
Laser Physics
     

PAPER

Free-electron laser with a plasma wave wiggler
propagating through a magnetized plasma channel
To cite this article: S Jafari et al 2013 Laser Phys. 23 085005

 

View the article online for updates and enhancements.

You may also like
Coherent Emission in Pulsars, Magnetars,
and Fast Radio Bursts: Reconnection-
driven Free Electron Laser
Maxim Lyutikov

-

The Saturation Mechanism in a two-
stream free-electron laser based upon a
rectangular hybrid wiggler
Amirhossein Hosseinnezhad, Asma Ostadi
Nooshabadi and Amirhossein Ahmadkhan
Kordbacheh

-

Interference effect of edge radiation at
three-pole wiggler section
Shigeru Koda and Yuichi Takabayashi

-

This content was downloaded from IP address 18.116.38.132 on 03/05/2024 at 04:54

https://doi.org/10.1088/1054-660X/23/8/085005
https://iopscience.iop.org/article/10.3847/1538-4357/ac1b32
https://iopscience.iop.org/article/10.3847/1538-4357/ac1b32
https://iopscience.iop.org/article/10.3847/1538-4357/ac1b32
https://iopscience.iop.org/article/10.1088/1402-4896/acc0b0
https://iopscience.iop.org/article/10.1088/1402-4896/acc0b0
https://iopscience.iop.org/article/10.1088/1402-4896/acc0b0
https://iopscience.iop.org/article/10.7567/JJAP.55.096301
https://iopscience.iop.org/article/10.7567/JJAP.55.096301


IOP PUBLISHING LASER PHYSICS

Laser Phys. 23 (2013) 085005 (11pp) doi:10.1088/1054-660X/23/8/085005

Free-electron laser with a plasma wave
wiggler propagating through a
magnetized plasma channel

S Jafari1, F Jafarinia1 and H Mehdian2

1 Department of Physics, University of Guilan, Rasht 41335-1914, Iran
2 Department of Physics and Institute for Plasma Research, Tarbiat Moallem University, Tehran 15614,
Iran

E-mail: SJafari@guilan.ac.ir

Received 11 April 2013, in final form 30 May 2013
Accepted for publication 31 May 2013
Published 4 July 2013
Online at stacks.iop.org/LP/23/085005

Abstract
A plasma eigenmode has been employed as a wiggler in a magnetized plasma channel for the
generation of laser radiation in a free-electron laser. The short wavelength of the plasma wave
allows a higher radiation frequency to be obtained than from conventional wiggler
free-electron lasers. The plasma can significantly slow down the radiation mode, thereby
relaxing the beam energy requirement considerably. In addition, it allows a beam current in
excess of the vacuum current limit via charge neutralization. This configuration has a higher
tunability by controlling the plasma density in addition to the γ -tunability of the standard
FEL. The laser gain has been calculated and numerical computations of the electron
trajectories and gain are presented. Four groups (I–IV) of electron orbits have been found. It
has been shown that by increasing the cyclotron frequency, the gain for orbits of group I and
group III increases, while a decrease in gain has been obtained for orbits of group II and group
IV. Similarly, the effect of plasma density on gain has been exhibited. The results indicate that
with increasing plasma density, the orbits of all groups shift to higher cyclotron frequencies.
The effects of beam self-fields on gain have also been demonstrated. It has been found that in
the presence of beam self-fields the sensitivity of the gain increases substantially in the
vicinity of gyroresonance. Here, the gain enhancement and reduction are due to the
paramagnetic and diamagnetic effects of the self-magnetic field, respectively.

(Some figures may appear in colour only in the online journal)

1. Introduction

Electron beam dynamics in plasma focusing channels has
important applications in new plasma technologies, such
as plasma lenses, plasma wakefield accelerators and novel
coherent radiation sources [1–3]. The free-electron laser
(FEL), as a high power radiation source, is a collective
recoil lasing system in which particles scatter coherently
the photons of the pump due to the wiggler field into
a forward radiation mode [4, 5]. In a conventional FEL,
coherent electromagnetic radiation is generated by subjecting
an e-beam in vacuum to a transverse periodic wiggler

magnetic field. The effect of the wiggler field is to provide
coupling between the e-beam and electromagnetic radiation
fields, which results in a ponderomotive force along the axis
of the beam. This force leads to bunching of the electrons [6].
The subsequent interaction of the bunched beam with the
incident electromagnetic wave gives rise to energy growth
of the wave at the expense of the beam kinetic energy.
The main merit of a FEL may be its high power capability
and its tunability to a prescribed frequency. In addition, it
may cover the whole spectrum of electromagnetic waves by
adjusting the injected beam energy and the wiggler period.
The frequency of radiation in a FEL is ω = kwvb/(1−nvb/c),
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where kw (=2π/λw) is the wiggler wavenumber, vb is the
electron beam velocity, and n is the refractive index of the
cavity medium. Due to technical limitations of the wiggler
wavelength (λ ≥ 1 cm) and magnetic field strength (e.g.,
in a helical wiggler, <50 kG), a conventional FEL needs a
very high-γ electron beam to generate a short wavelength
and operates there with a low efficiency [7, 8]. This leads
to beam requirements, such as higher energy, higher current
and higher quality, as well as magnet requirements, such as
a stronger and more precise magnetic field, very accurate
wiggler wavelengths and alignment.

