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Abstract. We present the discrete analog of Snell’s refraction law at the
interface between two dissimilar waveguide arrays. Additionally, reflection and
transmission coefficients for the Bloch waves are derived analytically. The
theoretical findings were confirmed by analyzing the evolution of light in
femtosecond laser written waveguide arrays.
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1. Introduction

When light crosses the interface between two dissimilar media, it experiences refraction as
well as partial reflection. In dielectric media, these phenomena are described by the famous
laws of Snell and Fresnel. When deriving these mathematical expressions, it is implicitly
assumed that the media on both sides of the interface are continuous. Hence, assuming a
fixed wavelength, they are characterized by a single quantity: the refractive index. However,
in modern physics, a variety of more sophisticated systems such as periodically structured
media, e.g. photonic crystals (Yablonovitch 1993), constitute an important aspect in many
research fields (Busch et al 2007). During recent years, a subclass of such periodic media has
gained much interest: arrays of evanescently coupled waveguides, which are a representation
of so-called discrete systems (Christodoulides et al 2003). During recent years, surfaces of and
interfaces between waveguide arrays have attracted rapidly growing interest, due to their strong
impact on the evolution of light. Light propagation in finite waveguide lattices was modeled in
one- (1D) (Makris and Christodoulides 2006) and two-dimensional (2D) (Szameit et al 2007)
geometries. The tunneling escape from a boundary waveguide was investigated (Longhi 2006)
in close analogy to quantum mechanics. Furthermore, the conditions for existence of localized
linear modes at defects (Trompeter et al 2003) and interfaces (Suntsov et al 2007) were analyzed
in detail. The research on discrete propagation in waveguide arrays gained further stimulus,
when the existence of localized nonlinear modes at surfaces (Kartashov et al 2006, Kominis
et al 2007, Makris et al 2005, Molina et al 2006, 2007) and interfaces (Makris et al 2006, Molina
and Kivshar 2007) in waveguide arrays was predicted. These phenomena were experimentally
demonstrated in 1D (Iwanow et al 2004, Rosberg et al 2006, Smirnov et al 2006, Suntsov et al
2006, 2007) and only recently in 2D (Szameit et al 2007, 2008, Wang et al 2007). It turned out
that light propagation at the interface of two waveguide lattices exhibits a variety of peculiarities
as a direct consequence of the discrete nature of the medium. However, to date the transition
of light through an interface between two dissimilar waveguide arrays was not analyzed. This
is somewhat surprising since one can expect that interfaces also have a strong impact on the
refraction, reflection and transmission properties of light, culminating in modifications of the
laws of Snell and Fresnel with respect to the continuous case.

In this paper, we bridge this gap and present the discrete version of Snell’s law of refraction
as well as reflection and transmission coefficients for plane waves passing an interface between
two dissimilar waveguide arrays. It will be shown that reflection and refraction are determined
by the change of the coupling and the propagation constants at the interface.

2. The discrete Snell’s law

In the so-called coupled mode approximation the transverse profile of the propagating modes
inside the individual guides is assumed to remain constant, so that only the amplitudes evolve
along z. Then one can derive a set of coupled ordinary homogeneous first-order differential
equations

i
d

dz
ϕm + c(ϕm−1 + ϕm+1) = 0. (1)

Here, ϕm is the amplitude in the mth waveguide and c is the coupling constant, denoting the
coupling strength between the individual lattice sites. For reasons of simplicity, the propagation
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Figure 1. Schematic representation of an interface in a waveguide array, which
is induced by a change of the coupling constant and the propagation constants of
the guides.

constant β0 has been removed by a phase transformation. The normalized eigenfunctions of this
periodic system are the so-called discrete Bloch waves:

ϕm = eiβzeiκm. (2)

The quantity β is the longitudinal propagation constant and κ denotes the transverse propagation
constant multiplied by the waveguide spacing 1 corresponding to a phase difference between
adjacent waveguides. Inserting equation (2) into (1), one finds β entirely defined by the
dispersion relation

β = 2c cos κ (3)

describing a band structure due to the system’s periodicity. All Bloch waves have to fulfill
equation (3), otherwise they cannot propagate and decay exponentially.

