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Abstract

We investigate the possibility of realizing unconventional superconductivity in doped band
insulators on the square and honeycomb lattices. The latter lattice is found to be a good
candidate due to the disconnectivity of the Fermi surface. We propose applying the theory to
the superconductivity in doped layered nitride S-MNCI (M = Hf, Zr). Finally, we compare
two groups of superconductors with disconnected Fermi surface, 8- MNCI and the iron
pnictides, which have high critical temperature 7, despite some faults against

superconductivity are present.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Layered nitride B-MNCI [1] (M =Hf, Zr) doped with
carriers is one of the most interesting superconductors.
The mother compound B-MNCI is composed of alternate
stacking of honeycomb MN bilayer and CI bilayer [2]. It
is a band insulator which becomes a superconductor upon
electron doping through Na or Li intercalation. The critical
temperature 7; is relatively high, up to ~25K for M = Hf
and ~15K for M =Zr. The bilayer honeycomb lattice
consisting of M and N (figure 1) is considered the main
cause of superconductivity, and the two-dimensional nature of
the superconductivity has been revealed by nuclear magnetic
resonance [3] and muon spin relaxation studies [4, 5]. Despite
the relatively high T;, both experimental and theoretical

1468-6996/08/044202+07$30.00

studies indicate extremely low density of states (DOS) at
the Fermi level [6-8]. In fact, B-MNCI has the highest
7. among materials with the specific heat y as small as
~1mJ (molK)2. The -electron—phonon coupling is also
estimated to be weak [6, 8—10], and the isotope effect is
found to be small [11, 12]. In the superconducting state,
the density of states recovers rapidly upon increasing the
magnetic field [7], suggesting some kind of anisotropic
pairing. As for the doping dependence, the DOS at the
Fermi level stays nearly constant, but, for Li,ZrNCI, T,
shows an increase upon lowering the carrier concentration
until a sudden superconductor-insulator transition [13]. On
the other hand, in Li,HfNCIL, 7, stays nearly constant in the
doping range x < 0.5 [14]. Furthermore, for Li,HfNCI, an

© 2008 National Institute for Materials Science Printed in the UK
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Figure 1. The bilayer honeycomb lattice. The black and white
circles represent M (= Hf, Zr) and nitrogen atoms, respectively.

intercalation of organic (tetrahydrofuran) molecules between
the layers enhances 7, [14]. These experiments suggest some
kind of unconventional pairing. On the contrary, scanning
tunneling spectroscopy experiments find an s-wave like, fully
open gap [15, 16]. Specific heat measurements also suggest
an s-wave like gap, but again, the doping dependence of the
gap value is unusual. In the underdoped regime, the gap is
large, while the gap becomes small as the doping level is
increased, varying from a ‘strong coupling’ to an ‘extremely
weak coupling’ regime [18].

Here, we first study the possibility of unconventional
superconductivity by doping band insulators on a square or
honeycomb lattice'. We find that the honeycomb lattice is
a good candidate for realizing superconductivity, where the
disconnectivity of the Fermi surface is important. Secondly,
we consider 8-MNCI. The two bands, which are closest to
the Fermi level in the first principles band calculation [8], can
roughly be reproduced by a single honeycomb lattice model
where the above general theory can be applied. Finally, we
compare two groups of superconductors with disconnected
Fermi surface, B-MNCI and the iron pnictides, which have
high 7. despite some faults against superconductivity are
present.

2. Square lattice

Hubbard Model is a model that considers the on-site repulsive
interaction U in a tight binding model. Let us start with
the Hubbard model on a square lattice, where we consider
the hopping integral ¢ only between nearest neighbors.
When the band filling » (number of electrons/number of
sites) is about half, which corresponds to n =1, strong

! Theoretically, a possibility of unconventional pairing mediated by charge
fluctuations has been proposed in [17].