In recent years, much effort has been expended in
the investigation of ion-channel pumped FELs [9–13]. The
technique of ion-channel guiding has emerged as an effective
method for focusing the electron beam; a relativistic e-beam
injected into an underdense plasma (the plasma density is
less than the beam density) can expel the plasma electrons
outward to create an ion-channel, which has ideal focusing
properties for e-beams. It is a cost effective alternative
to the axial guide magnetic field in FELs, due to lower
capital and operating expenses [14, 15]. Furthermore, it
permits a beam current higher than the vacuum limit and
helps in radiation guiding [16, 17]. One of the significant
physical limitations of the ion-channel focusing regime is
the ion-hose instability, in which transverse oscillations of
the electron beam and ion-channel couple and grow [18].
This instability imposes a constraint on the useful pulse or
propagation length. Furthermore, in the ion-channel regime
the plasma density has to be smaller than the electron beam
density in order to produce the ion-channel. This leads to
serious limits on the gain of a FEL. It seems that these
limitations may be suppressed when we use a plasma wave
as a wiggler in FELs; the presence of the plasma opens up
the possibility of employing the plasma eigenmodes as a
wiggler for the excitation of shorter wavelengths. The plasma
can significantly slow down the radiation mode, thereby
relaxing the beam energy requirement considerably [19, 20].
As the plasma wave wiggler has a very short period, it
allows the production of short waves using a beam with
moderate electron energy. The presence of the plasma in the
interaction region helps in the generation of higher powers
in several ways. First, it allows beam currents in excess of
the vacuum current limit via charge neutralization [21, 22].
Second, the electron bunching process can be enhanced by
tuning the wave frequency close to the plasma frequency [23].
Third, a density-depleted plasma channel provides strong
radiation guiding [24, 25]. Joshi et al [26] have studied the
possibility of employing a Langmuir wave wiggler. Sharma
and Tripathi [27] have investigated the whistler wave as
a wiggler in the inner region of a FEL. Moreover, in a
different work, these authors have studied the generation of
high-frequency coherent radiation by a large amplitude upper
hybrid wave [28]. Wen-Bing et al [29] have observed an
enhancement in the gain and frequency of a plasma loaded
FEL in the presence of high-density plasmas. The linear
theory of a plasma-loaded helix-type traveling wave tube
amplifier was studied by Kobayashi et al [30]. In this research,
the role of the plasma on the gain and degree of concentration

of the high-frequency field on the region of the plasma is
considered, and strong gain enhancements are observed for
frequencies in which hybrid plasma slow waves are formed.
Recently, the generation of harmonics of laser radiation in
plasmas has been studied by Ganeev [31], indicating new
opportunities for the efficient generation of strong coherent
short wavelength radiation.

In this paper, a magnetized plasma eigenmode has been
employed as a wiggler. This wiggler propagates parallel to the
relativistic e-beam. In our physical model, we assume that the
plasma is collisionless. The beam pulse length is assumed to
be short compared to the time for ions to neutralize the beam.
The two-stream instability due to the relative motion of the
beam and plasma electrons can be avoided if we consider the
dimensions of the particle bunches to be small in comparison
with the length of the plasma wave [24, 32]. Here, to confine
the beam against the effects of self-fields, an axial guide
magnetic field, B0ẑ, is employed. Another effect of the axial
guide field is to increase the magnitude of the transverse
wiggler-induced velocity resonantly when the Larmor period
associated with the axial field is comparable to the plasma
eigenmode period [33].

By passing a relativistic e-beam through a magnetized
plasma channel, high-frequency electromagnetic radiation
is generated by coupling the electromagnetic wave to the
negative energy electrostatic beam modes. The negative
energy electrostatic beam mode and the positive energy
electromagnetic wave can strongly couple together, leading to
an instability [34, 35]. During the course of the instability, the
amplitudes of beam modes increases and the waves begin to
trap electrons. Because of the relativistic effects on the mass
of the electrons, the bounce period of the electrons trapped
in the electrostatic potential well is long. During the bounce
period, the unstable electromagnetic waves continue to grow
to overshoot. This overshoot of the wave amplitudes results in
further energy deposition into electromagnetic radiation [36].
A schematic diagram of an electron beam propagating through
the magnetized plasma wave wiggler is shown in figure 1.
Table 1 shows the plasma eigenmodes which can be used as a
wiggler.