However, equation (1) describes an infinite system with identical and equally spaced
waveguides. Hence, in the presence of an interface, one has to modify these equations.
Assuming an interface as depicted in figure 1, the coupled mode equations take the form

(m < 0) : i
d

dz
ϕm + c1(ϕm−1 + ϕm+1) = 0,

(m = 0) :
(

i
d

dz
+ 2

)
ϕ0 + c1ϕ−1 + c2ϕ1 = 0, (4)

(m > 0) :
(

i
d

dz
+ δβ

)
ϕm + c2(ϕm−1 + ϕm+1) = 0,

where m = 0 is the position of the interface. The quantities c1 and c2 are the coupling constants
on the two sides of the interface, whereas δβ is the difference of the propagation constants in the
isolated waveguides between these two parts of the array (figure 1). If the guide m = 0 exhibits
a detuning δβ, the relation 2 = δβ holds, otherwise 2 = 0.

For 2 = 0, one obtains two different dispersion relations for both regions with n < 0 and
n > 0, respectively, which read

(m < 0) : β1 = 2c1 cos κ1, (5)

(m > 0) : β2 = δβ + 2c2 cos κ2. (6)

Due to translational invariance in the z-direction, the propagation constant β must be conserved
in the whole array. Hence, the relation β1 = β2 = β holds, yielding the expression

cos κ2

cos κ1
=

c1

c2
−

δβ

2c2 cos κ1
. (7)
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(a) (b)

Figure 2. Bandstructure on both sides of the interface. In (a) the band of both
sides exhibits the same width (c1 = c2) but are shifted (δβ > 0). In (b) the bands
are different in width (c1 > c2), but are not shifted (δβ = 0).

This is the discrete equivalent of the well-known Snell’s law, which describes the refraction of
a propagating plane wave at an interface between two discrete media. Following this analogy,
in the discrete case in equation (7) one has two parameters describing the refraction: the ratio
of the coupling constants c1/c2 as well as the ratio δβ/c2, which is determined by an additional
difference of the waveguide profiles. This is in strong contrast to continuous media, where only
the ratio of the refractive indices of both materials affects the refraction at the interface. The
actual angle α1,2 of the propagation direction of the individual Bloch waves in the respective
array region can be easily calculated by (Eisenberg et al 2000, Pertsch et al 2002, Szameit et al
2007)

tan α1,2 = 11,2
∂β

∂κ1,2
= −211,2c1,2 sin κ1,2. (8)

Furthermore, it is evident that only such waves can pass the interface for which
|cos κ2|6 1 holds. Otherwise the Bloch waves experience total internal reflection, since they
cannot penetrate the region behind the interface and decay exponentially in this region in the
form of evanescent waves. As a peculiar feature of discrete systems it follows from equation (7)
that all incoming Bloch waves are reflected totally when

|δβ|> 2(c1 + c2). (9)

In this particular case, the interface acts as a perfect mirror. Since the coupling constants and
the detuning are a function of the wavelength, condition (9) will only be satisfied for a certain
range of wavelengths. Hence, this feature may find an application as a spectral filter, where only
certain wavelengths can penetrate the interface.

The occurrence of total reflection can be illustrated by means of the band structure. We
consider the bands on both sides of the interface according to equations (5) and (6). Since only
waves with a positive value of the Bloch vector reach the interface, we examine the bands in the
interval [0; π ]. Two examples are shown in figure 2. In figure 2(a) the band is shifted up behind
the interface because a positive value for δβ is assumed. In this case, no propagation constant
exists inside the right part of the array for Bloch waves from the bottom of the band of the left
part. Therefore, such a wave would be completely reflected. An analogous situation occurs for
a shrinking of the band due to a decrease of the coupling constant (see figure 2(b)), where total
reflection appears if the incoming wave travels at the top or bottom of the respective band.
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3. Reflection and transmission coefficients

When the Bloch waves reach the interface, they split into a reflected and transmitted part. The
resulting amplitudes of the Bloch waves can be characterized by reflection and transmission
coefficients, in close analogy to the Fresnel’s formulae at interfaces between continuous media.
To calculate these coefficients, for the propagating Bloch waves one uses the ansatz

(m < 0) : ϕm =
(
eiκ1m + ρe−iκ1m

)
eiβz,

(m = 0) : ϕm = τ ′eiβz, (10)

(m > 0) : ϕm = τeiκ2meiβz.

