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Abstract
A model was developed to describe the grain size dependence of hardness (or strength) in
nanocrystalline materials by combining the Hall–Petch relationship for larger grains with a
coherent polycrystal model for nanoscale grains and introducing a log-normal distribution of
grain sizes. The transition from the Hall–Petch relationship to the coherent polycrystal
mechanism was shown to be a gradual process. The hardness in the nanoscale regime was
observed to increase with decreasing grain boundary affected zone (or effective grain
boundary thickness,1) in the form of1−1/2. The critical grain size increased linearly with
increasing1. The variation of the calculated hardness value with the grain size was observed
to be in agreement with the experimental data reported in the literature.

Keywords: nanocrystalline materials, grain size, hardness, strength, modeling, Hall–Petch
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1. Introduction

Owing to their ultrafine grains and high density of grain
boundaries, nanocrystalline materials exhibit a variety of
properties that are often considerably improved in comparison
with the conventional microcrystalline materials, including
increased strength (or hardness), superior wear resistance,
improved low temperature superplastic formability, etc. The
grain size of materials has a significant effect on the mech-
anical properties. Microcrystalline materials obey the well-
known Hall–Petch relationship which can be expressed as,

σhp = σo + kd−1/2, (1)

whereσhp is the yield strength,σo is the friction stress below
which dislocations cannot move in a single crystal,k is a
constant called ‘locking parameter’ representing the relative
hardening contribution of the grain boundaries, andd is the
average grain diameter.

Experimental data available in the literature indicate that
the strength or hardness of nanocrystalline materials cannot be
simply predicted by extrapolating the Hall–Petch relationship
to the nanoscale grain size of about 10 nm [1]. It has been
shown that the Hall–Petch slope in the nanocrystalline domain

is lower than that in the microcrystalline (conventional)
range of grain sizes, and the slope decreases significantly for
grain sizes below a critical value. In fact, some researchers
have reported a negative slope, or a decrease in flow
stress with decreasing grain size, i.e. ‘grain size softening’
(also called the inverse Hall–Petch relationships) [2]. A
number of theories and models have been developed to
understand the deviation of the strength from the empirical
Hall–Petch equation [2–19]. Recent molecular dynamics
(MD) simulations have improved our understanding of the
deformation of nanocrystalline materials [13]. The MD
simulations in nanocrystalline copper [20–23], aluminum
[11, 24], nickel [22, 23] and cobalt [25], where an inverse
Hall–Petch effect was observed [11, 17, 20, 21, 24–26],
revealed the difference between the grain interior and the grain
boundary regions where most of the deformation occurred
due to the inter-grain deformation (sliding) mechanism
[20, 22, 23, 27, 28]. It was further observed that the
volume fraction of the total grain boundaries, which increases
with decreasing grain size [29], increases under straining
conditions, indicating an expansion of the grain boundary
regions during straining [11]. The nanocrystalline materials
have been considered as a three-component composite
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consisting of grains, grain boundaries and triple junctions,
where three-grain boundaries meet [30], or a four-component
composite consisting of crystallite (grain interior), grain
boundaries, triple lines and quadruple nodes [31]. For
the sake of simplicity, the nanocrystalline materials could
be approximated as a composite with two phases only—
grain interior and grain boundary [32–35], since all plastic
deformation was observed to be accommodated in the grain
boundary and no intra-grain deformation occurred [22, 23].
The grain phase then represents the grain cores while
the matrix phase represents a blend of grain boundaries,
triple junctions and/or quadruple nodes. The results of MD
simulations provide a basis for identifying the role of the
grain interior and grain boundary during plastic deformation,
and a potential for predicting the strength of nanocrystalline
materials via composite models or the rule of mixtures
[30, 31, 33]. It was also shown that the results of the finite
element calculations are almost the same as those obtained
using the rule of mixtures [31].