The organization of the paper is as follows. In section 2,
electron trajectories in a magnetized plasma wave wiggler
are presented. The effects of beam quality, such as axial
energy spread and beam emittance on electron trajectories,
are given in section 3. The self-electric and self-magnetic
fields of the e-beam are also derived from Poisson’s equation
and Ampere’s law, respectively. A self-consistent method
for calculation of the self-magnetic field generated by the
wiggler-induced transverse velocity is also presented. In
section 4, the small-signal gain of the plasma wiggler FEL
is derived, which has been generalized to the gain equation
in the presence of beam self-fields. Finally, numerical studies
and conclusions are described in section 5.

2. Electron trajectories

A relativistic e-beam propagating through a magnetized
plasma channel can support several types of beam idler [37].
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Figure 1. A schematic diagram of the propagation of an electron beam in the presence of the magnetized plasma wave wiggler.

Table 1. Plasma eigenmodes used as a wiggler in a FEL.

Plasma wave (ωs, ks)

Right circularly polarized mode (Whistler mode) [27] ωs = cks

/√
1−

ω2
p

ωs(ωs−ωc)

Left circularly polarized mode [63] ωs = cks

/√
1−

ω2
p

ωs(ωs+ωc)

Alfven mode [63] ωs = vAks (vA, Alfven speed)

Langmuir mode [26] ω2
s = ω

2
p+

3
2 k2

s v2
th (vth, thermal velocity of the plasma electrons)

Ion acoustic mode [32] ωs = vsks (vs, ion acoustic speed)

Upper hybrid mode [28] ω2
s =

1
2

(
ω2

p + ω
2
c +

√
ω2

p + ω
2
c −

4ω2
pω

2
c k2

sz

k2
sz + k2

s⊥

)

The most significant types are the negative energy space
charge and cyclotron waves, as well as their harmonics. These
waves couple energy from the e-beam into scattered radiation.
Then [38],

ωr − ωs = (kmod ± kr)vb − ωi, (1)

where ωr, ωs and ωi are the radiation, pump and idler
wave frequencies, kr is the radiation wavenumber, vb is the
beam velocity, and ± signs correspond to forward/backward
propagating waves. Moreover,

kmod =
ωs

vph

(
1+

vb

vph

)
, (2)

is the modifying wavenumber of the pump wave, and vph is
the phase velocity of the pump wave.

The configuration of interest consists of monoenergetic
relativistic electron beam propagation through a magnetized
plasma channel, which is given by

Bs =
1
2 Bs exp[i(ksz− ωst)](x̂+ iŷ)+ CC, (3)

Es =
i
2
ωs

cks
Bs exp[i(ksz− ωst)](x̂+ iŷ)+ CC, (4)

where Bs is the amplitude of the plasma magnetic field, ωs
and ks denote the frequency and wavenumber of the plasma
pump wave, z and t are the longitudinal position and time,
respectively, and CC indicates the complex conjugate.

The dynamics of an electron with rest mass m and charge
−e moving with velocity V in the presence of a magnetized
plasma wave can be expressed as [39]

dV
dt
= −

e

mγ

[(
I−

1

c2 VV
)

· Es +
1
c

V× (B0ẑ+ Bs)

]
, (5)

dγ
dt
= −

e

mc2 V · Es, (6)

where I is a unit dyadic, γ is the relativistic factor and c is the
speed of light in vacuum. For convenience, we introduce the
wiggler frame as

ê1 = x̂ cos(ksz− ωst)− ŷ sin(ksz− ωst), (7)

ê2 = x̂ sin(ksz− ωst)+ ŷ cos(ksz− ωst), (8)

ê3 = ẑ. (9)

Now, we can write the scalar equations in the wiggler frame
as

dβ1

dτ
= −ωcβ2 −�sβ1β2βs + β2β3 − β2βs, (10)

dβ2

dτ
= �sβs −�sβ3 + ωcβ1 −�sβ

2
2βs − β1β3 + β1βs, (11)

dβ3

dτ
= �sβ2 − β3β2βs�s, (12)

dγ
dτ
= γ�sβ2βs, (13)
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Figure 2. Graph of the normalized axial velocity, β‖, as a function
of the normalized cyclotron frequency, ωc, for orbits of groups I–IV.
The chosen parameters are ωb = 0.08, ωp = 0.8, γ = 200 and
�s = 0.07.

where βi = vi/c is the normalized beam velocity, βs(=ωs/cks)

is the normalized phase velocity of the plasma pump wave,
ωc = (eB0/γmc2ks) is the normalized cyclotron frequency of
the e-beam, and �s = (eBs/γmc2ks).