The coefficient ρ denotes the reflection strength, whereas τ ′ and τ are the transmission
coefficients. Since the guide at m = 0 can be assumed as a singular defect, one has to consider
the transmission into this defect and the m > 0-region separately. Inserting equations (10)
into (4), one obtains

a−1 : −β
(
e−iκ1 + ρeiκ1

)
+ c1e−2iκ1 + c1ρe2iκ1 + c1τ

′
= 0, (11)

a0 : (−β + 2) τ ′ + c1e−iκ1 + c1ρeiκ1 + c2τeiκ2 = 0, (12)

a1 : (−β + δβ) τeiκ2 + c2τ
′ + c2τe2iκ2 = 0. (13)

Equation (11) directly yields

τ ′
=

β

c1

(
e−iκ1 + ρeiκ1

)
− e−2iκ1 − ρe2iκ1 . (14)

When inserting this into equation (12), one obtains

τ =
e−iκ2

c2

[
(β − 2)

[
β

c1

(
e−iκ1 + ρeiκ1

)
− e−2iκ1 − ρe2iκ1

]
− c1e−iκ1 − c1ρeiκ1

]
. (15)

Using equations (14) and (15), one can resolve equation (13), resulting in

ρ =

([
−β + δβ + c2eiκ2

]
/c2

) (
(β − 2)

[
e−iκ1 − (β/c1)

]
+ c1

)
− (c2/c1)β + c2e−iκ1([

−β + δβ + c2eiκ2
]
/c2

) (
(β − 2)

[
(β/c1) − eiκ1

]
− c1

)
+ (c2/c1)β − c2eiκ1

e−2iκ1, (16)

where β has to fulfill the dispersion relations (5) and (6). Equations (15) and (16) denote the
transmission and reflection coefficients for a Bloch wave crossing an interface as depicted in
figure 1 from left to the right. Three examples for the coefficients in dependence of the Bloch
vector of the incoming wave are depicted in figure 3.

An interesting issue is the symmetry of the reflection and transmission coefficients around
κ1 =

π

2 , since due to equation (8) this is the maximum angle at which Bloch waves propagate
through the array (Pertsch et al 2002). In the particular case of a vanishing detuning δβ = 0, the
reflection coefficient simplifies to

ρ|δβ=0 =
c1eiκ1 − c2eiκ2

c2eiκ2 − c1e−iκ1
. (17)

This expression, which is the analog of Fresnel’s formula for reflection at an interface
between two continuous media, is always symmetric around κ1 =

π

2 , since the reflection is only
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(a) (b)

(c)

Figure 3. Absolute value (solid) and argument (dashed) of the reflection
(red) and transmission (blue) coefficients for (a) δβ = 0 cm−1, c1 = 1 cm−1

and c2 = 0.5 cm−1, (b) δβ = 0.5 cm−1, c1 = c2 = 1 cm−1 and (c) δβ = 0.9 cm−1,
c1 = 1 cm−1 and c2 = 0.5 cm−1.

dependent on the direction of the incoming wave. Hence, the absolute value |ρ|, accounting for
the reflected amplitude, as well as the argument arg(ρ), representing the phase shift due to the
reflection, are symmetric, as shown in figure 3(a). This symmetry is broken when δβ 6= 0. In this
case, it becomes apparent that the phase as well as the amplitude of the reflection (and, hence,
also of the transmission) are dependent on the transverse wave vector of the incoming wave
rather than on the direction. This is due to the periodic character of waveguide arrays, where
different Bloch waves travel in the same direction (see equation (8)).

Concerning the occurrence of total internal reflection, the results are in agreement with the
explanation given to figure 2. It might be astonishing that the transmitted wave does not vanish
in this case. However, this becomes clear keeping in mind that the transmitted wave has to be
either a Bloch wave (for real κ2) or an evanescent wave decaying exponentially in the case of an
imaginary κ2. As both cases are included, the transmission coefficient τ does not vanish even for
total reflection |ρ| = 1. To derive a quantity that represents the power conservation, it is useful
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to examine the energy flow inside the array. For an infinite array, it follows from equation (1)

iϕ∗

m

d

dz
ϕm + c(ϕm−1 + ϕm+1)ϕ

∗

m = 0,

−iϕm
d

dz
ϕ∗

m + c(ϕ∗

m−1 + ϕ∗

m+1)ϕm = 0.

