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Abstract. Finite-size scaling arguments naturally lead to the introduction
of a coordinate-dependent diffusion coefficient in a Fokker–Planck description
of the late-stage dynamics of unbiased polymer translocation through a
membrane pore. The solution for the probability density function of the chemical
coordinate matches the initial-stage subdiffusive regime and takes into account
the equilibrium entropic drive. We find precise scaling relations connecting
the subdiffusion exponent to the divergence with the polymer length of the
translocation time, and also to the singularity of the probability density function
at the absorbing boundaries. Quantitative comparisons with numerical simulation
data in d = 2 strongly support the validity of the model and of the predicted
scalings.
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1. Introduction

Translocation of long polymers across a membrane is a basic biological process [1]–[3] and
a fundamental problem in polymer dynamics. In the past fifteen years, a number of facts
have been established and open issues pointed out [4]–[15]. Early attempts [4, 5] to study
unbiased translocation on the basis of quasi-equilibrium assumptions and Fokker–Planck
equations for the chemical-coordinate probability density function (PDF) were revealed to
be inadequate for long chains [6]. There is now consensus [6, 12, 9] on the fact that, during
the initial stages, the scaling with time of the mean square displacement of the chemical
coordinate is subdiffusive, and clear evidence indicates that within this anomalous stage
the process is reproduced well by a fractional Brownian motion. The precise value of the
subdiffusive exponent still remains controversial [10, 6, 12, 13, 15] and could even depend
on the viscosity of the solvent [16]. Most important, for finite lengths of the chain (which
is a necessary condition for the translocation process to occur) the fractional Brownian
motion description breaks down for times at which the translocation process has not yet
occurred [9, 15]. The result is that, to the best of our knowledge, no theory is presently
capable of quantitatively reproducing either the chemical-coordinate PDF, or the survival
probability over the whole time span of the process. It is interesting to notice that, in spite
of the breaking down of the initial subdiffusion behavior, signatures of it could remain in
the late stages of the process. The singular behavior of the asymptotic PDFs of polymer
displacements at the boundary values of the translocation coordinate could be such a
candidate [12]. However, it is not clear how these singularities can be linked to the initial
anomalous diffusion regime.

Here we show that the unbiased translocation process, in the time window following
the initial anomalous diffusion, is in fact described by a Fokker–Planck equation with
a displacement-dependent diffusion coefficient which neatly originates from a finite-size
scaling analysis. Based on only two free parameters associated with microscopic details,
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the Fokker–Planck equation quantitatively reproduces numerical results for both the
translocation coordinate PDF and the survival probability. In addition, the finite-size
scaling properties of the diffusion coefficient provide the mechanism for the appearance
of singularities in the long-time PDF of the translocation regime. We are thus able to
furnish a theoretical explanation of these singularities by linking them to the anomalous
scaling exponent of the initial stages of the process. In section 2 we present the results of
our simulations and the finite-size scaling analysis defining the displacement-dependent
diffusion coefficient subsequently used in the effective Fokker–Planck description of the
unbiased translocation process. Based on these developments we present in section 3
analytical results for the survival and the translocation probabilities of the process. In
particular we find precise scaling relations connecting the subdiffusion exponent to the
exponent that governs the singular behavior of the polymer probability density at the
absorbing boundaries. Our conclusions are given in section 4. We further discuss the
basis and the limits of validity of our approach in appendix A. In appendix B we report
detailed calculations of the mean translocation time based on our Fokker–Planck equation
and compare the analytical results with numerical data.

2. Simulations and scaling relations

Our numerical results are based on molecular dynamics simulations for the translocation
dynamics of 2d self-avoiding linear chains made by N + 1 monomers of unit length
and described by a finite extensible nonlinear elastic (FENE)-shifted Lennard-Jones
interaction potential, in contact with a Langevin heat bath. By indicating with
0 ≤ s(t) ≤ N the number of monomers at one side of the pore at time t, the symbols in
figure 1 refer to the (time-rescaled) mean square displacement 〈∆s2(t)〉 ≡ 〈[s(t)−s0]2〉 for
chains initially equilibrated with the monomer s(0) = s0 at the pore. The first important
feature to note in figure 1 is the existence of an initial anomalous regime, independent
of both N and s0, during which 〈∆s2(t)〉 = 2Dα t