The steady-state electron orbits for this configuration
are found under the requirement that the total energy of the
electron remains constant (dγ /dτ = 0) [33, 39]. This implies
that the normalized transverse velocity in the wiggler frame
can be written as

βw =
�s(β‖ − βs)

ωc − (β‖ − βs)
, (14)

where β‖(=β3) is the normalized axial velocity of the e-beam.
The injection of the beam on the steady-state trajectories
ensures that the wave–particle resonance will be maintained
over an extended interaction length, and maximizes the gain
of interaction [33]. Since the energy is a constant for the
steady-state trajectories, βw and β‖ are related through β2

w +

β2
‖
= 1 − γ−2. For a monoenergetic e-beam, the phase

velocity of the plasma wave is determined in a self-consistent
fashion [33, 39] by the dielectric properties of the medium as

β2
s − 1−

ω2
b(β‖ − βs)

ωc − (β‖ − βs)
+

γω2
pβs

γωc + βs
= 0, (15)

where ωb = (4πe2nb/γmc2k2
s )

1/2 is the normalized beam
frequency, ωp = (4πe2np/γmc2k2

s )
1/2 is the normalized

plasma electron frequency, and nb and np are the beam and
plasma density, respectively. In order to operate in the cold
(monoenergetic) beam regime, the axial velocity spread of the
beam most be small. The effects of the normalized cyclotron
and plasma frequencies on the normalized axial velocity of
the e-beam are shown in figures 2 and 3.

3. Beam quality

The quality of e-beam is critical to the operation of a FEL.
The FEL interaction is driven by axial bunching of electrons
and requires the matching of their axial velocity to the phase
velocity of the ponderomotive wave [40]. In a real situation,
the energy spread, emittance and self-fields of the electron

Figure 3. Graph of the normalized axial velocity, β‖, as a function
of ωc, for ωp = 0.8 and ωp = 1.6. The chosen parameters are
ωb = 0.08, γ = 200 and �s = 0.07.

beam are the source of a spread in the axial velocity of the
beam that can generally affect the gain and efficiency of FELs.
The relationship between the beam emittance and the beam
energy spread can be expressed as [41]

1γz

γ0
=

1
2

(
γz

γ0

)3 (
γ0β0ε

rb

)2

, (16)

where γ0 = (1− β2
0 )
−1/2, β0 is the total normalized velocity,

γz = (1 − β2
‖
)−1/2, rb is the beam radius and εn(=γ0β0ε)

is the normalized emittance of electron beam. Furthermore,
the axial momentum spread can be related to the axial energy
spread using the relation [41, 42],

1γz

γ0
= 1−

(
1+ 2γ 2

0 β
2
0
1Pz

P0

)−1/2

, (17)

where P0 = γ0mcβ0 is the total momentum and 1Pz is the
axial momentum spread of the beam. Considering P2

0 = P2
z0+

P2
w0,1Pz = Pz − P0z, and βz ≈ 1 − 1

2γ 2
0
−

β2
w
2 (for γ0 � 1),

we can rewrite the above equation as

1γz

γ0
= 1−

[
1+

2(γ 2
0 − 1)√

1− γ−2
0

(
1−

1

2γ 2
0

−
β2

w

2
− β‖

)]−1/2

,

(18)

where βw is defined in equation (14).
The self-fields generated by the charge and current

densities of the electron beam are known to have a significant
effect on the operation of the FEL. The self-fields can either
enhance or reduce the external pump field, depending on the
latter’s phase velocity and the strength of the longitudinal
guide magnetic field [43–45]. The first-order self-magnetic
field generated by the wiggler-induced transverse velocity was
calculated by Freund et al [46]. Hafizi and Roberson found
that self-fields tend to reduce the spread in the axial velocity
of the beam electrons, i.e., self-fields effectively cool the
beam [47]. In addition, they have shown that the contributions
due to emittance (or energy spread) and self-fields have
opposite signs. This leads to an improvement in beam quality
due to beam self-fields [47, 48].

4
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We make the assumption of a uniform electron beam
density profile nb(r) = nb = const. for r ≤ rb and nb(r) = 0
for r > rb, where nb is the number density of the electrons and
rb is the radius of the beam. The self-electric field induced by
the charge density of the non-neutral electron beam can be
obtained by solving Poisson’s equation,

∇ · Esf = −4πenb(r). (19)

Solving the above equation, we obtain

Esf = −2πenb(xêx + yêy). (20)

The lowest-order representation for the self-magnetic field
is obtained under the assumption that the beam propagates
paraxially with V = v‖ẑ for r ≤ rb and is zero otherwise. In
this case, the self-magnetic field is determined by Ampere’s
law,

∇ × Bsf =
4π
c

J, (21)

where J = −enbcβ‖ẑ is the electron beam current density,
and β‖ = v‖/c is the normalized axial electron velocity. The
solution of above equation can be expressed as

Bsf = 2πenbβ‖(yx̂− xŷ). (22)