(18)

Subtracting the second from the first equation yields
d

dz
|ϕm|

2
= ic

[
(ϕm−1 + ϕm+1)ϕ

∗

m − (ϕ∗

m−1 + ϕ∗

m+1)ϕm

]
, (19)

which denotes the power exchange between a respective guide and its neighbors. The power
inside a cluster of guides extending from −M to M is given by

Q =

M∑
−M

|ϕm|
2. (20)

Power can escape the cluster only via the two outermost waveguides. This is reflected in the
corresponding equation

d

dz
Q = ic

[
(ϕ∗

−Mϕ−M−1 − ϕ−Mϕ∗

−M + ϕ∗

MϕM+1 − ϕMϕ∗

M+1

]
, (21)

where only the amplitudes of the outermost guides and their neighbors outside the cluster
contribute. To determine the power flow one assumes a cluster including all guides from
m = −∞ to m = 0. The power change of this area, which corresponds to the (m 6 0)-region of
the array, is given by

d

dz
Q

∣∣∣∣
m60

= ic2

[
ϕ∗

0ϕ1 − ϕ0ϕ
∗

1

]
= 2c2=

{
ϕ0ϕ

∗

1

}
. (22)

Assuming plane waves ϕm = eiκ2m , this equation becomes

d

dz
Q

∣∣∣∣
m60

=

{
−2c2 sin κ2 (if κ2 is real),
0 (if κ2 is imaginary).

(23)

As expected, no power flow exists for evanescent waves (κ2 imaginary). Assuming that the
power transported by the reflected and transmitted wave equals the power of the incoming wave,
the coefficients have to fulfill

c1 sin κ1 = |ρ|
2c1 sin κ1 + |τ |

2c2 sin κ2. (24)

Using equation (7), one finally arrives at

1 = |ρ|
2 +

1

sin κ1

√(
c2

c1

)2

−

(
cos κ1 −

δβ

2c1

)2

|τ |
2, (25)

which represents the conservation of power inside the array. Hence, the quantities

R = |ρ|
2, (26)

T =
1

sin κ1

√(
c2

c1

)2

−

(
cos κ1 −

δβ

2c1

)2

|τ |
2 (27)

represent the reflection and transmission coefficients for the power. As expected, the
transmission T grows with decreasing reflection R and vice versa, whereas their sum is constant.
The corresponding values for R and T from figure 3 are depicted in figure 4.
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(a) (b)

(c)

Figure 4. Energy reflection (red) and transmission (blue) coefficients for (a) δβ =

0 cm−1, c1 = 1 cm−1 and c2 = 0.5 cm−1, (b) δβ = 0.5 cm−1, c1 = c2 = 1 cm−1

and (c) δβ = 0.9 cm−1, c1 = 1 cm−1 and c2 = 0.5 cm−1.

4. Discussion of the results

To test the analytical results of the previous section, the coupled mode equations (4) were solved
numerically. The first point under investigation will be the discrete Snell’s law (7). Since this
expression is valid for every single Bloch wave, it is useful to analyze this for a broad excitation
covering at least five waveguides. In this case, the Fourier spectrum is narrow, so that only a
small number of Bloch waves will be excited (Pertsch et al 2002). Investigating the evolution
of the light inside the array around κ = π/2 diffraction is small due to the significantly reduced
curvature of the band in this area (Szameit et al 2007). Therefore almost no broadening of the
beam appears (see figure 5).

In the array under consideration, on the left side (m < 0) the coupling was set to
c1 = 1 cm−1 for a spacing of 11 = 15 µm and on the right side (m > 0) to c2 = 2 cm−1,
according to 12 = 11 µm (Szameit et al 2007). For these values, in region 1 one obtains a
propagation angle of α1 = 0.18◦, whereas in the other region α2 = 0.25◦, which is shown in
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Figure 5. In the vicinity of the normalized transverse wave vector κ =
π

2 the
second derivative of the longitudinal wave vector vanishes, which is equivalent
to diffraction-free propagation.

figure 6(a). The picture changes for an additional detuning of the refractive index in the m > 0
region. For a detuning of δn = −1.5 × 10−4, the angle of propagation inside this region reduces
to α2 = 0.23◦ (see figure 6(b)), whereas for an index detuning of δn = −2.7 × 10−4, the angle
of propagation reduces to α2 = 0.18◦, so that no refraction occurs (but still a reflection), which
is shown in figure 6(c).