Figure 2. An explanation of the d-wave superconductivity due to
spin fluctuations on the square lattice. The arrows represent the
wave vector @ at which the spin fluctuations develop. The solid
(dashed) lines are the portions of the Fermi surface where the gap
has a positive (negative) sign.

antiferromagnetic spin fluctuations arise. The possibility of
d-wave superconductivity mediated by these spin fluctuations
has been discussed for the past several decades. The d-wave
superconductivity can be understood as follows. Generally,
superconductivity occurs due to pair scattering mediated by
the pairing interaction V' (q). The gap equation can be written
as

A —— Y tanh[E (k') / k5 T]

JER) V(K —Ek)AK),

(1

k'

where A is the gap, E is the quasiparticle dispersion, and T
is the temperature. When the spin singlet pairing interaction
is mediated by spin fluctuations, V' (k) is positive and takes
large values at large @Q, where the spin fluctuations develop.
For the square lattice, where the spin fluctuations develop
near Q = (7, w), we have to change the sign of the gap
between the wavevectors ~ (i, 0) and ~(0, 7) in order to
have a finite A as a solution for the gap equation, which
results in a d-wave gap as shown in figure 2. By applying
fluctuation exchange (FLEX) approximation to this system,
which is a kind of self-consistent perturbation theory that
collects random phase approximation type diagrams, we can
obtain the Green’s function and the spin susceptibility [19].
These can be plugged into the Eliashberg equation, whose
solution gives d-wave superconductivity with 7; of the order
0.01¢, where ¢ is the nearest-neighbor hopping integral (if
t ~1eV, T is of the order of 100 K).

The square lattice with only the nearest-neighbor hopping
is a bipartite lattice which can be separated into A and B
sublattices. Let us see what happens to the superconductivity
if we introduce a level offset A between A and B sublattices.
The introduction of A opens up a gap at the center of
the band, so this amounts to investigating the possibility of
unconventional superconductivity by doping carriers in band
insulators (figure 3(a)). As shown in figure 4, we find that the
introduction of A rapidly suppresses superconductivity. Thus,
in case of the square lattice, chances are small for realizing
unconventional superconductivity in the above sense.
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Figure 3. (a) The density of states for the square lattice with A =0
(black) and A = (red). (b) The density of states (upper) and the
band dispersion (lower) for the honeycomb lattice with A = 0
(black) and A = 1.5¢ (red). The hexagonal Brillouin zone of the
honeycomb lattice is shown in the inset of the lower panel.

3. Honeycomb lattice

Let us compare the above result for the square lattice with
those for another two-dimensional bipartite lattice, namely
the honeycomb lattice. In the honeycomb lattice, there are
two sites in a unit cell, in which the two bands make point
contact at K and K’ points of the Brillouin zone, resulting
in a zero gap density of states (figure 3(b)). We show in
figure 5(a) the maximum value of the spin susceptibility as a
function of temperature for the band filling of n = 1.08, which
corresponds to small electron doping. Surprisingly, we find
that the spin susceptibility is nearly independent of 7', which
is in sharp contrast to the square lattice. For example, for
the square lattice with » = 0.7, which is already substantially
far from half-filling, we still have a strong enhancement of
the spin susceptibility upon lowering the temperature. Upon
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Figure 4. T as a function of the level offset A obtained by
FLEX + Eliashberg equation for the square lattice with U = 6¢,
n = 0.7 (black) or for the honeycomb lattice with U = 6¢ and
n = 1.08 (red).
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Figure 5. (a) The maximum value of the spin susceptibility as a
function of temperature, obtained by FLEX for the square lattice
with n = 0.7 or n = 0.65 and for the honeycomb lattice with
n=1.08. U = 6¢ in all cases. HC and SQ stand for the honeycomb
and the square lattices, respectively. (b) The eigenvalue of the
linearized Eliashberg equation with the same parameters as in (a).
The temperature at which A = 1 is the T¢.

