Supplemental Material for Chimera States in Three-Dimensions

Yuri Maistrenko1,2,3, Oleksandr Sudakov1,4, Oleksiy Osiv1 & Volodymyr Maistrenko1

1National Scientific Centre for Medical and Biotechnical Research, National Academy of Sciences of Ukraine, Volodymyrska Str. 54, 01030 Kyiv, Ukraine

2Institute of Mathematics, National Academy of Sciences of Ukraine, Tereshchenkovskaya Str. 3, 01030 Kyiv, Ukraine

3Bioinspired Communication Systems Laboratory, TU Darmstadt, Rundeturmstrasse 12, 64283 Darmstadt, Germany

4Taras Shevchenko National University of Kyiv, Volodymyrska Str. 60, 01030 Kyiv, Ukraine

E-mail: y.maistrenko@biomed.kiev.ua
3D videos of the chimera states

Space-time dynamics of the chimera dynamics are illustrated by 3D videos available in Supplementary Data. In the full quality, the videos can be watched at http://chimera3d.biomed.kiev.ua/high-resolution/. In the videos, the phase of each oscillator $\varphi_{ijk}(t)$ is shown as a function of time t. For better visual control of the system dynamics the coherent part of the chimera in some videos is left transparent; in others, both coherent and incoherent regions are present but some part of them is cut. This is illustrated in Fig.1.

![Figure 1.](image)

To distinguish the coherent and incoherent chimera’s parts, phase difference between neighbouring oscillators φ_{ijk} and $\varphi_{i'j'k'}$ in the time moment t is estimated in a standard manner as

$$|\varphi_{i'j'k'}(\tau) - \varphi_{ijk}(\tau)| < \varepsilon$$

for all

$$\tau \in [t - \Delta T/2, t + \Delta T/2],$$

where the parameters ε and ΔT are chosen in an optimal way to get the best coherence-incoherence separation.

Figure2aVideo: Incoherent ball

Video shows the phase of each oscillator $\varphi_{ijk}(t)$ as a function of time in coordinates $x_i = i/N, y_j = j/N, z_k = k/N$, corresponding to Fig.2(a) in the main text. The coherent region is left transparent in the upper 3D image, its details can be followed in the lower 2D sections. 250 time units of simulation are shown with time step $\Delta t = 0.5$ and interpolation in-between. Parameters $\alpha = 1.15$, $r = 0.28$, and $N = 50$. The video is available in Supplemental Data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-resolution/.
Figure 2b Video: Incoherent tube

Video shows the phase of each oscillator $\varphi_{ijk}(t)$ as a function of time in coordinates $x_i = i/N, y_j = j/N, z_k = k/N$, corresponding to Fig. 2(b) in the main text. The coherent region is left transparent in the upper 3D image, its details can be followed in the lower 2D sections. 250 time units of simulation are shown. Parameters $\alpha = 1.305$, $r = 0.334$, and $N = 100$. The video is available in Supplemental Data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-resolution/.

Figure 2c Video: Coherent ball

Video shows the phase of each oscillator $\varphi_{ijk}(t)$ as a function of time in coordinates $x_i = i/N, y_j = j/N, z_k = k/N$, corresponding to Fig. 2(c) in the main text. 250 time units of simulation are shown with. Parameters $\alpha = 1.53$, $r = 0.39$, and $N = 50$. The video is available in Supplemental Data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-resolution/.

Figure 2d Video: Coherent tube

Video shows the phase of each oscillator $\varphi_{ijk}(t)$ as a function of time in coordinates $x_i = i/N, y_j = j/N, z_k = k/N$, corresponding to Fig. 2(d) in the main text. 250 time units of simulation are shown. Parameters $\alpha = 1.49$, $r = 0.43$, and $N = 50$. The video is available in Supplemental Data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-resolution/.

Figure 4a Video: Incoherent 6-pieces cross

Video shows the phase of each oscillator $\varphi_{ijk}(t)$ as a function of time in coordinates $x_i = i/N, y_j = j/N, z_k = k/N$, corresponding to Fig. 4(a) in the main text. 250 time units of simulation. Parameters $\alpha = 1.365$, $r = 0.342$, and $N = 50$. The video is available in Supplemental Data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-resolution/.

Coherent and incoherent part of the 6-pieces cross chimera have been printed at 3D printer, see Fig. 2. Both coherent and incoherent 6-piece crosses exist simultaneously in different coordinates shifted by $(0.5, 0.5, 0.5)$ with respect to each other. They are slightly asymmetric due to the chimera chaotic wandering property, see Ref. [12] in the main text, but perfectly attached to each other. Using many copies of these frames printed at 3D printer, it is possible to fill the whole R^3 space playing like a child with LEGO.

Figure 4b Video: Coherent 4-pieces cross

Video shows the phase of each oscillator $\varphi_{ijk}(t)$ as a function of time in coordinates $x_i = i/N, y_j = j/N, z_k = k/N$, corresponding to Fig. 4(b) in the main text. 250 time units of simulation are shown. Parameters $\alpha = 1.45$, $r = 0.35$, and $N = 50$. The video is available in Supplemental Data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-resolution/.
Figure 2. 6-pieces cross chimera in STL format prepared for printing at a 3D-printer: (left) incoherent part, (middle) coherent part, (right) coherent and incoherent parts perfectly attached to each other. Parameters as in Fig.4(a) in the main text.

