
Journal of High Energy Physics
     

Type I non-abelian superconductors in
supersymmetric gauge theories
To cite this article: Roberto Auzzi et al JHEP11(2007)090

 

View the article online for updates and enhancements.

You may also like
Chiral Fermions and Spinc Structures on
Matrix Approximations to Manifolds
Brian P. Dolan and Charles Nash

-

Comments on Noncommutative Sigma
Models
Jeff Murugan and Rory Adams

-

Dressed giant magnons on 3

Chrysostomos Kalousios, Marcus Spradlin
and Anastasia Volovich

-

This content was downloaded from IP address 18.119.107.40 on 27/04/2024 at 19:39

https://doi.org/10.1088/1126-6708/2007/11/090
https://iopscience.iop.org/article/10.1088/1126-6708/2002/07/057
https://iopscience.iop.org/article/10.1088/1126-6708/2002/07/057
https://iopscience.iop.org/article/10.1088/1126-6708/2002/07/057
https://iopscience.iop.org/article/10.1088/1126-6708/2002/07/057
https://iopscience.iop.org/article/10.1088/1126-6708/2002/07/057
https://iopscience.iop.org/article/10.1088/1126-6708/2002/12/073
https://iopscience.iop.org/article/10.1088/1126-6708/2002/12/073
https://iopscience.iop.org/article/10.1088/1126-6708/2009/07/006


J
H
E
P
1
1
(
2
0
0
7
)
0
9
0

Published by Institute of Physics Publishing for SISSA

Received: October 9, 2007

Accepted: October 29, 2007

Published: November 28, 2007

Type I non-abelian superconductors in

supersymmetric gauge theories

Roberto Auzzi,a Minoru Etoab and Walter Vinciab

aDepartment of Physics, University of Pisa,

Largo Pontecorvo, 3, Ed. C, 56127 Pisa, Italy
bINFN, Sezione di Pisa,

Largo Pontecorvo, 3, Ed. C, 56127 Pisa, Italy

E-mail: r.auzzi@swan.ac.uk, minoru@df.unipi.it, walter.vinci@pi.infn.it

Abstract: Non-BPS non-Abelian vortices with CP
1 internal moduli space are studied in

an N = 2 supersymmetric U(1)×SU(2) gauge theory with adjoint mass terms. For generic

internal orientations the classical force between two vortices can be attractive or repulsive.

On the other hand, the mass of the scalars in the theory is always less than that of the

vector bosons; also, the force between two vortices with the same CP
1 orientation is always

attractive: for these reasons we interpret our model as a non-Abelian generalization of type

I superconductors. We compute the effective potential in the limit of two well separated

vortices. It is a function of the distance and of the relative colour-flavour orientation of the

two vortices; in this limit we find an effective description in terms of two interacting CP
1

sigma models. In the limit of two coincident vortices we find two different solutions with

the same topological winding and, for generic values of the parameters, different tensions.

One of the two solutions is described by a CP
1 effective sigma model, while the other

is just an Abelian vortex without internal degrees of freedom. For generic values of the

parameters, one of the two solutions is metastable, while there are evidences that the other

one is truly stable.
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1. Introduction

According to the ideas of Mandelstam and ’t Hooft [1], confinement in non-Abelian gauge

theories is due to a dual Meissner effect. The electric flux between two heavy electric sources

is confined by a dual Abrikosov-Nielsen-Olesen vortex [2]; the vortex has a constant energy

per unit length (tension). This leads to a linear potential between the probe charge and

anti-charge. Due to the difficulties in analyzing strongly interacting non-Abelian gauge

theories, this picture remained just a nice qualitative scheme for years, which could not be

justified from first principles.
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A breakthrough in this context was the Seiberg-Witten solution [3] of N = 2 super

Yang-Mills theories; they found massless monopoles at strong coupling. Adding a small

N = 2 breaking mass term for the adjoint field, the monopoles condense creating dual

vortex strings which carry a chromoelectric flux. The details of confinement in the Seiberg-

Witten scenario are indeed quite different from QCD. The SU(Nc) gauge symmetry is

spontaneously broken broken to U(1)Nc−1 by the expectation value of an adjoint field and

the strings of the theory carry an Abelian U(1)Nc−1 charge. A careful examination shows

that the “hadronic” spectrum is much richer than that of QCD [4].

Thus it is interesting to study some alternatives to the Abelian Meissner effect, with

the aim to find some close relatives of QCD. The non-Abelian vortex discussed in refs. [5, 6]

is an interesting possibility in this direction. This solitonic object has first been studied

in an N = 2 U(Nc) gauge theory with Nf = Nc = N quark hypermultiplets and with a

Fayet-Iliopolous term in order to keep the theory in the Higgs phase. The squark fields

condense and break the gauge symmetry; on the other hand the colour-flavour locked global

symmetry is unbroken in the vacuum. The theory has vortex solitons which spontaneously

break this SU(N) symmetry to SU(N − 1)×U(1); due to the zero modes corresponding to

these broken symmetries, the moduli space is given by the quotient:

CP
N−1 =

SU(N)

SU(N − 1) × U(1)
.

The classical moduli coordinate can be promoted to a field living on the vortex worldvol-

ume; in this way vortex solitons in a 3 + 1 dimensional theory can be directly connected

with a CP
N−1 sigma model in 1 + 1 dimension, which describes the macroscopic physics

of the flux tube. Some reviews on this subject can be found in ref. [7]; recent develop-

ments involve the Seiberg duality [8], the Goddard-Nuits-Olive duality [9], generalizations

to SO(N) theories [10], and possible phenomenological applications to high temperature

Yang-Mills and dense matter [11].

The non-Abelian vortex can be studied in many different theoretical settings; indeed

it is possible to start with an N = 1 theory [12, 13] or even with a non-supersymmetric

theory [14]. The details of the effective 1 + 1 dimensional sigma model are different due to

different number of fermions and various amount of supersymmetry. Also the number of

quantum vacua is different, for example there are N vacua in the N = 2 case [15 – 17] and

just one vacuum in the non-supersymmetric case [14].