Based on the above consideration a coherent polycrystal
model was proposed in which the nanocrystalline materials
were regarded as a coherent precipitate strengthened two-
phase alloy [6]. Recently, based on the high-resolution TEM
observation of grain boundaries in an Al–Mg alloy produced
by a severe plastic deformation process where the grain
boundary interface showed curvature and undulations, Yang
and Ghosh [36] developed a model of ‘grain boundary mantle
shear zone power law creep’ to calculate the strength at
various strain rates. Similarly, Daoet al [37] observed that
nano-twinned Cu after tensile testing showed dislocation
pile-ups along twin boundaries (TBs) and curved TBs; a
region within a few nanometers of a TB was often heavily
influenced by the dislocations along the TBs. Each of the
TBs may be treated as a special grain boundary, where
the plastic deformation in copper with nanoscale twins is
concentrated in the vicinity of the TBs. High resolution
TEM imaging directly confirmed the presence of partial
dislocation dissociation, dislocation pile-up and TB bending.
Based upon these observations they proposed a model of
‘twin boundary affected zone (TBAZ)’, where the region
adjoining the twin boundaries, considered to be elastically
strained, is different from the crystal interior. The TBAZ
is plastically softer than the predominantly elastic crystal
interior region between TBAZs. The grain boundaries (or twin
boundaries) in the above models were basically considered
as a continuous matrix and the grains were embedded in
the grain boundary matrix. These recent observations and
models basically support the two-phase coherent polycrystal
model [6]. Therefore, the coherent polycrystal model [6]
involving the dependence of strength on grain sizes in the
nanoscale range will be considered in this study.

Experimental observations have also revealed that intra-
granular dislocation sources like the Frank–Read source cease
to operate in nanocrystalline materials and result in high
strength and reduced plasticity in these materials. The tra-
ditional dislocation theories may no longer be applicable to
the deformation behavior of nanocrystalline materials. Con-
sistent with the recent experimental observations or models

mentioned above, atomistic simulations also suggested that
dislocations nucleated at grain boundaries (GBs) carry out
plastic deformation in the nanocrystalline regime; once
nucleated, these dislocations travel across the grains and are
eventually absorbed in the opposite grain boundary [38–40].
In a very recent investigation on the plastic deformation
recovery in nanocrystalline aluminum and gold films, it was
reported that the enhancement of recovery rate could be due
to the reduction in pinning sites caused by redistributions
of grain boundary impurities during annealing [41]. It was
further stated that ‘the strain recovery results from the com-
bined effect of a small mean grain size and inhomogeneities
in the microstructure (variations in the size and orientation of
individual grains and structure of GBs); the small grain
size precludes intragranular dislocation sources, whereas
variations in the microstructure lead to plastic deformation
(through dislocations originating from GBs) in relatively
larger grains and elastic accommodation in smaller grains’.
‘Hence, in exploring plastic deformation of nanocrystalline
metals, it might be necessary to consider not only the aver-
age size of the microstructure but also the inherent variations’.
This suggests that not only the average grain size but also the
inherent variation (or distribution) of the grain size should be
taken into consideration [41].

This investigation was, therefore, aimed at describing
the dependence of strength (or hardness) of nanocrystalline
materials on the grain size, based on the Hall–Petch
relationship and coherent polycrystal model via further
integrating a log-normal distribution of grain sizes.

2. Modeling

In the coherent polycrystal model [6], the grain phase
was assumed to be a perfect crystallite while the grain
boundary phase contained potential defects (e.g. dislocations,
vacancies, impurity atoms, etc) and was relatively narrow.
The strengthening effect of the grain boundary matrix by
the coherent precipitates, i.e. by the grain phase, may be
expressed as,

σco = σ o
gb + kco[(d − 1)/d]3, (2)

where σco and σ o
gb are the strength of the nanocrystalline

material and the grain boundary, respectively,kco is a material
parameter representing the measure of the strengthening effect
of grain cores on the grain boundary matrix, and1 is the grain
boundary affected zone (or mantle shear zone) or effective
grain boundary thickness [6, 25, 36, 37]. Since there is a large
volume of experimental data available as hardness values, it
is convenient to convert the strength values to hardness values
using the method given in [42],

Ho = 3σo, (3)

K = 3k. (4)

Then the equivalent equation for the grain size dependence
of the hardness in the coherent polycrystal model may be
expressed as,

H = Ho
gb + Kco[(d − 1)/d]3, (5)
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where H, Ho
gb and Kco are the corresponding terms to

those specified in equation (2). That is, H and Ho
gb are

the hardness of the nanocrystalline material and the grain
boundary, respectively, andKco is a material parameter that
reflects the measure of the hardening effect of grain cores on
the grain boundary matrix. There will then be a critical grain
size, d∗, above which the deformation mechanism changes
from the coherent polycrystal mechanism to the Hall–Petch
type strengthening mechanism according to equation (1).

Songet al [6] also reported that1 is associated with the
average atomic diameter (Dm) of the major elements in the
nanocrystalline materials, given by,

1 = 84Dm − 21.7, (6)

where both1 and Dm are in nm. It follows that the larger
the atomic diameter, the larger the effective grain boundary
thickness.