An analysis of the relativistic motion of an electron beam
in the FEL with a plasma wave wiggler and an axial
guide magnetic field with regards to the self-electric and
self-magnetic fields of the beam will be based on equations (5)
and (6). Thus, the scalar equations of motion are given by

dβ1

dτ
= −ωcβ2 −�sβ1β2βs + β2β3 − β2βs − β

2
3ω

2
bχ1

+ ω2
bχ1 − β1β2ω

2
bχ2 − β

2
1ω

2
bχ1, (23)

dβ2

dτ
= �sβs −�sβ3 + ωcβ1 −�sβ

2
2βs − β1β3

+ β1βs − β
2
3ω

2
bχ2 + ω

2
bχ2 − β1β2ω

2
bχ1 − β

2
2ω

2
bχ2, (24)

dβ3

dτ
= �sβ2 − β3β2βs�s, (25)

and

dγ
dτ
= γ�sβ2βs + γω

2
bχ1β1 + γω

2
bχ2β2, (26)

where χi = ksxi denotes the component of the position of the
electron in the wiggler frame. The steady-state orbits for this
configuration are obtained as Eβ = β0wê1 + β‖ê3, where

β0w =
�s(β‖ − βs)

2

ω2
b(1− β

2
‖
)+ ωc(β‖ − βs)− (β‖ − βs)2

. (27)

The self-magnetic field that is induced by the transverse
velocity is known as the wiggler-induced self-magnetic field
(Bsw). Assume that the wiggler-induced self-magnetic field
is proportional to the wiggler magnetic field (i.e., B(1)sw =

λ(1)Bs). As a result, the coefficient λ(1) can be derived from
Ampere’s law,

λ(1) =
−2ω2

b(β‖ − βs)
2

ω2
b(1− β

2
‖
)+ ωc(β‖ − βs)− (β‖ − βs)2

. (28)

Figure 4. Graph of the total transverse magnetic fields, Btrans., as a
function of the normalized cyclotron frequency, ωc, for orbits of
groups I–IV. The chosen parameters are ωb = 0.08, ωp = 0.8,
γ = 200 and �s = 0.07.

The field B(1)sw also generates a transverse velocity named the
wiggler-induced transverse velocity and its magnitude can be
written as β(1)sw = (1 + λ(1))β0w. Consequently, this velocity
produces a new self-magnetic field B(2)sw = λ

(2)Bs and so on.
Using Ampere’s law, we can find [49, 50]

λ(n) = λ(1)[1+ λ(1) + (λ(1))2 + (λ(1))3 + · · · + (λ(1))n−1
].

(29)

This is a geometric series and for n → ∞ the series is
convergent if |λ(1)| < 1, which is a restriction for validity
of this method in high electron beam density. Therefore, the
total wiggler-induced self-magnetic field Bsw can be found as
Bsw = limn−→∞λ

(n)Bs = λ
(1)Bs/(1− λ(1)). As a result,

Bsw = σBs

= [−2ω2
b(β‖ − βp)

2
][ω2

b(1− β
2
‖
)+�0(β‖ − βp)

− (1− 2ω2
b)(β‖ − βp)

2
]
−1Bs. (30)

The magnitude of the normalized wiggler-induced transverse
electron velocity can also be obtained from βsw =

limn−→∞[1+ λ(n)]β0w. Thus, we have

βsw =
�s(β‖ − βs)

2

ω2
b(1− β

2
‖
)+ ωc(β‖ − βs)− (1− 2ω2

b)(β‖ − βs)2
.

(31)

The effect of the normalized cyclotron frequency, ωc, on the
normalized total transverse magnetic field, (Bsw + Bs)/Bs, is
shown in figure 4.

It should be mentioned that by conditioning an electron
beam through establishing a correlation between transverse
action and energy within the beam, the performance of FELs
can be dramatically improved [51]. Conditioning enhances
the FEL gain by reducing the axial velocity spread within
the electron bunch generated over the wiggler, due to both
energy spread and finite transverse emittance [52, 53].
Recently, a plasma channel beam conditioner for FELs
has been proposed by Penn et al [54], in which strong
transverse focusing produced by the plasma channel allows
the optimal correlation to be achieved. Furthermore, a number

5
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of techniques have been proposed to pre-bunch the electron
beam for increasing the efficiency in microwave tubes [55].
The concept relies on the fact that, if the beam is bunched
on scale lengths comparable to or shorter than the desired
wavelength, then the resonant wavelength is strongly excited
without a drive signal [56]. The results obtained by Freund
et al [57] indicate that partial pre-bunching of an electron
beam in FELs results in substantial increases in the efficiency,
shortening the saturation length and giving an improvement in
longitudinal coherence.