Figure 5a Video: Scroll wave with two incoherent rolls
Video shows the phase of each oscillator $\varphi_{ijk}(t)$ as a function of time in coordinates $x_i = i/N, y_j = j/N, z_k = k/N$, corresponding to Fig.5(a) in the main text. Spirally rotating coherent region is left transparent in the upper 3D image, its details can be followed in the lower 2D sections. 300 time units of simulation are shown. Parameters $\alpha = 0.8, r = 0.165, and N = 100$. The video is available in Supplemental Data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-resolution/.

Figure 5b Video: Scroll wave with four incoherent rolls
Video shows the phase of each oscillator $\varphi_{ijk}(t)$ as a function of time in coordinates $x_i = i/N, y_j = j/N, z_k = k/N$, corresponding to Fig.5(b) in the main text. Spirally rotating coherent region is left transparent in the upper 3D image, its details can be followed in the lower 2D sections. 250 time units of simulation are shown. Parameters $\alpha = 0.9, r = 0.16, and N = 100$. The video is available in Supplemental Data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-resolution/.

Figure 5c Video: Scroll wave with four perpendicular incoherent rolls
Video shows the phase of each oscillator $\varphi_{ijk}(t)$ as a function of time in coordinates $x_i = i/N, y_j = j/N, z_k = k/N$, corresponding to Fig.5(c) in the main text. Spirally rotating coherent region is left transparent in the upper 3D image, its details can be followed in the lower 2D sections. 250 time units of simulation are shown. Parameters $\alpha = 0.9, r = 0.16, and N = 100$. The video is available in Supplemental Data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-resolution/.

Figure 5d Video: Scroll wave with four perpendicular incoherent rolls of dif-
ferent shape

Video shows the phase of each oscillator $\varphi_{ijk}(t)$ as a function of time in coordinates $x_i = i/N, y_j = j/N, z_k = k/N$, corresponding to Fig.5(d) in the main text. Spirally rotating coherent region is left transparent in the upper 3D image, its details can be followed in the lower 2D sections. 250 time units of simulation are shown. Parameters $\alpha = 0.83$, $r = 0.094$, and $N = 100$. The video is available in Supplemental Data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-resolution/.

Figure6aVideo: Chaotic scroll wave with two incoherent rolls

Video shows the phase of each oscillator $\varphi_{ijk}(t)$ as a function of time in coordinates $x_i = i/N, y_j = j/N, z_k = k/N$, corresponding to Fig.6(a) in the main text. Spirally rotating coherent region is left transparent in the upper 3D image, its details can be followed in the lower 2D sections. 600 time units of simulation are shown. Parameters $\alpha = 0.8$, $r = 0.14$, and $N = 50$. The video is available in Supplemental Data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-resolution/.

Figure6bVideo: Vortex with an incoherent roll

Video shows the phase of each oscillator $\varphi_{ijk}(t)$ as a function of time in coordinates $x_i = i/N, y_j = j/N, z_k = k/N$, corresponding to Fig.6(b) in the main text. The coherent region is left transparent in the upper 3D image, its details can be followed in the lower 2D sections. 1000 time units of simulation are shown. Parameters $\alpha = 0.9$, $r = 0.16$, and $N = 50$. The video is available in Supplemental Data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-resolution/.

Figure7aVideo: Incoherent layer

Video shows the phase of each oscillator $\varphi_{ijk}(t)$ as a function of time in coordinates $x_i = i/N, y_j = j/N, z_k = k/N$, corresponding to Fig.7(a) in the main text. The coherent region is left transparent in the upper 3D image, its details can be followed in the lower 2D sections. 1000 time units of simulation are shown. Parameters $\alpha = 1.4$, $r = 0.46$, and $N = 50$. The video is available in Supplemental Data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-resolution/.

Figure7bVideo: Double incoherent layer

Video shows the phase of each oscillator $\varphi_{ijk}(t)$ as a function of time in coordinates $x_i = i/N, y_j = j/N, z_k = k/N$, corresponding to Fig.7(b) in the main text. The coherent region is left transparent in the upper 3D image, its details can be followed in the lower 2D sections. 1000 time units of simulation are shown. Parameters $\alpha = 1.325$, $r = 0.31$, and $N = 50$. The video is available in Supplemental Data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-resolution/.

Figure7cVideo: Oblique incoherent layer

Video shows the phase of each oscillator $\varphi_{ijk}(t)$ as a function of time in coordinates $x_i = i/N, y_j = j/N, z_k = k/N$, corresponding to Fig.7(c) in the main text. The coherent region is left transparent in the upper 3D image, its details can be followed in the lower
2D sections. 1000 time units of simulation are shown. Parameters $\alpha = 1.42$, $r = 0.312$, and $N = 50$. The video is available in Supplemental Data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-resolution/.

Figure 7d Video: Double oblique incoherent layers

Video shows the phase of each oscillator $\varphi_{ijk}(t)$ as a function of time in coordinates $x_i = i/N, y_j = j/N, z_k = k/N$, corresponding to Fig. 7(d) in the main text. The coherent region is left transparent in the upper 3D image, its details can be followed in the lower 2D sections. 1000 time units of simulation are shown. Parameters $\alpha = 1.36$, $r = 0.31$, and $N = 50$. The video is available in Supplemental Data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-resolution/.