As suggested by Rajagopalanet al [41], the inherent
variations in grain sizes in nanocrystalline materials should
be taken into account in exploring their plastic deformation.
We consider the grain size distribution which follows a
log-normal function. To facilitate the analysis, the following
assumptions similar to those specified in [4, 8] are used.

1. Polycrystals with a relatively large average grain size
(d > d∗) follow the classical Hall–Petch relationship,
equation (1).

2. The strengthσco or hardnessH of the material with
very small grains complies with the coherent polycrystal
model, i.e. equation (2) or (5).

3. The volume of grains obeys a certain distribution,f (v),
then the mean volume of all the grains,mv, is given by,

mv =

∫
∞

0
v f (v) dv, (7)

or expressed in terms of the grain diameter,D, the mean
grain size/diameter of all the grains,d, becomes,

d =

∫
∞

0
Dg(D) dD, (8)

whereg(D) is the grain diameter distribution. The mean
volume of the grains may be further expressed as,

mv = κd3, (9)

whereκ is a geometrical shape factor considered to be 1
in this analysis.

When the grain size decreases to the critical grain
size, it is assumed that the conventional Hall–Petch
mechanism associated with dislocation glide and
pile-ups switches to the coherent polycrystal mechanism.
At d = d∗,

σhp = σco, (10)

whereσhp andσco are described by equations (1) and (2),
respectively.

For mean grain sizes different fromd∗, the yield
stress, after averaging via combining the Hall–Petch

response with the coherent polycrystal mechanism, may
be expressed as,

〈σtot〉 = Fhp + Fco, (11)

where

Fhp =
1

mv

∫
∞

v∗

σhpv f (v) dv, (12)

Fco =
1

mv

∫ v∗

0
σcov f (v) dv, (13)

whereFhp stands for the contribution of the Hall–Petch
mechanism andFco represents the contribution of the
coherent polycrystal mechanism to the overall strength.
The critical volume corresponding to the transition in the
mechanisms may be estimated from,

v∗
= κ(d∗)3. (14)

Equation (11) is a unified equation representing the
relationship between the yield stress and the grain size
with a certain grain size distribution. The yield stress
of materials with a mean grain size from the nanoscale
to micro-scale regime can thus be calculated from
equation (11). Likewise, an equivalent equation for the
grain size dependence of hardness may be expressed as,

〈Htot〉 = F ′

hp + F ′

co, (15)

F ′

hp =
1

mv

∫
∞

v∗

Hhpv f (v) dv, (16)

F ′

co =
1

mv

∫ v∗

0
Hcov f (v) dv, (17)

where 〈Htot〉, F ′

hp and F ′
co are the corresponding terms

specified in equation (11).

4. The volume of grains follows a log-normal distribution,
which has been observed to be reasonable in many
metals, alloys and ceramic systems [4, 5, 43]. Hence, the
log-normal distribution is chosen to represent the grain
size distribution in the present investigation and may be
expressed as,

f (v) =
1

v

√
2πs2

ln v

exp

{
−(ln v − mln v)

2

2s2
ln v

}
, (18)

wheremlnv andslnv are the mean value and standard deviation
of ln v, respectively.mv is the mean volume of all the grains,
and according to equation (7) it is given by,

mv =

∫
∞

0
v f (v) dv = exp[mln v + (sln v)

2/2]. (19)
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Figure 1. The hardness calculated from equation (15) as a function
of grain sizes in the form ofd −1/2 for the nanocrystalline Zn, in
comparison with the experimental data [1].

3. Applications of the model and discussion

3.1. Applications

The developed model can be applied to a number of metallic
systems for which the experimental data are available in
both nanoscale and micro-scale regimes. Like the Hall–Petch
equation, the parameters in the coherent polycrystal model
can be determined from the experimental data according to
equation (2) or (5).

