The following article is Open access

Primordial fluctuations from complex AdS saddle points

and

Published 3 February 2016 , , Citation Thomas Hertog and Ellen van der Woerd JCAP02(2016)010 DOI 10.1088/1475-7516/2016/02/010

1475-7516/2016/02/010

Abstract

One proposal for dS/CFT is that the Hartle-Hawking (HH) wave function in the large volume limit is equal to the partition function of a Euclidean CFT deformed by various operators. All saddle points defining the semiclassical HH wave function in cosmology have a representation in which their interior geometry is part of a Euclidean AdS domain wall with complex matter fields. We compute the wave functions of scalar and tensor perturbations around homogeneous isotropic complex saddle points, turning on single scalar field matter only. We compare their predictions for the spectra of CMB perturbations with those of a different dS/CFT proposal based on the analytic continuation of inflationary universes to real asymptotically AdS domain walls. We find the predictions of both bulk calculations agree to first order in the slow roll parameters, but there is a difference at higher order which, we argue, is a signature of the HH state of the fluctuations.

Export citation and abstract BibTeX RIS

Article funded by SCOAP. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1475-7516/2016/02/010