It is also interesting to study the non-Abelian vortex for higher winding numbers. In

the N = 2 case, the vortex is a BPS object with a big moduli space; as discussed in

ref. [5, 18], in the topological sector with winding k, the dimension of the moduli space is

2kN . Some of these moduli correspond to the relative and global positions of the component

k = 1 vortices; others to the global and relative orientations in the internal space. The

vortex solution and the moduli space for higher winding numbers has been discussed in

refs. [19, 18, 20 – 22].

In this paper, we study the impact on the vortices of the N = 2 model of some

mass terms η0, η3 for the adjoint fields, which break the extended supersymmetry. For

concreteness, we will discuss the case Nc = Nf = 2. The vortex with winding number
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one is not anymore a BPS object, but still has a CP
1 moduli space. On the other hand

the physics for vortices with higher winding numbers is very different: almost all the flat

directions in the moduli space are lifted by the parameters η0, η3. The force between two

vortices is not as simple as in an Abelian superconductor, where we have attraction for

type I vortices and repulsion for type II ones [23, 24]. There is a non-trivial dependence

on the orientations of the two vortices in the internal space.

Even if the force between two vortices in our model is not attractive for all values of

the vortex orientations ~n1, ~n2, we have a close resemblance with type I Abelian vortices: we

find that the scalars of the theory are lighter than the vector bosons. Hence if we consider

two well separated vortices, we have that the prevailing part of the interaction is mediated

by scalars and not by vectors. Moreover, for ~n1 = ~n2 the force is always attractive. We

have also found evidences that the configurations which minimize the energy are always

given by two coincident vortices, just as in the type I Abelian case. For these reasons we

call these objects ”non-Abelian type I vortices”.

In section 2 we describe the theoretical set-up. In section 3 we discuss the non-BPS

solutions for the vortices which live in the Abelian subset of the theory, with emphasis

on the sectors which have topological winding 1 and 2. In section 4 we study a more

general configuration of two coincident vortices, both in the BPS case and in the non-

BPS case; a potential for the vortex moduli space is found for η0,3 6= 0. In section 5

the interactions between two vortices with a large separation distance are studied and the

effective vortex potential is computed in this limit. In section 6 the worldsheet description

of the macroscopic physics is discussed, both for a single vortex and for two vortices at

large distance. In section 7 we conclude the paper and make a general discussion. Some

aspects specific to the large η0,3 limit are discussed in appendix A. In appendix B the BPS

equations for two coincident vortices for η0 = η3 = 0 are provided.

After this work was finished, two papers about interactions of global non-Abelian

vortices appeared [25]; however the details of these two models are quite different from the

setting studied in this paper.

2. Theoretical set-up

2.1 Lagrangian

For the U(1) gauge field A0
µ and the SU(2) gauge field Ak

µ (k = 1, 2, 3) the following

conventions are used:

Aµ =
τk

2
Ak

µ +
1

2
A0

µ, (2.1)

∇µ = ∂µ − i
τk

2
Ak

µ − i

2
A0

µ,

Dµak = ∂µak + ǫklmAl
µam. (2.2)

The field strength is:

Fµν = ∂µAν − ∂νAµ − i

4

[

Aj
µτ j , Ak

ντk
]

, (2.3)
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which in components (with the convention Fµν = F k
µντk/2) reads:

F i
µν = ∂µAi

ν − ∂νAi
µ + ǫijkAj

µAk
ν .

We consider an N = 2 supersymmetric U(1) × SU(2) gauge theory with Nf = 2

hypermultiplets together with the following superpotential:

W =
1√
2

[

Q̃f (a + akτk +
√

2mf )Qf + W0(a) + W3(a
kτk)

]

, (2.4)

where the terms W0,3 are of the form

W0 = −ξa + η0a
2, W3(a

kτk) = η3a
kak. (2.5)

Here we have introduced two real positive mass parameters η0 and η3 for the adjoint

scalars which break N = 2 SUSY to N = 1. mf is the mass of the hypermultiplets

Qf , Q̃f (f = 1, 2) and ξ is the FI F -term parameter1. Vortices in Abelian versions of this

theoretical setting have been discussed in refs. [28, 29].

This kind of potential naturally arises from the N = 2, SU(3) SQCD softly broken

with a mass term of the form W = ηTrA2. Indeed, when the bare masses of the squarks are

tuned to special values, there exist true quantum vacua in which the non-Abelian gauge

symmetry SU(2) × U(1) is preserved [6]. The low energy effective theory in these vacua is

exactly the theory we are studying here2.

The bosonic part of the Lagrangian in Euclidean notation is (we use the same symbols

for the scalars as are used for the corresponding superfields):

L =

∫

d4x

[

1

4e2
3

|F k
µν |2 +

1

4e2
0

|Fµν |2 +
1

e2
3

|Dµak|2 +
1

e2
0

|∂µa|2

+Tr(∇µQ)†(∇µQ) + Tr(∇µQ̃)(∇µQ̃†) + V (Q, Q̃, ak, a)

]

, (2.6)

where e0 is the U(1) gauge coupling and e3 is SU(2) gauge coupling. The potential V is

the sum of the following D and F terms:

V =
e2
3

8

(

2

e2
3

ǫijkājak + Tr(Q†τ iQ) − Tr(Q̃τ iQ̃†)

)2

+
e2
0

8

(

Tr(Q†Q) − Tr(Q̃Q̃†)
)2

+
e2
3

2

∣

∣

∣
Tr(Q̃τ iQ) + 2η3a

i
∣

∣

∣

2
+

e2
0

2

∣

∣

∣
Tr(Q̃Q) − ξ + 2η0a

∣

∣

∣

2

+
1

2

2
∑

f=1

|(a + τ iai +
√

2mf )Qf |2 + |(a + τ iai +
√

2mf )Q̃†
f |2 . (2.7)

1A very similar Lagrangian was discussed in refs. [12, 13]; in that case the FI was in the D-term and

not in the superpotential. This leads to different physics, the vortex is still classically BPS saturated. For

a discussion of the different settings that give BPS vortices, see refs. [26].
2These quantum vacua exist only if we have a sufficient number of flavours. In this case semilocal vortices

may be relevant [27].
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The squark multiplets are kept massless in the remainder of the paper,

mf = 0.