4. Small-signal gain

Now consider electromagnetic radiation co-propagating with
the electron in the interaction region. The electric and
magnetic fields of the radiation can be written as [58, 59]

Er = Er cos ζ x̂− Er sin ζ ŷ, (32)

Br = Er sin ζ x̂+ Er cos ζ ŷ, (33)

where ζ = krz − ωrt + φ, kr is the wavenumber, ωr is the
angular frequency of the radiation wave, Er is the amplitude of
the wave and φ is the phase constant. The phase φ determines
the initial position of the electron relative to the optical
(radiation) wave. In the wiggler frame, these equations can
be expressed as

Er = Er cosψ ê1 − Er sinψ ê2, (34)

Br = Er sinψ ê1 + Er cosψ ê2, (35)

where ψ = (kr− ks)z− (ωr−ωs)t+φ. The electron equation
of the motion for the normalized velocity components in the
presence of the radiation fields may be written in the scalar
form,

dβ1

dτ
= −ωcβ2 −�sβ1β2βs + β2β3 − β2βs

+ (β3 − 1)Ẽr cosψ, (36)
dβ2

dτ
= �sβs −�sβ3 + ωcβ1 −�sβ

2
2βs − β1β3

+ β1βs + (1− β3)Ẽr sinψ, (37)

dβ3

dτ
= �sβ2 − β3β2βs�s + Ẽr(sinψβ2 − cosψβ1), (38)

where Ẽr = eEr/γmc2ks is the normalized amplitude of the
radiation wave.

For the solution of equations (36)–(38), we consider that
for β3 close to one, the last term in equations (36) and (37)
due to the transverse optical force acting on electrons may
be neglected in comparison with the other terms, which are
due to the transverse forces of the wiggler fields. Therefore,
to a very good approximation, the transverse electron velocity
components in the presence of the radiation fields may be
taken as the steady-state solutions. Using equation (14) along
with the energy conservation relation β2

w+β
2
‖
= 1− γ−2, for

γ � 1, we obtain

β3 ' 1−
1

2γ 2 −
�2

s (β‖ − βs)
2

2(ωc − (β‖ − βs))2
. (39)

The energy exchange of the electron with the radiation field is
given by

〈γ̇ 〉 =
dγ
dt
= −

e

mc2ks
β · E = −γβwẼr cosψ. (40)

Averaging this equation over all phases yields 〈γ̇ 〉φ = 0;
therefore, to the first order, there is no net transfer of
energy between the electron beam and the optical wave. The
second-order correction will consist of accounting for the fact
that as an individual electron (with phase φ) gains or loses
energy, its position relative to the unperturbed position (z =
cβ‖t) is advanced or retarded. Thus, the unperturbed position
z = cβ‖t must be replaced by

z(t) = cβ‖t + c
∫ t

0
1β3(t

′) dt′, (41)

where 1β3(t) =
∫ t

0 β̇3(t′) dt′ is the change of β3 relative to
the unperturbed state. The substitution of β̇3 in the normalized
form of z(t) will yield

3z(τ ) = β‖τ −
Ẽrβw

γ 2�2

[
1−

γ 2�2
s (β‖ − βs)

3

(ωc − (β‖ − βs))3

]
× [cos(�τ + φ)− cosφ +�τ sinφ], (42)

where τ = ckst, �= (̃kr−1)β‖+(1−ω̃r)βs, and k̃r = kr/ks and
ω̃r = ωs/cks are the normalized wavenumber and frequency of
the radiation wave.

The substitution of 3z(τ ) in the ψ of equation (40) leads
to

〈γ̇ 〉 = γ Ẽrβw cos[(�τ + φ)−1φ], (43)

where the phase slippage 1φ is expressed by

1φ =
Ẽrβw(1− k̃r)

γ 2�2

[
1−

γ 2�2
s (β‖ − βs)

3

(ωc − (β‖ − βs))3

]
× [cos(�τ + φ)− cosφ +�τ sinφ]. (44)

Taking the average of energy exchange from above equation
over all phases φ, we obtain

〈γ̇ 〉φ =
Ẽ2

r β
2
w(1− k̃r)

2γ�2

[
1−

γ 2�2
s (β‖ − βs)

3

(ωc − (β‖ − βs))3

]
× (�τ cos�τ − sin�τ). (45)

Integrating the above equation over the electron transit time
through the wiggler interaction length, the average change in
γ per electron becomes

〈1γ 〉φ =

∫ T=ksL/β‖

0
〈γ̇ 〉φ dτ, (46)

where L is the FEL interaction length and T is the normalized
electron transit time through the wiggler interaction length.
The change in electromagnetic power in one transit is 4Pr =

−
I
e mc2
〈1γ 〉φ , where I is the average electron beam current.