further hole doping to n = 0.65, the spin susceptibility is
suppressed, but even in that case, there is a moderate increase
of the spin susceptibility upon lowering the temperature. In
figure 5(b), we show the eigenvalues A of the linearized
Eliashberg equation as a function of temperature. 7, is the
temperature where A reaches unity. The density of states at
Fermi level is nearly the same for the square lattice with
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Figure 6. The contour plots of the FLEX result at the lowest
Matsubara frequency for the honeycomb lattice in the hexagonal
Brillouin zone with U = 6¢, n = 1.08, and 7 = 0.017 (a) The
Green’s function of the upper band squared, (b) the spin
susceptibility, (c) the superconducting gap function.

Figure 7. The Fermi surface (the two circles) and the sign of the
gap function are schematically shown in the extended zone scheme.
The dashed arrows represent the wave vectors at which the spin
fluctuations develop.

n = 0.65 and the honeycomb lattice with » = 1.08, and also
the spin susceptibility has similar values at low temperature,
but still, the honeycomb lattice has larger A and higher T..
Thus, the Hubbard model on the honeycomb lattice has
relatively high 7, despite the low density of states and weak,
temperature independent spin fluctuations.

Figure 6(a) shows the contour plot of the Green’s function
squared, whose ridge corresponds to the Fermi surface. We
see here two disconnected parts of the Fermi surface. The
spin susceptibility (figure 6(b)) is maximized at wave vectors
that bridge the opposite sides of each part of the Fermi
surface. As can be seen more clearly in figure 7, the gap has
a d-wave form, i.e. it changes sign across the wave vector
at which the spin susceptibility is maximized. Note that one
of the nodes of the gap does not intersect the Fermi surface
because of its disconnectivity, which may be one reason
why superconductivity is favored despite the low density of
states and weak spin fluctuations. By symmetry, there are
two degenerate d-wave gaps (say, dx, and d,2_,2, or any two
linearly independent combinations), and the most probable

Energy (eV)

Figure 8. Upper panel: the tight binding model considered for
B-MNCI. Lower panel: the first principles band calculation taken
from [8] and the band dispersion of the tight binding model.

form of the gap below T is the form d +id, where the two
d-wave gaps mix with a phase shift of 7 /2. Since the two
d-wave gaps have nodal lines at different positions, this kind
of mixture leads to a gap that has a finite absolute value on the
entire Fermi surface. An important point is that if such a state
is realized, the time reversal symmetry should be broken.

Now we introduce the level offset between A and B sites
as we did for the square lattice. In this case, a band gap also
opens in the center (figure 3(b)), so we once again investigate
the possibility of superconductivity by doping band insulators.
In this case, we find that superconductivity is relatively robust
against the introduction of A. This may be because the density
of states is already low in the original honeycomb lattice, so
that the introduction of A does not affect superconductivity so
much.

4. Application to 3-MNCI

Here we apply the above theory to S-MNCI. Although
B-MNCI has a bilayer honeycomb lattice, we find that the two
bands closest to the Fermi level, obtained in the first principles
calculation [8, 10, 20, 21], can roughly be reproduced by a
single layer honeycomb lattice model consisting of alternating
‘M’ and ‘N’ orbitals with a level offset as shown in figure 8.
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Figure 9. T plotted as a function of the band filling for the model
shown in figure 8.

Here we take t =1.2eV, A/t =2.7, and t'/t = 0.35. If we
consider on-site repulsive interaction U = 6¢f on both M
and N orbitals?, the model is similar to the one studied
in section 2, except that distant hopping integrals ¢ have
to be considered so as to reproduce the first principles
band structure. Consequently, within the FLEX + Eliashberg
equation approach, we obtain relatively high 7. of around
30K as shown in figure 9.