The vacuum of the theory which we are interested in is not changed by the parameters

η0,3:

Q = Q̃ =

√

ξ

2

(

1 0

0 1

)

, a = 0, ab = 0. (2.8)

For η0 6= 0, the theory has also another classical vacuum:

Q = Q̃ = 0, a =
ξ

2η0
, ak = 0, (2.9)

which “runs away” at infinity for η0 = 0. In what follows, we consider the vacuum (2.8)

and the non-Abelian vortices therein.

2.2 Spectrum of the theory

The masses of the gauge bosons can easily be read of the Lagrangian:

M2
U(1) = ξe2

0, M2
SU(2) = ξe2

3.

The masses of the scalars are given by the eigenvalues M2
i of the mass matrix (calculated

in the vacuum (2.8)):

M =
1

2

∂2V

∂si∂sj
, (2.10)

where we denote by sk (k = 1, 2, · · · , 24) the real scalar fields of the theory. The calculation

is a bit tedious but quite straightforward (a very similar situation is discussed in ref. [12],

in the case of a D-term Fayet-Iliopoulos). First of all, there are four zero eigenvalues, which

correspond to the scalar particles eaten by the Higgs mechanism. There is one real scalar

with mass MS0 = MU(1) which is in the same N = 1 multiplet as the U(1) massive photon

and moreover there are also three scalars with a mass MT0 = MSU(2) in the same multiplet

as the non-Abelian vector field. The other mass eigenvalues are given by

M2
S1,S2 = ξe2

0 + e4
0η

2
0 ±

√

2ξη2
0e

6
0 + e8

0η
4
0 ; (2.11)

M2
T1,T2 = ξe2

3 + e4
3η

2
3 ±

√

2ξη2
3e

6
3 + e8

3η
4
3 ,

where the upper sign is for MS1,T1 and the lower sign is for MS2,T2. MS1 and MS2 have

multiplicity 2; MT1 and MT2 have multiplicity 6. The mass of the fermions is obviously

the same as the mass of the bosonic degrees of freedom, because of the unbroken N = 1

supersymmetry.

Note that for η0 = η3 = 0 (which is also discussed in ref. [30]), the mass degeneracy

of the spectrum is bigger (the particles fit into N = 2 hypermultiplets). The parameter

η0 affects only the masses of the particles which are in the same N = 2 hypermultiplets

as the U(1) vector field; η3 affects the mass of the particles which are in the non-Abelian

– 5 –
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vector hypermultiplet. The case of N = 2 SQED was studied in ref. [28]; the results are

very similar to our U(1) subsector.

In the limit η0e0 ≫ √
ξ, we find M2

S1 ≈ 2e4
0η

2
0 and M2

S2 ≈ ξ2/(4η2
0). In a similar way,

if η3e3 ≫ √
ξ the masses become M2

T1 ≈ 2e4
3η

2
3 and M2

T2 ≈ ξ2/(4η2
3). The particles with

masses MS1 and MT1 (which in this limit correspond to the fields a and ak) become very

massive and decouple from the low energy physics.

For η0e0 ≪ √
ξ and η3e3 ≪ √

ξ nonetheless we find

M2
S1,S2 = ξe2

0 ±
√

ξη0e
3
0, M2

T1,T2 = ξe2
3 ±

√

ξη3e
3
3. (2.12)

Some of the scalars become slightly heavier and some slightly lighter.

The mass eigenvectors take a quite complicated form for small η0,3, with at non-trivial

mixing between Q, Q̃ and a, ak. On the contrary they are quite simple for large η0,3,

because the fields a, ak decouple from the low energy physics. The effective Lagrangian for

large η0,3 is discussed in appendix A.

3. (p, k) coincident vortices

3.1 Second order equations

In this section, we will study some special solutions representing coincident vortices that

live in an Abelian subgroup of the fields of the theory. These solutions are parameterized by

two positive integers (p, k); the topological Z winding number is given by w = p + k. This

kind of solution gives us the most general vortex with winding w = 1 up to a colour-flavour

rotation3.

Due to the symmetry between Q and Q̃†, for the vortex solution we can consistently

set Q̃ = Q†.4 With this assumption the Euler-Lagrange equations of the theory are:

∂µFµν
0 = e2

0Tr
(

iQ†(∇νQ) − i(∇νQ)†Q
)

,

∂µFµν
k + ǫklmAlµFµν

m = e2
3Tr

(

iQ†τk(∇νQ) − i(∇νQ)†τkQ
)

−ǫklm((Dνa)†l am + (Dνa)la
†
m), (3.1)

∇µ∇µQ = − δV

δQ† ,

∂µ∂µa = − δV

δa†
,

DµDµak = − δV

δa†k
. (3.2)

3As we will discuss in the next section, for higher winding, we know that it is not the most general

solutions, at least in the BPS case [5, 19, 18, 20, 21].
4This can be checked using the variables: QS = (Q + Q̃†)/2, QD = (Q − Q̃†)/2. With this variables we

easily see that ∂V
∂QD

˛

˛

˛

QD=0

= 0.

– 6 –
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We make the following axial symmetric ansatz (which in the BPS limit reduces to the one

of ref. [6]):

Q =

(

φ1e
piϕ 0

0 φ2e
kiϕ

)

,

A3
i = −ǫijxj

r2
[(p − k) − f3(r)], A0

i = −ǫijxj

r2
[(p + k) − f0(r)],

a0 = λ0(r), a3 = λ3(r), a1 = a2 = 0. (3.3)

Notice that the adjoint fields a, ak are non-trivial in the non-BPS model, whereas they

vanish everywhere when η0,3 are zero (BPS).

