Supplemental material for
‘Effective Floquet-Gibbs states for dissipative quantum systems’

Tatsuhiko Shirai¹, Juzar Thingna²,³, Takashi Mori¹, Sergey Denisov²,⁴, Peter Hänggi²,³,⁴, Seiji Miyashita¹

¹Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
²Institute of Physics, University of Augsburg, Universitätstraße 1, D-86135 Augsburg, Germany
³Nanosystems Initiative Munich, Schellingstraße 4, D-80799 München, Germany
⁴Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, Russia

E-mail: shirai@spin.phys.s.u-tokyo.ac.jp
1. Truncation dependence

In Fig. 1, we show the dependence of the probability difference \(\Delta \text{Prob} \equiv \Delta \text{Prob}^{[0]} \) on the truncation frequency \(\omega_{\text{trunc}} \). The probability differences are stable against the change of \(\omega_{\text{trunc}} \). Although setting \(\omega_{\text{trunc}} = 1 \) gives well approximated values of \(\Delta \text{Prob} \), in this work we adopt \(\omega_{\text{trunc}} = 10 \).
2. Time-independence of $\Delta \text{Prob}^{[t]}$

In Fig. 2 we show the time dependence for the $\Delta \text{Prob}^{[t]}$ plotted in Figs. 4 and 6 in the main text. Since the quantity $\Delta \text{Prob}^{[t]}$ is time-independent, $\Delta \text{Prob}^{[0]}$ forms a good representative of the trace distance; i.e., $\Delta \text{Prob}^{[t]} = \Delta \text{Prob}^{[0]} \equiv \Delta \text{Prob}$.

Figure 2. Time dependence of probability differences $\Delta \text{Prob}^{[t]}$ for $\hbar \Omega = 4.6 \hbar \omega$. Left figure shows data for $\lambda^2 = 10^{-6}$ (●), $\lambda^2 = 2^6 \cdot 10^{-6}$ (○), and $\lambda^2 = 2^{14} \cdot 10^{-6}$ (*) at $h \omega_c = 100 \hbar \omega$. Right figure shows data for $h \omega_c = 0.4 \hbar \omega$ (●), $h \omega_c = 3.2 \hbar \omega$ (○), and $h \omega_c = 100 \hbar \omega$ (*) at $\lambda^2 = 0.01$. Thus, the probability differences are almost independent of t.