Now we compare the present scenario with the
experiments for S-MNCI. As mentioned in the Introduction,
relatively high 7, is obtained despite the extremely low
density of states and weak electron—phonon coupling [6—10],
which can be explained within the present theory. The
isotope effect is small [11, 12], which again seems
consistent since the the present pairing mechanism is
purely electronic. The cointercalation of organic molecules
enhances T; [14], and this also seems to be understandable
within this kind of spin fluctuation mediated pairing, where
the quasi two dimensionality is favored [22, 23]. As for
the pairing symmetry, a fully open gap is observed in the
experiments [15, 16], and this is consistent with the present
scenario provided that the d +id state is realized. It is hence
interesting to investigate experimentally the possibility of
time reversal symmetry breaking in the superconducting state
of this material. The rapid recovery of the specific heat
by applying the magnetic field [7], and also the unusual
doping dependence of both the 7. and the magnitude of the
gap [13, 14, 18] remain as interesting future problems.

5. Superconductivity in systems with disconnected
Fermi surface

Finally, let us go back to the d-wave superconductivity on
the square lattice. As mentioned, 7, obtained by FLEX is

2 Generally, the on-site repulsion on the M site and N site can be different,
but here, for simplicity, we take them equal.
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Figure 10. An example of fully open sign reversing gap on a
disconnected Fermi surface is shown. The arrow shows the nesting
vector at which the spin fluctuations develop.

the order of 0.01¢, where ¢ is the hopping integral. This
can correspond to a high 7; in actual materials because ¢
can be of the order of electron volt, but still, this is low
compared to the original energy scale ¢. There are several
reasons for the ‘low’ T, and one of them is that we have
to have nodes of the gap intersecting the Fermi surface,
because sign change of the gap is required in the case of
spin fluctuation mediated pairing. In this context, we proposed
some time ago that if there are disconnected parts of Fermi
surface nested to some extent, we can change the sign of
the gap between the disconnected peaces without the nodes
intersecting the Fermi surface, and this can result in a high-T;
superconductivity [24, 25]. An example of such a Fermi
surface is shown in figure 10. Possibilities of the disconnected
Fermi surface playing important role in the occurrence
of superconductivity or the determination of the pairing
symmetry have been discussed for a cobaltate Na, CoO, [26]
and an organic superconductor (TMTSF),X [27].

Quite recently, superconductivity has been found in
iron-based pnictides [28, 29]. The highest T; of this series
of materials have reached 55 K [30]. Band calculations show
that there are several disconnected parts of the Fermi surface
in this material [31], where spin fluctuations can arise due to
the nesting between them [32]. According to our Eliashberg
theory calculation that takes into account such kind of spin
fluctuations [33], the gap changes sign across the nesting
vector of the Fermi surface, and the magnitude of the gap
is especially large on the portion of the Fermi surface
where the d,>_,» orbital character is strong as shown in
figure 11. The nearest-neighbor hopping of this orbital is
about 0.15 eV, which is quite small, and the experimentally
observed maximum 7, = 55K corresponds to about 0.04¢
which is higher than that can be reached in the single band
square lattice.

Thus the two groups of materials seem to exhibit
high T; although some faults against superconductivity are
present: for S-MNCI, relatively high 7. is obtained despite
the extremely low DOS and weak spin fluctuations (and
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Figure 11. Upper panels: the portions of the Fermi surface of iron pnictides with strong d,, d,. (left) or d,2_ » (right) orbital character. The
dashed curve around (7, ) (at the corners of the Brillouin zone) is where the part of the band lies very close to the Fermi level, although it
does not actually produce a Fermi surface. The arrows show the nesting vector of the Fermi surface. Lower panels: the gap function for the

dy, d,: (left) or d,2_,2 (right) orbitals.

electron—phonon coupling), while for the pnictides, high T
is obtained despite the low energy scale of the main band and
competing spin and charge fluctuations due to the multiplicity
of the orbitals. The disconnectivity of the Fermi surface may
be one good reason why these faults are overcome. In the
future, there may a possibility that we can get higher T, by
realizing disconnected Fermi surface on more ideal situations.
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