The vacuum of the theory is invariant under the following global colour-flavour locked

rotations (U ∈ SU(2)C+F ):

Q → UQU †, Q̃ → U †Q̃U, akτk → U(akτk)U
†, F k

µντk → U(F k
µντk)U

†. (3.4)

Let us introduce the S2 coordinate nk, with k = 1, 2, 3 and |~n| = 1:

nkτk = Uτ3U †. (3.5)

Using the parametrization introduced in eq. (3.5) we can write down the expression for a

w = 1 vortex with generic orientation nk:

A0
i = −ǫijxj

r2
[1 − f0], Ak

i = −ǫijxj

r2
[1 − f3]n

k, a0 = λ0, ak = nkλ3,

Q = Q̃† =
φ1e

Iϕ + φ2

2
1 +

φ1e
Iϕ − φ2

2
τknk. (3.6)

It is easy to see that the (1, 0) vortex partially break the symmetry in eq. (3.4); as a

consequence, this object has some internal zero modes associated to this breaking. In fact,

the vortex leaves a U(1) subgroup of SU(2)C+F unbroken, so that zero modes parameterize

a CP
1 = SU(2)/U(1) = S2.

The energy with respect to φ1,2, f0,3 and λ0,3 is expressed as

E = 2π

∫

rdr

(

f ′2
0

2e2
0r

2
+

f ′2
3

2e2
3r

2
+

λ′2
0

e2
0

+
λ′2

3

e2
3

+ 2(φ′2
1 + φ′2

2 )+

+
(φ2

1 + φ2
2)(f

2
0 + f2

3 ) + 2f3f0(φ
2
1 − φ2

2)

2r2
+

e2
0

2
(φ2

1 + φ2
2 − ξ + 2η0λ0)

2+

+
e2
3

2
(φ2

1 − φ2
2 + 2η3λ3)

2 + ((λ0 + λ3)φ1)
2 + ((λ0 − λ3)φ2)

2

)

. (3.7)

We have to minimize this expression with the appropriate boundary conditions for each

(p, k):

f3(0) = p − k, f0(0) = p + k, f3(∞) = 0, f0(∞) = 0.

φ1(∞) = 1, φ2(∞) = 1, λ0(∞) = 0, λ3(∞) = 0. (3.8)

We also find for small r:

φ1 ∝ O(rp), φ2 ∝ O(rk), λ0 ∝ O(1), λ3 ∝ O(1). (3.9)

– 7 –
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The Euler-Lagrange equations obtained are:

f ′′
0

r
− f ′

0

r2
=

e2
0

r
(f3(φ

2
1 − φ2

2) + f0(φ
2
1 + φ2

2)), (3.10)

f ′′
3

r
− f ′

3

r2
=

e2
3

r
(f3(φ

2
1 + φ2

2) + f0(φ
2
1 − φ2

2)),

φ′′
1+

φ′
1

r
−φ1(f0 + f3)

2

4r2
=

φ1

(

(λ0+λ3)
2+e2

0(φ
2
1+φ2

2−ξ+2η0λ0)+e2
3(φ

2
1 − φ2

2 + 2η3λ3)
)

2
,

φ′′
2+

φ′
2

r
−φ2(f0 − f3)

2

4r2
=

φ2

(

(λ0−λ3)
2+e2

0(φ
2
1+φ2

2−ξ+2η0λ0)−e2
3(φ

2
1−φ2

2+2η3λ3)
)

2
,

λ′′
0+

λ′
0

r
=

e2
0

(

(a0 + a3)φ
2
1 + (a0 − a3)φ

2
2 + e4

0η0(φ
2
1 + φ2

2 − ξ + 2η0λ0)
)

2
,

λ′′
3 +

λ′
3

r
=

e2
3

(

(a0 + a3)φ
2
1 − (a0 − a3)φ

2
2 + e4

3η3(φ
2
1 − φ2

2 + 2η3λ3)
)

2
.

It is easy to check that these equations can be obtained substituting the ansatz (3.3) in

eqs. (3.2). This shows that the ansatz is consistent.

In the following, we will concentrate our effort on the study of the sectors with topo-

logical winding 1 and 2; in other words, we will discuss the (1, 0), the (1, 1) and the (2, 0)

vortices. In the BPS limit (η0 = η3 = 0) the tension is proportional to the topological

winding number (T(1,0) = 2πξ, T(1,1) = T(2,0) = 4πξ). For non-BPS solutions, η0,3 6= 0, we

find that the tension is always less than the BPS limit. This is because the non-BPS terms

in the tension formula eqs. (3.7) do not give any contribution if we put the BPS solutions

into the expression (λ0,3 are identically zero for the BPS solutions). The non-BPS solutions

will of course be a true minimum or saddle point of the energy functional, so that their

energy will be smaller than that of the BPS configurations5.

For fixed ξ, the tension of the (1, 1) vortex is a function of only e0, η0, because for this

vortex f3 = 0 and φ1 = φ2. This is clearly explained by the fact that the (1, 1) vortex is

completely Abelian. On the other hand, the tension of the (1, 0) and of the (2, 0) vortex is

a non-trivial function of all the parameters e0,3, η0,3.

If we take e3 = e0 and η3 = η0 the vortex becomes easier to study. In this case we can

use a more convenient basis for the gauge field, which is just the sum and the difference of

A0
µ and A3

µ. The potential V also factorize, and takes the form V = V1(φ1)+ V2(φ2). Each

diagonal component of Q does not interact with the other ones, and can be treated as an

Abelian vortex. For the (1, 0) vortex we can use the simple ansatz6

Q =

(

φeiϕ 0

0
√

ξ/2

)

, (3.11)

while for the (1, 1) and for the (2, 0) vortices we can use

Q =

(

φ(r1)e
iϕ1 0

0 φ(r2)e
iϕ2

)

, Q =

(

φe2iϕ 0

0
√

ξ/2

)

. (3.12)

5This also has a clear resemblance to the Abelian case, where type I vortices have a smaller energy with

respect to the BPS case.
6Notice that we cannot impose φ2 =

p

ξ/2 even for (1, 0) vortex in the generic models.
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The system reduces to the Abelian vortex studied in ref. [28]. The tension of the (1, 1)

vortex is exactly twice the tension of the (1, 0) one. In each of the U(1) factors, we have

type I superconductivity. Since the two U(1) subgroups are decoupled, the (1, 0) and (0, 1)

vortices do not interact. Furthermore, the tension of the (2, 0) vortex is less than twice the

tension of the (1, 0) vortex.