The small-signal gain is defined by G = 4Pr/Pr, where Pr =

(cπr2
bE2

r )/4π is the electromagnetic power [33, 45, 54]. Thus,
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Figure 5. Graph of the normalized gain, |G/G0|, as a function of
the normalized cyclotron frequency, ωc. The chosen parameters are
ωb = 0.08, ωp = 0.8, γ = 200 and �s = 0.07.

the small-signal gain of the magnetized plasma wiggler can be
expressed as

G =
2mc2πnbẼ2

r (̃kr − 1)L3k3
s γ

(γErβ‖)2

[
�s(β‖ − βs)

ωc − (β‖ − βs)

]2

×

[
1−

γ 2�2
s (β‖ − βs)

3

(ωc − (β‖ − βs))3

]

×
(2− 2 cos�T −�T sin�T)

�3T3 . (47)

Using a similar method, we can derive the small-signal
gain of the magnetized plasma wiggler in the presence of
self-electric and self-magnetic fields of the electron beam; the
normalized components of electron velocity in the presence of
the self-fields can be written as

dβ1

dτ
= −ωcβ2 −�s(1+ σ)β1β2βs + β2β3 − β2βs + ω

2
bχ1

− β2
3ω

2
bχ1 − β1β2ω

2
bχ2 − β

2
1ω

2
bχ1

− Ẽr cosψ(1− β3), (48)
dβ2

dτ
= �s(1+ σ)βs −�s(1+ σ)β3 + ωcβ1

− �s(1+ σ)β2
2βs − β1β3 + β1βs + ω

2
bχ2 − β

2
3ω

2
bχ2

− β1β2ω
2
bχ1 − β

2
2ω

2
bχ2 + Ẽr sinψ(1− β3), (49)

dβ3

dτ
= �s(1+ σ)β2 − β3β2βs�s(1+ σ)

− β1Ẽr cosψ + β2Ẽr sinψ. (50)

The energy exchange of the electron with the radiation fields
is obtained from

dγ
dτ
= −γ Ẽrβsw cosψ, (51)

where βsw is the normalized wiggler-induced transverse
velocity, equation (31). Taking the average of energy

(a)

(c)

(b)

(d)

Figure 6. Graph of the gain ratio, |G/G0|, as a function of the normalized cyclotron frequency, ωc, for ωp = 0.8 and ωp = 1.6 in orbits of
(a) group I, (b) group II, (c) group III and (d) group IV. The chosen parameters are ωb = 0.08, γ = 200 and �s = 0.07.
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(a) (b)

(c) (d)

Figure 7. Graph of the normalized gain, |G/G0|, as a function of the normalized cyclotron frequency, ωc, for γ = 40 and γ = 200 in orbits
of (a) group I, (b) group II, (c) group III and (d) group IV. The chosen parameters are ωb = 0.08, ωp = 0.8 and �s = 0.07.

exchange over all phases φ, we get

〈γ̇ 〉φ =
Ẽ2

r β
2
sw(1− k̃r)

2γ�2 [1− {γ 2�2
s (β‖ − βs)

6
}{[ω2

b(1− β
2
‖
)

+ ωc(β‖ − βs)− (1− 2ω2
b)(β‖ − βs)

2
]
3
}
−1
]

× (�τ cos�τ − sin�τ). (52)

The small-signal gain is obtained by

G =
1Pr

Pr
=
−mc3nbπr2

bβ‖

cπr2
bE2

r /4π

∫ T=ksL/β‖

0
〈γ̇ 〉φ dτ. (53)

Thus, the small-signal gain of the magnetized plasma wiggler
in the presence of self-fields of the e-beam can be expressed
as

Gself =
2mc2πnbẼ2

r (̃kr − 1)L3k3
s γ

(γErβ‖)2

× [{�s(β‖ − βs)
2
}{ω2

b(1− β
2
‖
)+ ωc(β‖ − βs)

− (1− 2ω2
b)(β‖ − βs)

2
}
−1
]
2

× [1− {γ 2�2
s (β‖ − βs)

6
}{[ω2

b(1− β
2
‖
)

+ ωc(β‖ − βs)− (1− 2ω2
b)(β‖ − βs)

2
]
3
}
−1
]

×
(2− 2 cos�T −�T sin�T)

�3T3 . (54)

5. Numerical studies and conclusion

A numerical study of electron trajectories and gain in the
magnetized plasma wiggler has been made. In this section
graphs of the normalized axial velocity of the e-beam, β‖,
versus the normalized cyclotron frequency, ωc, are shown
in figures 2 and 3 respectively. The chosen parameters for
figure 2 are γ = 200, �s = 0.07, ωb = 0.08, and ωp = 0.8. If
we assume γ = 200 (∼100 MeV) and λs(=2π/ks) = 4 mm,
then ωb = 0.08, ωp = 1.2 and ωc = 0.2 are equivalent to a
beam density of nb = 0.89×1012 cm−3, a plasma density np =

