DE.

In Table 3 error ratios of v3DE for every problem are given. In most problems the ratios
decreased for increasing p.

As tables 2–4 show, in case u∗ ∈ R(A) the error of extrapolated approximation was in
most cases smaller than the error of the best single Tikhonov approximation.
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Table 1. Means of error ratios.

p eD eME eL1a eL1b eL2 e2D e3D e4D e5D emaxD

0 1.302 1.483 2.460 12.013 2.193 1.319 1.339 1.344 1.346 1.349
0.25 1.719 1.863 3.344 17.688 2.983 1.590 1.615 1.623 1.623 1.630
0.5 1.957 2.003 3.937 22.623 3.395 1.607 1.628 1.638 1.643 1.646
1 2.451 1.612 3.486 28.701 2.991 1.052 1.075 1.084 1.090 1.092
1.5 3.180 1.423 3.066 30.211 2.598 0.721 0.720 0.734 0.727 0.724
2 3.575 1.362 2.850 29.784 2.403 0.571 0.541 0.537 0.542 0.536
4 3.864 1.340 2.824 29.496 2.385 0.450 0.333 0.312 0.314 0.300
8 3.889 1.338 2.823 29.515 2.384 0.443 0.308 0.291 0.267 0.248
mean 2.742 1.553 3.099 25.004 2.666 0.969 0.945 0.945 0.944 0.941

Table 2. Means of error ratios (cont).

p eDE eMEE e2DE e2MEE e3DE e3MEE e4DE e5DE emaxDE

0 1.714 1.234 1.206 1.216 1.219 1.222 1.219 1.222 1.231
0.25 2.339 1.484 1.435 1.445 1.452 1.460 1.450 1.454 1.471
0.5 2.634 1.480 1.371 1.391 1.384 1.396 1.393 1.398 1.413
1 1.539 1.222 0.954 0.969 0.945 0.962 0.943 0.941 0.948
1.5 1.351 1.137 0.694 0.717 0.664 0.684 0.665 0.655 0.651
2 1.430 1.114 0.562 0.588 0.517 0.543 0.514 0.500 0.492
4 1.514 1.110 0.448 0.445 0.345 0.369 0.334 0.316 0.299
8 1.522 1.110 0.440 0.430 0.320 0.337 0.300 0.274 0.253
mean 1.755 1.236 0.889 0.900 0.856 0.872 0.852 0.845 0.845

Table 3. Means of error ratios for v3DE by problems.

p b
aa

rt

b
aa

rt
2

d
er

iv
2

fo
x
go

o
d

gr
av

it
y

h
ea

t

h
ea

t2

il
ap

la
ce

p
h
il
li
p
s

sh
aw

sp
ik

es

w
in

g

0 1.42 2.19 0.86 1.39 1.11 1.05 0.89 1.17 1.05 1.37 1.00 1.12
0.25 2.33 1.38 0.81 1.51 1.08 1.01 0.84 1.16 0.99 1.47 1.69 3.17
0.5 3.23 0.95 0.73 1.44 1.00 0.97 0.76 1.11 0.91 1.42 1.82 2.26
1 1.45 0.70 0.47 0.89 0.78 0.85 0.69 0.93 0.72 1.12 1.35 1.38
1.5 0.97 0.58 0.33 0.54 0.55 0.75 0.64 0.73 0.51 0.78 0.98 0.61
2 0.56 0.49 0.30 0.37 0.44 0.63 0.60 0.54 0.41 0.58 0.81 0.49
4 0.31 0.35 0.29 0.28 0.35 0.37 0.38 0.36 0.34 0.35 0.48 0.29
8 0.31 0.34 0.29 0.28 0.34 0.33 0.33 0.34 0.33 0.35 0.35 0.28
mean 1.32 0.87 0.51 0.84 0.71 0.74 0.64 0.79 0.66 0.93 1.06 1.20
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Table 4. Means (over all p) of error ratios and errors for problem phillips in case q = 16
√

2.

δ eD eME eMEE e2MEE e2DE e3DE e4DE e5DE emaxDE ‖uαopt−u∗
‖

0.5 1.029 1.196 1.122 0.950 0.942 0.905 0.854 0.831 0.840 1.99 · 10−1

10−1 1.059 1.295 1.137 0.885 0.865 0.824 0.815 0.812 0.781 6.81 · 10−2

10−2 1.367 1.305 1.073 0.726 0.715 0.664 0.658 0.651 0.658 1.71 · 10−2

10−3 1.981 1.238 1.022 0.629 0.631 0.581 0.577 0.573 0.589 5.36 · 10−3

10−4 2.503 1.200 1.026 0.560 0.576 0.521 0.501 0.494 0.485 1.67 · 10−3

10−5 3.274 1.210 1.048 0.556 0.576 0.527 0.505 0.500 0.495 5.44 · 10−4

10−6 4.660 1.223 1.070 0.551 0.564 0.535 0.505 0.501 0.489 1.80 · 10−4

10−7 6.954 1.224 1.119 0.554 0.556 0.560 0.513 0.508 0.472 6.24 · 10−5

mean 2.853 1.236 1.077 0.676 0.678 0.640 0.616 0.609 0.601 3.65 · 10−2
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