3.2 Numerical solutions

At generic e0,3, η0,3 eqs. (3.10) have been solved numerically. It is a little subtle to solve this

system of ordinary differential equations directly. The difficulties basically arise because

there are many equations; there are also subtleties in defining the boundary conditions

at ∞, because, in general, the fields which appear in our ansatz do not correspond to

mass eigenstates. In order to perform the numerics we found that the method of re-

laxation is very effective. We add an auxiliary time dependence to the profile functions

~u = (f0, f3, φ1, φ2, λ0, λ3) . At t = 0 we start with some arbitrary functions uj(r, 0)
7; the

evolution in t is then given by:
∂uj

∂t
= Ej . (3.13)

If the solution converges with time to a static configuration, then at final time we have

obtained a solution of the equations Ej = 0, which are equivalent to eqs. (3.10). The

results for (p, k) = (1, 0), (2, 0), (1, 1) are shown in figure 1.

It is interesting to compare numerical result for the tension 2T1,0, T2,0 and T1,1 of the

2 × (1, 0), (2, 0) and (1, 1) vortices, respectively (see figure 2). We have always found that

T2,0 < 2T1,0. This is consistent with the fact that at large separation distance, the force

between two vortices with the same colour-flavour orientation is always attractive (we will

discuss this aspect in section 4). As can be checked in figure 2, three different regimes have

been found for T1,1: T1,1 < T2,0 < 2T1,0 or T2,0 < T1,1 < 2T1,0 or T2,0 < 2T1,0 < T1,1.

If η0 = 0, η3 6= 0, the tension of the (1, 1) vortex is found to be the same as in the

BPS case. The tensions of the 2× (1, 0) and of the (2, 0) vortex are strictly less than that

of the BPS vortices (η3 = 0). Hence in this case T2,0 < 2T1,0 < T1,1. On the contrary,

if η3 = 0, η0 6= 0, we have found T1,1 < T2,0 < 2T1,0 for all the numerical values of the

couplings that we have investigated.

4. Generic coincident vortices

4.1 The BPS case

The number of dimensions of the k-vortex moduli space in U(Nc) N = 2 gauge theory

with Nf = Nc = N hypermultiplets has been computed in ref. [5]. The calculation uses

the index theorem and the result is 2kN . Thus for η0 = η3 = 0, the moduli space of a 2-

vortex configuration is a manifold with eight real dimensions. Two of these dimensions are

associated with the global position of the system; other 2 coordinates are associated with

the relative position R of the two elementary vortices. The remaining 4 coordinates are

7The choice of the initial conditions is crucial to find convergence.
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Figure 1: Profile functions f0 (solid black), f3 (solid blue), φ1 (long dashes, black), φ2 (long

dashes, blue), λ0 (short dashes, black), λ3 (short dashed,blue) for the numerical values ξ = 2, e0 =

1/4, e3 = 1/2, η0 = η3 = 1. In the left panel are shown the profiles for the (1, 0) vortex, in the

middle, the ones for the (2, 0) and in the right, the ones for the (1, 1). Note that in this last case

f3 = λ3 = 0 and φ1 = φ2.
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Figure 2: T1,1 (long dashes), T2,0 (short dashes) and 2 T1,0 (solid) for different values of 0 < ω <

π/2, where η3 = η sin ω, η0 = η cosω. The tension of the BPS 2-vortex is normalized to TBPS = 2.

In the left figure the numerical values e0 = e3 = 1/2, η = 4, ξ = 2 are used; in the right figure

e0 = 1/2, e3 = 1/4, η = 4, ξ = 2).

associated with the orientation of the system in the colour-flavour space. In this section,

we will write an ansatz for the case of coincident vortices (R = 0), and we will show

that it is non-trivially consistent with the second order equations of the theory. We will

correct a technical mistake in ref. [20], where the problem was studied using first order

BPS equations.
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Modulo a global SU(2) rotation we can parameterize a subset of the moduli space with

the angle α between ~n1 and ~n2. The expression for Q = Q̃† is8:

Q =





− cos α
2 e2iϕκ1 sin α

2 eiϕκ2

− sin α
2 eiϕκ3 − cos α

2 κ4



 . (4.1)

The ansatz for the gauge fields is:

A0
(i) = −ǫijxj

r2
(2 − f0), A3

(i) = −ǫijxj

r2
((1 + cos α) − f3), (4.2)

A1
(i) = −ǫijxj

r2
(sin α)(cos ϕ)(1 − g), A2

(i) = +
ǫijxj

r2
(sin α)(sin ϕ)(1 − g). (4.3)

We have introduced here the profile functions κ1(r), κ2(r), κ3(r), κ4(r) for the squark scalars

and f0(r), f3(r), g(r) for the gauge field. For r → ∞ all the gauge profile functions vanish

and all the squark ones go to the value
√

ξ/2. The boundary conditions at r → 0 are:

f(r) = 2 + O(r2), f3(r) = (1 + cos α) + O(r2), g(r) = 1 + O(r3), (4.4)

κ1(r) → O(r2), κ2(r) → O(r), κ3(r) → O(r), κ4(r) → O(1) .

For the (2, 0) vortex we have:

α = 0, φ1 = κ1, φ2 = κ4,

while for the (1, 1) vortex (after a simple diagonalization):

α = π, φ1 = κ2 = φ2 = κ3.