α, with α ' 0.81 and Dα a generalized
diffusion coefficient. The precise value of α, which is expected to be bound from below
by (1 + ν)/(1 + 2ν) [10] and from above by 2/(1 + 2ν) [6], is still under debate [10, 6,
12, 13, 15]; recently, it has been claimed that α is also dependent on the viscosity [16].
For the system parameters and sizes analyzed here, we have found values of α close to
the upper bound pointed out in [6]. In any case, our approach does not imply or require
universality of this exponent. This N - and s0-independent initial stage can be ascribed
to the scale-free, self-similar structure of the polymer, which is explored by the chemical
coordinate during translocation. The finite size of the polymer implies a breakdown of
the initial regime, which is followed by a stage in which the growth of 〈∆s2(t)〉 is closer to
linear in t, before dropping down as a consequence of the fact that with finite probability
the translocation process has been completed. The times τ at which the breakdown of the
initial anomalous scaling occurs, of course depend on both s0 and N : τ = τ(s0, N).3 Thus,
if one wishes to match the behavior of 〈∆s2(t)〉 just after the breakdown with that of a
normal diffusion starting at t = 0 with s = s0, the normal-diffusion coefficient D(s0, N)

3 τ(s0, N), not to be confused with the mean translocation time, has been practically defined as the time at which
we observe a variation of 5% with respect to the extrapolation of the initial anomalous behavior of ∆s2(t).
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Figure 1. Symbols: Time-rescaled mean square displacement evolution for a
translocating chain. At early stages, the dynamics follows a universal subdiffusive
behavior 〈∆s2(t)〉 ∼ tα, with α ' 0.81 (dot-dashed line). This regime breaks down
at a time τ depending on both s0 and N . The dashed curves are obtained by
numerically solving equation (2) with D(s,N) given by equation (5), A = 0.13,
and s(0) = s0.

should satisfy the condition

2Dατ
α(s0, N) = 2D(s0, N)τ(s0, N). (1)

Below, we argue that the idea of matching the evolution of the whole process for t >
τ(N/2, N) with an effective Fokker–Planck description indeed works very well, provided
one permits the diffusion coefficient D(s0, N) identified by equation (1) to enter, with its
coordinate dependence, in the Fokker–Planck equation.

Treating s as a continuous coordinate, our goal is thus to develop an effective Fokker–
Planck equation to be satisfied by the PDF p(s, t|s0, N) of having the monomer s at the
pore at time t, given that the translocation process, for a polymer of size N , started at
time zero with s0 monomers at one side of the wall. The problem has natural absorbing
boundaries at s = 0 and s = N , corresponding to the configurations in which the polymer
completes the translocation process. We wish to profit from equation (1) and start to
construct our model by first neglecting the entropic drive on the process. According to

doi:10.1088/1742-5468/2014/05/P05019 4
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Itô’s rules for stochastic integration4, an over-damped Fokker–Planck equation with a
position- and size-dependent diffusion coefficient, D(s,N), reads

∂tp(s, t|s0, N) = ∂2s [D(s,N)p(s, t|s0, N)] . (2)

Multiplying equation (2) by (s− s0)2 and integrating over s, one easily obtains

∂tE
[
(s− s0)2

]
=

∫ N

0

ds 2D(s,N)p(s, t|s0, N)

' 2D(s0, N), (3)

where the approximation holds for times at which p(s, t|s0, N) is sufficiently concentrated
around s0, or for D(s0, N) slowly varying in such a range. Below, we confirm a posteriori

that these conditions are verified as long as the survival probability S(t|s0, N) ≡
∫ N
0 ds

p(s, t|s0, N) is close to 1. Within this approximation, one is entitled to identify in figure 1
the ordinate at t = τ(s0, N) as 2D(s0, N).