1.9 × 1016 cm−3, and an axial magnetic field strength B0 =

10.7 kG, respectively. As seen in figure 2, group I orbits occur
when ωc < 0.87, and appear to be multivalued functions of
the cyclotron frequency. In contrast, the solutions for group II
orbits are single valued in terms of the cyclotron frequency. In
this group, β‖ increases with increasing cyclotron frequency.
The behavior of group III orbits is similar to the group I orbits,
i.e., it is a multivalued function of the cyclotron frequency.
The group IV orbits are also in accordance with the group II
orbits; β‖ increases with increasing ωc. In figure 3, electron
orbits have been depicted for the higher plasma density, i.e.,
ωp = 1.6. As shown, when the plasma density increases,
the electron orbits shift to the right, i.e., to higher cyclotron
frequencies. Similar results on electron orbits (group I and
group II orbits) in conventional FELs (such as helical, planar
and electromagnetically pumped FELs) have been obtained

8
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Figure 8. Graph of the normalized gain, |Gself/G|, as a function of
the normalized cyclotron frequency, ωc. The chosen parameters are
ωb = 0.08, ωp = 0.8, γ = 200 and �s = 0.07.

by Freund et al [60–62], but what makes a difference between
our finding and those of Freund is that the electron orbits
in the magnetostatic and electromagnetic wigglers have fixed
starting points (i.e., ωc = 0 in the magnetostatic wigglers
[60, 61] and ωc ≈ 1 in the electromagnetic wiggler [62]),
and these orbits are not displaced upon varying the device
parameters (for example, ωb and γ ). But in the presence of the

plasma wave wiggler, it has been observed that by varying the
plasma density, electron orbits will shift. In addition, in the
presence of the plasma wave wiggler, there are four groups
of orbits rather than just two, as found in the conventional
wigglers (see figure 2).

Figure 4 shows the normalized total transverse magnetic
field, Btrans.[=(Bsw+Bs)/Bs], as a function of the normalized
cyclotron frequency, ωc. As seen in this figure, for orbits
of groups I and III, Btrans. is higher than 1, therefore the
wiggler-induced self-magnetic field, Bsw, is paramagnetic.
On the other hand, for orbits of groups II and IV, Btrans. is
less than 1, meaning that the self-induced magnetic field is
diamagnetic.

The graph of the normalized gain, |G/G0| , where G0
is G when ωc → 0, as a function of the normalized axial
field frequency, ωc, has been depicted in figure 5. As seen
in this figure, on increasing the axial field frequency, the
normalized gain for orbits of groups I and III increases
monotonically to reach its maximum corresponding to the
vicinity of the gyroresonance frequency. Whereas group II
(and group IV) orbits start from ωc ≈ 0.35 (and ωc ≈ 2)
and with increasing ωc the normalized gain decreases slowly.
Similarly, the effect ofωp (or plasma density) on gain is shown
in figures 6(a)–(d). As seen in these figures, with increasing
normalized plasma frequency (or plasma density), orbits of
groups I–IV shift to the right (i.e., to the higher cyclotron

(a)

(c)

(b)

(d)

Figure 9. Graph of the gain ratio, |Gself/G|, as a function of the normalized cyclotron frequency, ωc, for ωp = 0.8 and ωp = 1.6 in orbits of
(a) group I, (b) group II, (c) group III and (d) group IV. The chosen parameters are ωb = 0.08, γ = 200 and �s = 0.07.
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frequencies). In figures 7(a)–(d), we show the effect of various
γ on the gain. As seen in these figures, on varying γ from 40
to 200, the orbits of groups I–IV do not shift considerably.

Figure 8 shows the gain ratio |Gself/G| (i.e., the ratio of
gain in the presence of self-fields to the gain in the absence
of self-fields) as a function of the normalized cyclotron
frequency, ωc. As shown in this figure, the gain for orbits
of groups I and III is greater than 1, so the effects of the
beam self-fields causes gain enhancement. On the other hand,
for orbits of groups II and IV, the gain ratio is less than 1,
except near the critical point, therefore a decrease in gain
is obtained due to the beam self-fields. The enhancement
or decrease of the gain ratio are due to the paramagnetic
or diamagnetic effects of the wiggler-induced self-magnetic
field, respectively.

The effect of ωp (or plasma density) on the gain ratio,
|Gs/G|, is shown in figures 9(a)–(d). As seen in these figures,
with increasing plasma frequency the orbits of all groups shift
to the right, i.e., to higher cyclotron frequencies.

In summary, in this paper we have shown amplified
emission in a FEL by a magnetized plasma medium. This
gives rise to the possible reduction of the electron beam
energy necessary to generate a shorter wavelength. The
radiation can be confined by dielectric guiding in the plasma
since the dielectric constant in the beam is larger than that
of outside plasma due to the relativistic mass increase of
its electron. Furthermore, this configuration has a higher
tunability by controlling the plasma density in addition to the
γ -tunability of the standard FEL.
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