For the BPS vortex it is simpler to consider first order equations; but we are interested

in understanding what is happening for η0,3 6= 0. Thus we will write the equations in a

form that can be easily generalized to a non-BPS setting. This will also give the possibility

to check our equations and numerical results, just comparing the result for the tensions

against the exact Bogomol’nyi bound; for completeness, we provide the first order BPS

equations in appendix B. The energy density due to the kinetic part of the gauge field is:

Sg =
f ′
0
2

2 r2 e0
2

+
f ′2
3

2 r2 e3
2

+
sin2 αg′2

2 r2 e3
2

. (4.5)

The part due to the kinetic energy of squark is:

SQ = cos2 α

2
(κ′2

1 + κ′2
4 ) + sin2 α

2
(κ′2

2 + κ′2
3 ) (4.6)

+ cos2 α

2

(

(1 − cos α + f0 + f3)
2κ2

1

4r2
+

(1 − cos α − f0 + f3)
2κ2

4

4r2

)

8The ansatz for Q used in ref. [20] is: κ1 = κ z1 z2, κ2 = κ z1, κ3 = κ z2, κ4 = κ. This form is not

sufficiently general, because we have to keep all the four squark components independent variables; we can

show numerically that κ1κ4 6= κ2κ3. Moreover, the profile function h(r) introduced in the same paper turns

out to be zero: as a consequence, the correct ansatz takes a much simpler form. The conclusions of ref. [20]

about the vortex moduli space although are not changed by these technical points.
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Figure 3: Vortex profile functions for α = π/3. In the left panel there are κ1 (solid), κ2 (long

dashes), κ3 (short dashes), κ4 (dots); in the right panel there are f0 (solid), f3 (long dashes), g

(short dashes). The following numerical values have been used: ξ = 2, e0 = 1/4, e3 = 1/2.

+ sin2 α

2

(

(1 + cos α − f0 − f3)
2κ2

2

4r2
+

(1 + cos α + f0 − f3)
2κ2

3

4r2

)

+
(1 − g)2 sin2 α

4r4

(

cos2 α

2
(κ2

1 + κ2
4) + sin2 α

2
(κ2

2 + κ2
3)

)

−

−(1 − g) sin2 α

2r4
((1 + f0)κ1κ3 + (1 − f0)κ2κ4) .

The part due to the potential reads:

VBPS =
e2
0

2

(

cos2 α

2
(κ1

2 + κ4
2) + sin2 α

2
(κ2

2 + κ3
2) − ξ

)2

+
e2
3

2

{

(

cos2 α

2
(κ1

2 − κ4
2) + sin2 α

2
(κ2

2 − κ3
2)

)2
+ sin2 α (κ1 κ3 − κ2 κ4)

2

}

.

The total energy is given by:

E = 2π

∫

rdr(Sg + 2SQ + VBPS). (4.7)

It is straightforward to write the Euler-Lagrange equations for this energy density, which

are a system of seven second order equations, one for each profile function; for brevity we

will not show them explicitly in the paper. We have solved this system numerically with

the same method used in section 3.2; in figure 3 is shown an example of the solution. The

tension is found to be equal to TBPS = 4πξ with an excellent precision for every α; this is

a good numerical check for the solution obtained.

An analytical check of the ansatz can also be found substituting eqs. (4.1), (4.3) into

the Euler-Lagrange equations (3.2). With this approach we find a system of the same seven

second order equations with the following first order expression:

K = e2
3r

2(κ3κ
′
1 − κ1κ

′
3 + κ2κ

′
4 − κ4κ

′
2) − (1 − g)f ′

3 − (f3 − cos α)g′ = 0. (4.8)

This seems to be a paradox, because this is a system of eight differential equation with

seven unknown functions. Actually, everything is consistent, because using the seven second
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order equations we can show the following property:

dK

dr
=

K

r
, (4.9)

which shows that K is linear in r. From the boundary conditions of the profile functions,

we find that the coefficient of this linear function has to be zero. This shows that our

ansatz is consistent with the equations of motion.

4.2 The non-BPS case: η0, η3 6= 0

For η0, η3 6= 0 the (1, 1) and the (2, 0) vortices are still solutions to the equations of motion;

so these field configurations are extremal points of the energy which can be local minima

or saddle points. For generic values of the parameters, we find T(1,1) 6= T(2,0), so the

continuous moduli space interpolating between these two particular solutions disappears.

For small values of η0, η3 we expect that the low energy physics of these solitons is described

by an effective potential of the moduli space. In this section, we will estimate this potential

numerically for generic values of α.

A constraint on this potential comes from the BPS limit at η0, η3 = 0. In this case, a

continuous family of degenerate solutions exists, with tension T = 4πξ. If we insert these

solutions into the energy density for η0, η3 6= 0, the energy of these field configurations does

not change. However, the solutions to the second order equations have energies which are

less than this value. This sets an upper bound:

T (α) ≤ TBPS = 4πξ. (4.10)

There is an obvious invariance of the equations:

α → −α.

Indeed, if we expand around α = 0 + δ or α = π + δ we find that the linear order in δ

is zero and that the first non-trivial correction to the tension is O(δ2). This shows that

solutions with α = 0, π correspond to local minima or maxima of the tension. In order to

find which of the two alternatives holds, an explicit calculation is needed.

In order to compute the potential of the vortex moduli space, we generalize the ansatz

that we have used for the solutions in the BPS case, using the same expressions for the

gauge fields, Q and the following expression for the adjoint fields:

a0 = λ0(r), a3 = λ3(r),

a1 = (sin α)
x1

r
λ12(r), a2 = (sin α)

−x2

r
λ12(r), (4.11)

where we have introduced the profile functions λ0, λ3, λ12, with the following boundary

conditions:

λ0(∞) = 0, λ3(∞) = 0, λ12(∞) = 0, (4.12)

and the following r → 0 behaviour:

λ0 ∝ O(1), λ3 ∝ O(1), λ12 ∝ O(r). (4.13)
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Figure 4: Vortex profiles for α = π/3 and ξ = 2, e0 = 1/2, e3 = 1/4, η0 = η3 = 1. In the left

panel there are κ1 (solid), κ2 (long dashes), κ3 (short dashes), κ4 (dots); in the middle panel f0

(solid), f3 (long dashes), g (short dashes); in the right panel λ0 (solid), λ3 (long dashes), λ12 (short

dashes).

This ansatz is suggested by the expression we get for these adjoint fields in the limit of large

η0, η3, where we can integrate these fields out (see appendix A). In the following we replace

these expressions in the action and find second order equations for the profile functions for

generic α. These field configurations at α 6= 0, π are not solutions to the full equations of

motion, eqs. (3.2); they are just functional generalizations of the BPS solutions. We use

these profiles as reasonable test functions to compute the effective moduli space potential.