The next peculiar feature of refraction between two discrete media is the fact that the
ratio between transmission and reflection is not unique for a specific angle of incidence.
In periodic media, the transverse component of the individual Bloch waves range within
the first Brillouin zone from κmin = 0 to κmax = π , whereas the angle of propagation (see
equation (8)) ranges only from αmin = 0◦ to αmax = arctan {−21c}, so that two different values
of κ yield the same α. Due to equations (16) and (15), in general the reflection and transmission
is not symmetric around κ =

π

2 . Hence, for the same angle α, two different reflection and
transmission coefficients exist for two different Bloch waves residing at different positions in
the first Brillouin zone. This feature is depicted in figure 7. In an array with c1 = 1.05 cm−1,
c2 = 1.45 cm−1 and a detuning of the refractive index of δn = −2.0 × 10−4, two Gaussian
excitations with κ

(1)

1 =
π

3 (figure 7(a)) and κ
(2)

1 =
2π

3 (figure 7(b)) propagate at α = 0.18◦ but
exhibit different reflection and transmission coefficients (figure 7(c)).

5. Experimental results

For the experimental verification of these results we used planar waveguide arrays fabricated by
the fs laser writing technique (Szameit et al 2005, 2006). When ultrashort laser pulses are tightly
focused into the bulk material, nonlinear absorption takes place leading to optical breakdown
and the formation of a microplasma. Thereby, a permanent change of the material’s molecular
structure is induced. In the particular case of fused silica, the density is locally increased
yielding a positive modulation of the refractive index (Itoh et al 2006). By moving the sample
transversely with respect to the beam a continuous modification is obtained and a waveguide is
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(a) (b) (c)

Figure 6. Refraction of a broad Gaussian excitation at an interface between
c1 = 1 cm−1 and c2 = 2 cm−1. In (a) no additional detuning is assumed, in (b)
the detuning of the refractive index in the (m > 0) region is δn = −1.5 × 10−4,
whereas in (c) the detuning is δn = 2.7 × 10−4. The refraction decreases from
(a), where α2 = 0.25◦, over (b) with α2 = 0.23◦ to (c), where α2 = 0.18◦. The
propagation direction is marked by the white arrow, whereas the interface is
depicted by the dashed-dotted line.

created (Miura et al 1997) (see figure 8(a)). By this method, waveguides can be written along
arbitrary paths since the only limiting factor in the placement of the focus is the focal length
of the writing objective (Nolte et al 2003). Since the induced change of the refractive index is
a function of the writing velocity (Blomer et al 2006), the fs writing technique is in particular
well suited to induce defects and interfaces in waveguide arrays. Furthermore, all structural
changes are permanent and stable after fabrication (Nolte et al 2002). For the fabrication of our
waveguides we used a Ti:sapphire laser system (RegA/Mira, Coherent Inc.) with a repetition
rate of 100 kHz, a pulse duration of about 150 fs and 0.3 µJ pulse energy at a laser wavelength
of 800 nm. The beam was focused into polished fused-silica samples by a 20× microscope
objective with a numerical aperture of 0.35. The average power of the laser beam was 32 mW,
while the writing velocity was 1300 µm s−1 resulting in a refractive index change of 6 × 10−4.
The length of all samples was 70 mm. To directly monitor the light propagation we applied a
recently developed method of detecting fluorescent light (Szameit et al 2007). For that purpose,
we used a particular type of fused silica glass with a high content of OH which leads to a massive
formation of non-bridging oxygen hole (NBOH) color centers in the modified volume. These
can be excited with a HeNe source at 633 nm, which was launched by fiber butt coupling, so
that the fluorescence with its maximum at 650 nm can be detected by a camera from above the
sample (Dreisow et al 2008) (see figure 8(b)).

Two different setups were investigated experimentally (figure 9(a)), with a spacing of
13 µm and 15 µm on the left and right side, respectively. Additionally, in a second sample
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(a) (b)

(c)

Figure 7. Partial reflection of a broad Gaussian excitation at an interface
between two waveguide arrays with c1 = 1.05 cm−1, c2 = 1.45 cm−1 and a
refractive index detuning of −2.0 × 10−4. In (a) the excitation is centered
around κ1 =

π

3 and in (b) around κ1 =
2π

3 , yielding in both cases α = 0.18◦, but
different reflection and transmission coefficients, which are depicted in (c). The
propagation direction is from top to bottom.

a detuning of the refractive index of δn ≈ −2 × 10−4 was applied in the region with 13 µm
spacing, which was achieved by a slightly higher writing speed of 1800 µm s−1. The resulting
coupling coefficient in the region with 1 = 15 µm is c1 = 1.09 cm−1, in the region with
1 = 13 µm is c2 = 1.56 cm−1 (Szameit et al 2007). These values remain valid even in the case of
a slightly negative detuning, since the lower refractive index of the waveguides is compensated
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(a) (b)

Figure 8. The principal setup for the fs writing procedure is shown in (a), where
the laser beam is focused directly into the glass by a microscope objective. The
setup for the fluorescence measurement is sketched in (b). HeNe laser light
is launched into the array, while the fluorescent light is monitored by a CCD
camera.