To make further progress we have to clarify why we may expect D(s0, N) to satisfy
a finite-size scaling symmetry. By equation (1) one gets D(s0, N) ∝ τ(s0, N)α−1 (see
footnote 3). The quantity τ(s0, N) is a measure of the time up to which the dynamics of
the chemical coordinate is characterized by the cooperative motion of the polymer degrees
of freedom determining anomalous dynamics. In this respect, τ can be regarded as the
time beyond which the self-similar structure of the polymer ceases to be explored due to
finite-size effects. In the related problem [6] of a tagged monomer diffusion with Rouse
dynamics, the time taken by the central monomer to ‘feel’ the finite size of the polymer
thus crossing over from sub- to normal-diffusion, scales as N1+2ν . Constraints imposed by
the presence of the wall and the pore indicate that in general our τ(N/2, N) should be
bounded from above by this time, but we here assume τ(N/2, N) ∝ N1+2ν (ν = 3/4 for
2d self-avoiding polymers [17]). More generally, we expect τ(s0, N) to obey a scaling law
both in s0 and N of the form τ(s0, N) ∼ N1+2νf(s0/N) with f(x) = f(1− x), or

D(s0, N) ∝
[

1

N1+2ν

1

f(s0/N)

]1−α
. (4)

A further condition can be found for s0 � N . In this case, only the branch of the chain
with length s0 breaks the self-similarity sustaining the anomalous scaling (since the other
branch becomes arbitrarily long). Thus, τ(s0, N) ∼

so�N s
1+2ν
0 , implying f(x) ∼

x�1
x1+2ν . This

behavior is again supported by the analogy with the Rouse dynamics, considering this time
a tagged monomer close to the ends of the chain. By putting together this small-argument
behavior with the symmetry f(x) = f(1− x), it is reasonable to guess

D(s0, N) =
A

Nσ

[
1

(s0/N)1+2ν
+

1

(1− s0/N)1+2ν

]1−α
, (5)

where A is a size-independent coefficient characterized by the microscopic details of the
polymer’s dynamics and σ ≡ (1 + 2ν)(1− α). Notice that the maximum crossover time is

4 We use here Itô’s prescriptions for multiplicative noise, in place of Stratonovich’s ones; the latter being frequently
used in classical transport equations. We have verified that this choice does not significantly affect our results.
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Figure 2. Data-collapse ofD(s0, N) according to equation (5). Points are obtained
from translocation simulations by averaging 〈∆s2(t)〉/2t between τ(s0, N) and the
maximum time for which S(t|s0, N) ' 1.

associated with the central monomer, τ(N/2, N) ∼ N (1+2ν). On the other hand, as s0→ 0
(or s0→ N), τ(s0, N)→ 0 and correspondingly D(s0, N) in equation (5) diverges. We will
see below that these divergences, which are hard to directly detect numerically, generate
a singular behavior at the borders for p(s, t|s0, N).

As a first important check of the above deduction, we verify the finite-size scaling
implied by equation (5). In figure 2 we data-collapse the numerical results of translocation
dynamics obtained with various N and s0. Confirmation of equation (5) is remarkable,
yielding a best-fitted A ' 0.13. Further validations of our approach are furnished by the
comparison of the solution of equation (2) with the molecular dynamics simulations of the
translocation process, as reported in figure 1 and specifically commented in appendix A.
Such a comparison also indicates that our theory is expected to work well for t > τ(N/2, N)
and s0 = N/2, and to become less accurate as s0 moves closer to the ends of the polymer
chain.

Similarly to what has been done in the original approach by Sung and Park [4],
equation (2) can be improved by considering the effect of an entropic force−(D(s,N)/kBT )
(dF (s,N)/ds), where F (s,N) = −kBT ln Ω(s,N) is the free energy of the constrained
polymer, and the validity of the Einstein relation has been assumed. Standard results
[18]–[20] for the number of possible polymer configurations with the monomer s at the

doi:10.1088/1742-5468/2014/05/P05019 6
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Figure 3. Survival (a) and translocation (b) probability for 2d linear polymers:
MD simulations (symbols) versus theory (full lines).

pore, Ω(s,N), including scaling corrections, yield

Ω(s,N) ∝ [s(N − s)](γ1−1)C(s)C(N − s), (6)

where the surface entropic critical exponent is γ1 = 61/64 = 0.95 for 2d linear polymers
with self-avoidance [20], and

C(s) ' 1 +
b0
s1/2

, (7)

with b0 a parameter depending on the microscopic details of the model. Indeed, the
inclusion of the entropic drive with a best-fitted b0 = 0.4 (with T = 1.2 in natural
dimensionless units) improves our overall results by about 5% (see figures 3(a), (b),
4(a)–(c)).