The kinetic energy of the adjoint scalars is:

Sa =
λ0

′2

e0
2

+
λ3

′2 + sin(α)2 λ12
′2

e2
3

+
sin(α)2

r2e2
3

{

(1 − g)2 λ3
2+ (4.14)

+(f3 − cos(α))2 λ12
2 + 2λ3 λ12 (cos α − f3) (g − 1)

}

. (4.15)

The potential term is:

V =
e2
0

2

(

cos

(

α

2

)2

(κ1
2 + κ4

2) + sin

(

α

2

)2

(κ2
2 + κ3

2) + 2 η0 λ0 − ξ

)2

+
e2
3

2

(

cos

(

α

2

)2

(κ1
2 − κ4

2) + sin

(

α

2

)2

(κ2
2 − κ3

2) + 2 η3 λ3

)2

+
e2
3

2
sin(α)2 (κ1 κ3 − κ2 κ4 + 2 η3 λ12)

2 + 2 sin(α)2 λ0 λ12 (κ1 κ3 − κ2 κ4)
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Figure 5: Vortex tension as function of α in the topological winding 2 sector; the tension of the

BPS 2-vortex is normalized to TBPS = 2. In the left panel: ξ = 2, e0 = 1/2, e3 = 1/2, η0 = 0.1,

η3 = 1. In the middle panel: ξ = 2, e0 = 1/2, e3 = 1/2, η0 = 1, η3 = 0.1. In the right panel: ξ = 2,

e0 = 1/2, e3 = 1/4, η0 = η3 = 1.

+

(

sin

(

α

2

)2

κ3
2 + cos

(

α

2

)2

κ4
2

)

(

(λ0 − λ3)
2 + sin(α)2 λ12

2
)

+

(

cos

(

α

2

)2

κ1
2 + sin

(

α

2

)2

κ2
2

)

(

(λ0 + λ3)
2 + sin(α)2 λ12

2
)

. (4.16)

The energy is the sum of all pieces:

E = 2π

∫

rdr(Sg + 2SQ + Sa + V ). (4.17)

The system of ten second order differential equations which we obtain is quite compli-

cated, but can still be solved numerically. The qualitative plot of the profile functions is

similar to the BPS case (see figure 3 and figure 4). The tension is a non-trivial function

on the coordinate α, which gives us an effective potential of the moduli space. We solved

this equations numerically for different values of the couplings e0, e3, η0, η3 and we have

found three different regimes (see figure 5). The tension can have a maximum at α = 0

and a minimum at α = π; we also find the opposite situation in which there is a minimum

at α = 0 and a maximum at α = π. The third alternative is that both α = 0, π are

local minima of the tension, with one of them a metastable minimum. We never obtain a

minimum at α 6= 0, π.
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5. Vortex interactions at large distance

5.1 Vortex profiles at large distance

At large distance r from the center of the vortex, the equations can be linearized and solved

analytically. Let us introduce the following notation:

φ1 =
√

ξ/2 + δφ1, φ2 =
√

ξ/2 + δφ2, ~v = (δφ1, δφ2, λ0, λ3). (5.1)

The following linear differential equations can be written:

~v′′(r) +
~v′(r)

r
− W~v(r) = 0, (5.2)

where the matrix W is given by:

W =





















ξ(e2

0
+e2

3
)

2
ξ(e2

0
−e2

3
)

2

√

ξ
2e2

0η0

√

ξ
2e2

3η3

ξ(e2

0
−e2

3
)

2
ξ(e2

0
+e2

3
)

2

√

ξ
2e2

0η0 −
√

ξ
2e2

3η3

√
2ξe4

0η0
√

2ξe4
0η0 2η2

0e
4
0 + ξe2

0 0

√
2ξe4

3η3 −√
2ξe4

3η3 0 2η2
3e

4
3 + ξe2

3





















. (5.3)

The eigenvalues of the matrix W are in direct correspondence with some of the scalar

spectrum of the theory (see eq. (2.11)):

w1,2 = M2
S1,S2 = ξe2

0 + e4
0η

2
0 ±

√

2ξη2
0e

6
0 + e8

0η
4
0 , (5.4)

w3,4 = M2
T1,T2 = ξe2

3 + e4
3η

2
3 ±

√

2ξη2
3e

6
3 + e8

3η
4
3 .

The corresponding eigenvectors are:

~v1,2 =

(

−e0
4η0

2 ±
√

2ξe0
6η0

2 + e0
8η0

4

2
√

2ξe0
4η0

,
−e0

4η0
2 ±

√

2ξe0
6η0

2 + e0
8η0

4

2
√

2 ξ e0
4 η0

, 1, 0

)

, (5.5)

~v3,4 =

(

−e3
4η3

2 ±
√

2ξe3
6η3

2 + e3
8η3

4

2
√

2ξe3
4η3

,
e3

4η3
2 ∓

√

2ξe3
6η3

2 + e3
8 η3

4

2
√

2 ξ e3
4 η3

, 0, 1

)

. (5.6)

Note that ~vk are also eigenvectors of the mass matrix defined in eq. (2.10).

The solutions to these equations which are zero at infinity are given by the modified

Bessel function:

~v(r) =
∑

k=1,···,4
bk~vkK0(

√
wkr), (5.7)

where bk are appropriate constants which can be found solving the complete differential

equation also at small r. For large x we can use:

K0(x) ≈
√

π

2x
e−x. (5.8)
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The asymptotic solutions for the scalar profiles read:

~v(r) ≈
∑

k=1,···,4
bk~vk

√

π

2
√

wkr
e−

√
wkr. (5.9)

The large r equations for f3 and f0 are:

f ′′
0 − f ′

0

r
− ξe2

0f0 = 0, f ′′
3 − f ′

3

r
− ξe2

3f3 = 0. (5.10)

This leads to the following asymptotic expression in terms of Bessel functions:

f0,3 = c0,3rK1(e0,3

√

ξr) ∝ √
re−(e0,3

√
ξ)r, (5.11)

where c0, c3 are constants which should be determined by the original 2nd order differential

equations. Note that there is the identity: K1(r) = −K ′
0(r).