(a)

(b) (c)

Figure 9. (a) Schematic representation of the experimentally analyzed
waveguide array. On one side the spacing between the waveguides is 1 = 15 µm,
whereas on the other side the spacing is 1 = 13 µm. On the latter side, in a
second sample, also a small detuning of the refractive index of δn ≈ −1.5 ×

10−4 was applied. The corresponding calculated reflection and transmission
coefficients are shown in (b) for δn = 0 and in (c) for δn ≈ −1.5 × 10−4.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. (a)–(d) Experimental fluorescent images of the light propagation
in a waveguide array, where c1 = 1.09 cm−1 and c2 = 1.557 cm−1. The excited
waveguide is m = −3 (a), m = −2 (b), m = −1 (c) and m = 1 (d). In (e)–(h)
the corresponding simulations using equation (4) are shown. The propagation
direction is from top to bottom.

by a stronger overlap of adjacent modes. The respective calculated reflection and transmission
coefficients of these setups are depicted in figures 9(b) and (c).

The impact of an interface on the propagation of light from a point source (exciting
all Bloch waves) without additional detuning (δn = 0) is demonstrated in figure 10. The
experiments illustrate the light evolution for the excitation of waveguide m = −3, m = −2, m =

−1 and m = 1, shown in figures 10(a)–(d). The corresponding simulations using equation (4)
are depicted in figures 10(e)–(h). Depending on the excited waveguide, the light is partially
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. (a)–(d) Experimental fluorescent images of the light propagation
in a waveguide array, where c1 = 1.09 cm−1 and c2 = 1.557 cm−1. In (a) and
(b) the excited waveguide is m = 2, whereas in (c) and (d) this is m = 0.
Furthermore, in (b) and (d) an additional detuning of δn ≈ −2 × 10−4 is applied.
The corresponding simulations are shown in (e)–(h). The propagation direction
is from top to bottom.

reflected at the interface. From figure 9(b) it follows that in particular the side lobes at κ =
π

2
are almost entirely transmitted and only slightly refracted from α1 = 0.18◦ to α1 = 0.23◦. In
contrast, the Bloch waves in the center and the edge of the Brillouin zone experience strong
reflection. This is supported by the observation that a large fraction of the light between the
side lobes, which results from these Bloch waves, remains in this semi-array where the excited
waveguide is located.
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This picture changes when an additional detuning δn ≈ −2 × 10−4 is introduced in the
(m > 0)-region, since in this case the reflection and transmission coefficients are modified
(figure 9(c)). The experimentally observed light evolution from a point source in such an
array is depicted in figure 11(b) for the excited waveguide at m = 2 and figure 11(d)
with the light launched in waveguide m = 0. The corresponding simulations are shown in
figures 11(f) and (h). The experimental propagation pattern of the undetuned array is presented
in figures 11(a) and (c) for the excited waveguide at m = 2 and m = 0, respectively. The
corresponding simulations are given in figures 11(e) and (g). The main feature is now that
in the detuned array the reflection is much stronger for all Bloch waves, so that almost all
of the incident light is reflected at the interface (figures 11(b) and (d)). Additionally, due to
equation (7), the angle of propagation in the detuned array region changes to α1 = 0.20◦. This
points out again that in discrete media there are two quantities which characterize the light
evolution: the coupling strength and an additional detuning of the propagation constant.

6. Conclusions

We have presented the discrete analog of Snell’s refraction law at an interface. It was shown
that the refraction is characterized by two quantities: the coupling strength and an additional
detuning of the propagation constant, in contrast to continuous media. Additionally, refraction
and transmission coefficients for the Bloch waves and the power were introduced as the discrete
analog of Fresnel’s formulae. The results were experimentally verified in fs laser written
waveguide arrays, where the light propagation was directly monitored using fluorescent light.
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