3. Survival and translocation probabilities

With the limitations mentioned in the previous paragraph, our complete description is
thus given by the solution of the following equation:

∂tp(s, t|s0, N) = −∂s
{
D(s,N)

∂s ln Ω(s,N)

∂s
p(s, t|s0, N)

}
+ ∂2s [D(s,N)p(s, t|s0, N)] , (8)

doi:10.1088/1742-5468/2014/05/P05019 7
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Figure 4. Time evolution of p(s, t|N/2, N) (a) and PDF of the surviving polymers
p(s, t|N/2, N)/S(t|N/2, N) for large time (b): MD simulations (symbols) versus
theory (full lines). (c) Same as (b) on a log–log scale, to appreciate the singular
behavior at the boundary.

with D(s,N) as in equation (5), Ω(s,N) as in equations (6) and (7), initial conditions
p(s, t|s0, N) = δ(s− s0), and absorbing boundaries at s = 0 and s = N .

Equation (8) is separable, so that its general solution can be written in the form

p(s, t|s0, N) =
∞∑
m=1

Am(s0, N)Xm(s,N)e−λ
2
mt, (9)

doi:10.1088/1742-5468/2014/05/P05019 8
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where Xm are the eigenfunctions corresponding to the eigenvalues λm (0 < λ1 < λ2 < · · · ),
and the amplitudes Am(s0, N) are determined by the initial conditions. For large time,
the behavior of the solution is dominated by the smallest eigenvalue λ1. This implies that
both the survival probability S(t|s0, N) and the translocation probability Q(t|s0, N) =
−∂tS(t|s0, N) decay exponentially in the long-time limit. In addition, the PDF of the
surviving polymers tends to the stable form

p(s, t|s0, N)

S(t|s0, N)
' A1(s0, N)X1(s,N). (10)

The eigenfunctions Xm and eigenvalues λm are numerically obtained discretizing the
Liouvillian operator of the Fokker–Planck equation (see appendix B) into a matrix.
Finding Xm and λm then reduces to computing the Schur decomposition of the matrix [21].
The solution for the first eigenfunction and eigenvalue is very stable with respect to the
discretization procedure. Specifically, in our case we used 50 equally spaced points between
0 and N .

Recent simulations [12] indicated the long-time stability of p(s, t|s0, N)/S(t|s0, N) and
revealed a singular behavior at the boundaries as a specific anomalous signature of the
translocation process (see also [22]). By using the Frobenius method (see, e.g.,[23]) in
equation (8), it can be proved that X1(s) ∼ sφ for s→ 0 and X1(s) ∼ (N−s)φ for s→ N ,
with

φ = σ + 1 = (1 + 2ν)(1− α) + 1. (11)

Such a singular behavior is due only to the divergence of D(s,N) and does not depend on
the entropic drive. Putting α = 0.81 and ν = 3/4 in equation (11), we thus get φ = 1.52,
consistent with the simulation data (figure 4(c)) and very close to the value φ = 1.44
numerically found in [12]. Using standard methods [24], from equation (8) one can also
deduce ordinary differential equations for the survival probability S(t|s0, N) or for the
mean translocation time T (s0, N) =

∫∞
0 dt S(t|s0, N).

Our description performs extremely well for s0 = N/2. Rescaling s 7→ s/N and t 7→
t/Nσ+2 in equation (8), it is easily seen that the equation becomes independent of N as
N � 1. This implies that the mean translocation time scales as

T (N/2, N) ∼ Nσ+2. (12)

With α ' 0.81 for our 2d benchmark case, σ + 2 ' 2.48, which is consistent with
what is observed in our simulations and also in previous studies [6, 13]. In appendix B,
besides verifying the validity of equation (12), we show a very satisfactory quantitative
comparison of the theoretical T (N/2, N) with that estimated from the simulations. We
stress, however, that different values of α lead to different scaling exponents for the mean
translocation time. Taking α = 2/(1+2ν) gives T (N/2, N) ∼N1+2ν , in agreement with [6];
taking α = (1 + ν)/(1 + 2ν) gives T (N/2, N) ∼ N2+ν , in agreement with [10]. This is
an important versatility of the theory, especially in view of the fact that α has been
recently claimed to be viscosity dependent [16]. Figures 3(a) and (b) display a very good
agreement of the theory also with the numerical simulations of the process in terms of the
survival and translocation probability, respectively. In particular, figure 3(b) highlights

doi:10.1088/1742-5468/2014/05/P05019 9
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the exponential decay of Q(t|N/2, N) for large t. More stringently, even p(s, t|N/2, N)
is accurately reproduced by the theory for t > τ(N/2, N), as depicted in figure 4(a). In
the long-time limit, the PDF of the surviving polymers collapses onto the predicted form
A1(N/2, N)X1(s,N), inclusive of the singular behavior at the borders (see figures 4(b)
and (c)).