Koch and Narayan [1] and Narayanet al [44, 45] reported
that the hardness of the nanocrystalline metal Zn deviates
from the Hall–Petch relationship when the grain size is less
than about 11 nm and exhibits an inverse Hall–Petch effect.
The Hall–Petch parameters from their experimental data are:
Ho = −0.51 GPa andK = 5.32 GPa· nm1/2 [1]. As suggested
in [6], 1 may be estimated from equation (6), which leads
to 1 = 4.1 nm using theDm value of Zn given in [46]. The
two parameters in the coherent polycrystal model,Ho

gb and
Kco, may be obtained from the experimental data in the
nanoscale regime in terms of equation (5): Ho

gb = 0.52 GPa,
and Kco = 2.02 GPa. Using the above five parameters, the
hardness from the micro-scale to the nanoscale regime can
be estimated from equation (15). Metlab software was used to
calculate the numerical values from equations (15) to (17).
The critical grain size is obtained asd∗

= 11.4 nm using
equation (10). The corresponding maximum hardness is
H∗

= 〈Htot(d∗)〉 = 1.07 GPa, which is very close to the
experimental valueH ≈ 1.04 GPa. Figure1 shows the
calculated hardness values as a function of the grain size for
the nanocrystalline Zn. It is seen that, after the grain size
distribution is taken into consideration, a gradual variation of
the hardness values is observed. Furthermore, the hardness
values calculated from equation (15) are in agreement with
the experimental data.

Figures2(a) and (b) show the calculated hardness curves
as a function ofd−1/2, in comparison with the experimental
data for the Ni–P [47, 48] and TiAl [49] systems, respectively.
In these alloy systems, the parameters of the Hall–Petch
relationships were given in [47, 49], while the parameters of
the coherent polycrystal model were presented in [6]. Again,
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5.5

6.5
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Figure 2. The hardness calculated from equation (15) as a function
of grain sizes in the form ofd −1/2 in comparison with the
experimental data: (a) Ni–P [47] and (b) TiAl [49].

the calculated hardness curves show good agreement with the
experimental data, and the curves exhibit a gradual transition
from the Hall–Petch mechanism to the coherent polycrystal
mechanism. The present analysis, via the integration of
the Hall–Petch mechanism with the coherent polycrystal
mechanism and the consideration of a lognormal grain size
distribution, can thus be used to describe the grain size
dependence of hardness from micro-sized grains to nanosized
grains.

The gradual transition process may be understood in
the following way. In a sample with an average grain size
close to the critical grain size,d∗, some grains would
have sizes larger thand∗, and others smaller thand∗. It
is anticipated that there would co-exist two deformation
mechanisms at the same time [41]. The grains with larger
sizes obey the traditional Hall–Petch relationship related to
the dislocation glide and pile-up strengthening mechanism,
whereas the rest of the grains with smaller sizes behave
according to the coherent polycrystal mechanism. The overall
macro-effect of the deformation of the sample would be
the superposition of the two mechanisms. With decreasing
average grain size, the fraction of the grains deformed via
the dislocation glide and pile-up strengthening mechanism
decreases, while the fraction of the grains deformed according
to the coherent polycrystal mechanism increases. This gives
rise to an overall variation from strengthening to softening in
the polycrystalline materials.

4
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3.2. Effect of effective grain boundary thickness

In equation (11) or (15), there are five material parameters,
σo, k, σ o

b , kco (or in the case of hardness,Ho, K, Ho
gb, Kco),

and the effective grain boundary thickness,1. It should be
noted that the concept of effective grain boundary thickness,
or grain boundary affected zone, or mantle shear zone, or twin
boundary affected zone, has also been considered recently
by a number of researchers [21, 25, 36, 37]. Since 1 was
suggested to be proportional to the atomic diameter [6],
or the twin boundary affected zone was suggested to span
7–10 lattice parameters in thickness (i.e. 2.5–3.6 nm in the
nanocrystalline copper) [37], the deformation characteristics
of nanomaterials would be influenced by the value of1.
Figure 3(a) shows the calculated values of hardness,〈Htot〉,
of nanocrystalline Zn according to equation (15) for different
values of 1 while keeping other parameters unchanged.
Similar results are given in figures3(b) and (c) for two
other nanocrystalline materials, Ni–P and TiAl, respectively.
It is seen that the hardness in the nanoscale range increases
with decreasing1, and the value ofd∗ increases with
increasing1. This is in agreement with the results of atomistic
simulations of mechanical deformation [20, 38–40]. The
simulation results suggested that grain boundary atoms as well
as the atoms up to 7–10 lattice parameters away from the
grain boundary are heavily involved in plastic deformation.
Thus the deformation was mostly taken up by atoms at and
near grain boundaries (i.e. in the grain boundary affected
zone). In other words, the material near grain boundaries is
easier to deform [20, 38–40] and the associated deformation
mechanisms are also observed to be strain rate sensitive [37].
As a result, when the effective grain boundary thickness1 (or
the grain boundary affected zone) decreases, the deformation
becomes more limited and difficult, thus the hardness in
the nanoscale regime increases with decreasing1. With
an appropriate selection of1 value based on the atomic
diameter or lattice parameter of the principal element in the
nanocrystalline material [6, 37], the proposed model can be
used to adequately describe the dependence of hardness over
a wide range of grain sizes. For example, in the case of
nanocrystalline Zn,1 = 4.1 nm, the model gives a reasonable
description of the relationship between the hardness and the
grain size, as shown in figure1.