By considering s0 closer to borders of the chain, the condition S(τ(N/2, N)|s0, N) ' 1
is violated. According to our arguments above, the analysis of the mean translocation time
T (s0, N) as a function of s0 reported in appendix B indeed shows that with s0 becoming
closer to the borders the mean translocation time becomes slightly smaller than that
predicted by our effective theory.

4. Conclusions

We have shown that the late stages of unbiased polymer translocation can be described by
an effective Fokker–Planck equation whose solution precisely reproduces the translocation
PDF p(s, t|s0, N). The finite-size scaling characterizing the Fokker–Planck diffusion
coefficient establishes a link with the anomalous diffusion at early times, providing a
convincing explanation of all the features of p(s, t|s0, N), including the singular behavior
at the border.
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Appendix A

In this appendix we comment on the validity of our theory and corresponding limitations,
based on figure 1.

Besides the results presented in figures 3 and 4, a further validation of our approach
and an identification of its expected limits of validity comes from the comparison, given
in figure 1, of the simulation results (symbols) with the numerical solutions of the Fokker–
Planck equation

∂tp(s, t|s0, N) = ∂2s [D(s,N)p(s, t|s0, N)] (A.1)

with D(s,N) given by

D(s,N) =
A

Nσ

[
1

(s/N)1+2ν
+

1

(1− s/N)1+2ν

]1−α
, (A.2)

and initial condition p(s, 0|s0, N) = δ(s− s0) (dashed curves).
The dashed curves in figure 1 confirm that the approximation reported in equation (3),

∂tE
[
(s− s0)2

]
=

∫ N

0

ds 2D(s,N)p(s, t|s0, N)

' 2D(s0, N), (A.3)

doi:10.1088/1742-5468/2014/05/P05019 10
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is justified up to time t such that S(t|s0, N) ' 1. In addition, with s0 = N/2, simulations of
equation (A.1) are shown to reproduce the time evolution of the mean square displacement
well for t > τ(s0, N), even when the effect of the absorbing boundaries becomes important
and S(t|s0, N) < 1. If we choose s0 closer to the borders of the chain, deviations appear
in the long-time behavior (see the s0 = 30, N = 100 plot).

In our effective Fokker–Planck equation, different chemical coordinates are entailed
with different diffusion coefficients D(s,N). As can be appreciated through figure 1 and
equation (A.3), during the initial anomalous stage, the mean square displacement of the
translocation coordinate is larger than that effectively assumed in the Fokker–Planck
description. Only for t larger than the maximum τ , i.e., t > τ(N/2, N), may the anomalous
stage be considered ended and the effective diffusion coefficientsD(s,N) could be a faithful
representation of the ‘diffusivity’ of the translocation coordinate for all s. This poses a
first limitation to our theory. In addition, since we put as initial condition p(s, 0|s0, N) =
δ(s − s0) in place of the PDF p(s, τ(N/2, N)|s0, N) resulting from the initial anomalous
stage, we also need to assume that at t = τ(N/2, N) only a negligible fraction of
polymers have completed the translocation process, i.e., that S(τ(N/2, N)|s0, N) ' 1.
This condition is satisfied for s0 close to N/2. In view of the lower ‘diffusivity’ in our
representation, as s0 becomes close to the borders we expect our approach to provide an
upper bound for the survival probability of a translocating polymer. This is illustrated in
figure B.1 of appendix B.

Appendix B

In this appendix we detail derivation of the mean translocation time. Our Fokker–Planck
equation, equation (8) of the main text, may be rewritten as

∂tp(s, t|s0, N) = Lsp(s, t|s0, N), (B.1)

where the Liouvillian operator Ls is given by

Ls ≡
{
∂sD(s,N)

∂ ln Ω(s,N)

∂s

}
+
{
∂2sD(s,N)

}
. (B.2)

Defining the survival probability S(t|s0, N) as

S(t|s0, N) ≡
∫ N

0

ds p(s, t|s0, N), (B.3)

it follows [24] that S(t|s0, N) satisfies the equation:

∂tS(t|s0, N) = L†s0S(t|s0, N), (B.4)

where the adjoint Liouvillian operator L†s0 (acting now on the initial data s0) is

L†s0 =

{
D(s0, N)

∂ ln Ω(s0, N)

∂s0
∂s0

}
+
{
D(s0, N)∂2s0

}
. (B.5)
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In terms of S(t|s0, N) the mean translocation time T (s0, N) is given by

T (s0, N) = −
∫ ∞
0

dt t∂tS(t|s0, N) (B.6)

=

∫ ∞
0

dt S(t|s0, N), (B.7)

inheriting from equation (B.4) the ordinary differential equation

L†s0T (s0, N) = −1. (B.8)

Equation (B.8) has boundary conditions

T (0, N) = 0, (B.9)

T (N,N) = 0, (B.10)

and can be solved, for example, numerically for a generic s0. Numerical solutions for
N = 50 are compared in figure B.1 with the results of molecular dynamics simulations of
the translocation dynamics as described in section 2. Taking advantage of the symmetry
with respect to the middle point, here we explicitly calculate the mean translocation time
for s0 = N/2. We first rewrite equation (B.8) as

{∂s0Ω(s0, N)∂s0}T (s0, N) = −Ω(s0, N)

D(s0, N)
. (B.11)

Integrating between N/2 and s0 we have

Ω(s0, N)∂s0T (s0, N) = −
∫ s0

N/2

ds′0
Ω(s′0, N)

D(s′0, N)
, (B.12)

where we have used that ∂s0T (N/2, N)|s0=N/2 = 0, as implied by the symmetry of the
problem around s0 = N/2. Rearranging equation (B.12) and integrating between N/2
and N we finally obtain

T (N/2, N) =

∫ N

N/2

ds0
1

Ω(s0, N)

∫ s0

N/2

ds′0
Ω(s′0, N)

D(s′0, N)
, (B.13)

where we have used the boundary condition T (N,N) = 0.
Equation (B.13) can be evaluated explicitly by using the expressions for D(s0, N) and

Ω(s0, N) given in the main text. Namely,

D(s0, N) =
A

Nσ

[
1

(s0/N)1+2ν
+

1

(1− s0/N)1+2ν

]1−α
, (B.14)

Ω(s0, N) ∝ [s0(N − s0)](γ1−1)C(s0)C(N − s0), (B.15)

with

C(s0) ' 1 +
b0

s
1/2
0

. (B.16)
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Figure B.1. Mean translocation time as a function of s0: MD simulations
(symbols) versus theory (full lines).

The result is

T (N/2, N) =
Nσ+2

A

∫ 1

1/2

dx
1

[x(1− x)](γ1−1)[1 + b0/N1/2x1/2][1 + b0/N1/2(1− x)1/2]

×
∫ 1

1/2

dx′
[x′(1− x′)](γ1−1)[1 + b0/N

1/2x′1/2][1 + b0/N
1/2(1− x′)1/2]

[1/x′1+2ν + 1/(1− x′)1+2ν ]1−α,
(B.17)

where σ = (1 + 2ν)(1−α). As N � 1, the correction to scaling can be neglected, and the
above expression simplifies to

T (N/2, N) =
Nσ+2

A

∫ 1

1/2

dx
1

[x(1− x)](γ1−1)

∫ 1

1/2

dx′
[x′(1− x′)](γ1−1)

[1/x′1+2ν + 1/(1− x′)1+2ν ]1−α

∝ Nσ+2, (B.18)

yielding the expected scaling behavior. In figure B.2 we compare the analytical expression
(B.17) with numerical data based on MD simulations: The agreement turns out to be
extremely good.
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Figure B.2. N -dependence of the mean translocation time at s0 = N/2 in linear
and log–log scales: symbols refer to MD simulations while the full curves refer to
equation (B.17) with A = 0.13, b0 = 0.4, and σ = (1 + 2ν)(1− α) with ν = 3/4,
α = 0.81.
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