The effect of 1 on the critical grain size is shown
in figure 4 for different nanocrystalline materials. A linear
relationship is observed, which may be expressed as,

d∗
= d∗

o +α1, (20)

where d∗
o and α are constants. When the grain boundary

affected zone is absent (i.e.1 = 0), d∗
o = d∗, the critical grain

size. Figure 5 shows the maximum hardness as a function
of 1−1/2. A linear variation of the maximum hardness with
1−1/2 is also observed, i.e.

H∗
= H∗

o +β1−1/2, (21)

where H∗
o and β are constants.α represents the effect of

the effective grain boundary thickness on the critical grain
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Figure 3. The calculated values of hardness from equation (15)
with different1 values. (a) Zn, (b) Ni–P and (c) TiAl.

size, while β represents the effect of the effective grain
boundary thickness on the maximum hardness. Equations (20)
and (21) show that the thinner the effective grain boundary
in the nanocrystalline materials, the smaller the critical
grain size, and the higher the maximum hardness of the
materials. This can be understood by noting that a smaller
critical grain size due to a smaller effective grain boundary
thickness is equivalent to extending the range valid for
the Hall–Petch equation to a smaller grain size. Since the
hardness or strength increases with decreasing grain size in
the Hall–Petch relationship, the maximum hardnessH∗ at the
smaller critical grain size becomes higher. The parameters
based on equations (20) and (21) for the three materials are
listed in table1. It appears thatα is relatively insensitive to
the material systems as it changes only between 0.73 and 1.09,
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Figure 4. The critical grain size,d∗ , as a function of the effective
grain boundary thickness,1. (a) Zn, (b) Ni–P and (c) TiAl.

Table 1.Parameters in equations (20) and (21) for different
nanocrystalline materials.

Materials d∗
= d∗

o +α1 H ∗
= H ∗

o +β1−1/2

d∗

o (nm) α H ∗

o (GPa) β (GPa· nm1/2)

Zn 8.35 0.73 1.88 9.83
Ni-P 5.23 1.09 6.01 1.20
TiAl 15.25 1.01 4.63 17.46

while β is strongly dependent on the material, indicating that
the maximum hardnessH∗ is a strong function of the effective
grain boundary thickness1.

4. Conclusions

1. The effect of grain size on the strength or hardness
was attributed to two deformation mechanisms associated
with inhomogeneities in the microstructure: (i) a fraction
of larger grains deform by a dislocation glide and

 Zn
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Figure 5. The maximum hardness corresponding to the critical
grain size versus the effective grain boundary thickness in the form
of 1−1/2. (a) Zn, (b) Ni–P and (c) TiAl.

pile-up process according to the Hall–Petch relationship,
and (ii) the smaller grains deform by the coherent
polycrystal mechanism (a precipitate-like strengthening
mechanism). With decreasing average grain size, the
fraction of deformation associated with the dislocation
glide decreases, and the fraction of deformation via the
coherent polycrystal mechanism increases, giving rise to
an overall change in the response from strengthening
to softening of the material.

2. By combining the conventional Hall–Petch relationship
for larger grains with the coherent polycrystal mechanism
for smaller grains and introducing a log-normal
distribution of grain sizes, a model was developed
to characterize the grain size dependence of hardness
(or strength) in nanocrystalline materials.

3. The transition from the Hall–Petch relationship to the
coherent polycrystal mechanism was shown to be a
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gradual process, and not an abrupt change from one
mechanism to the other.

4. The effective grain boundary thickness representing the
grain boundary affected zone was observed to have
a significant effect on the critical grain size and the
hardness (or strength) in the nanoscale regime.

5. The critical grain size in the nanocrystalline materials was
observed to increase linearly with increasing effective
grain boundary thickness.

6. The maximum hardness in the nanocrystalline materials
was found to increase with decreasing effective grain
boundary thickness (1) in the form of1−1/2.

7. The calculated hardness values were observed to be in
good agreement with the experimental data on the grain
size dependence of the hardness from the micro-scale to
nanoscale regime.
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