5.2 Static vortex potential

The next step is to reproduce the vortex asymptotic interactions in the effective linear

theory by coupling the low-energy degrees of freedom to an effective scalar density ρ and

an effective vector current jµ. We shall extend an approach used in refs. [31, 32].

First of all, we have to discuss the bosonic particle spectrum of the theory. There is

a massive U(1) vector and a massive SU(2) vector; then in principle there are 12 complex

scalar fields (Q, Q̃, A, Ak). For the vortex solution we have used the ansatz Q = Q̃†,
so in order to discuss the vortex interactions we can neglect the modes that break this

condition9. There are 16 real fields, 4 of which are eaten by the Higgs mechanism; finally

we have 12 physical scalars. We have already calculated the masses of these particles in

section 2.2; at low energy and at low coupling we can write a free theory which describes

the infrared physics:

Lfree =
1

4e2
0

(F 0
µν)2 +

ξ

2
A0

µA0µ +
1

4e2
3

(F k
µν)2 +

ξ

2
Ak

µAkµ

+
1

2
(∂µSl)

2 +
1

2
(∂µT k

l )2 +
M2

Sl

2
S2

l +
M2

T l

2
(T k

l )2. (5.12)

This effective Lagrangian contains three real scalar fields, Sl=0,1,2, which are SU(2) singlets

and three real scalar fields, T k
l=0,1,2, which are SU(2) triplets. These scalars correspond to

the appropriate eigenvectors of the mass matrix in eq. (2.10). The index k is an SU(2)

triplet index; this SU(2) group corresponds to the SU(2)C+F in the full theory.

In order to include external sources (=vortices) in this effective Lagrangian, we need

the following effective terms:

Lsource = ρSlSl + ρk
T lT

k
l + j0µA0µ + jkµAkµ. (5.13)

9If we wish to include these extra modes in the low energy theory, we need only to promote the real

fields S1, S2, T
k
1 , T k

2 in eq. (5.12) to complex fields.
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The corresponding wave equations are:

(¤ + M2
Sl)Sl = ρSl, (¤ + M2

T l)T
k
l = ρk

T l,

(¤ + e0
2ξ)A0µ = jµ, (¤ + e3

2ξ)Akµ = jkµ. (5.14)

On the other hand, for the (1, 0) vortex with orientation nk, we have the following asymp-

totic profiles, converted into the singular real Q gauge:

S0 = 0, S1 = b1K0(MS1r), S2 = b2K0(MS2r), (5.15)

T k
0 = 0, T k

1 = b3n
kK0(MT1r), T k

2 = b4n
kK0(MT2r), (5.16)

~A0 = −c0(ẑ ∧∇K0(e0

√

ξr)), ~Ak = −c3n
k(ẑ ∧∇K0(e3

√

ξr)), (5.17)

where ∇ is only the ordinary gradient and not the covariant derivative as in the other

sections. We need the following mathematical identity for the 2 + 1 dimensional Laplacian

of K0 in term of Dirac’s δ function:

(−∆ + M2)K0(Mr) = 2πδ(~r). (5.18)

The following expressions are found for the scalar densities corresponding to a vortex placed

at the position ~x and having orientation nk:

ρS0 = 0, ρS1 = 2πb1δ(~x), ρS2 = 2πb2δ(~x),

ρT0 = 0, ρT1 = 2πb3n
kδ(~x), ρT2 = 2πb4n

kδ(~x). (5.19)

In a similar way we obtain the following expressions for the currents:

~j = −2πc0ẑ ∧∇δ(~x), ~jk = −2πc3n
kẑ ∧∇δ(~x). (5.20)

Using these expressions, it is straightforward to compute the static inter-vortex poten-

tial between two vortices with orientations ~n1 and ~n2 at distance R:

U = 2π
(

c2
0K0(e0

√

ξR) − b2
1K0(MS1R) − b2

2K0(MS2R)+

+(~n1 · ~n2)(c
2
3K0(e3

√

ξR) − b2
3K0(MT1R) − b2

4K0(MT2R))
)

. (5.21)

In the BPS case (η0 = η3 = 0) this potential is exactly zero, because we have MS1 =

MS2 = e0
√

ξ, MT1 = MT2 = e3
√

ξ and c2
0 = b2

1 + b2
2, c2

3 = b2
3 + b2

4.

If η3, η0 6= 0, we find that at large distance the particle with lowest mass is the one

which dominates the interaction. We have always the following inequalities:

MS2 < e0

√

ξ < MS1, MT2 < e3

√

ξ < MT1. (5.22)

Thus if MS2 < MT2 then we have:

U ≈ −2πb2
2K0(MS2R) ≈ −2πb2

2

√

π

2MS2R
e−MS2R, (5.23)
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which gives an always attractive force. On the other hand, if MT2 < MS2:

U ≈ −2πb2
4K0(MT2R)(~n1 · ~n2) ≈ −2πb2

4

√

π

2MT2R
e−MT2R(~n1 · ~n2), (5.24)

which gives attraction for ~n1 = ~n2 and repulsion for ~n1 = −~n2.

A very peculiar thing happens for e0 = e3 and η0 = η3 6= 0. For these fine-tuned values

of the couplings MS2 = MT2 = M2 and b2 = b4, so the effective vortex potential has the

form:

U ≈ −2πb2
2K0(M2R)(1 + ~n1 · ~n2) ≈ −2πb2

2

√

π

2M2R
e−M2R(1 + ~n1 · ~n2), (5.25)

which gives a flat potential for ~n1 = −~n2. This is consistent with the fact that in this limit

the (1, 0) and the (0, 1) vortices do not interact because they are completely decoupled (see

the argument below eq. (3.12)). This behaviour is similar to the one found in ref. [25] for

global non-Abelian vortices.

6. Effective worldsheet theory

6.1 Single vortex

It is useful in the following to use the singular gauge in which the squarks fields at r → ∞
tend to a fixed VEV and do not wind. In this gauge, the ansatz (3.6) for the single vortex

reduces to

A0
i =

ǫijxj

r2
f0, Ak

i =
ǫijxj

r2
f3n

k, a0 = λ0, ak = nkλ3, (6.1)

Q =
φ1 + φ2

2
1 +

φ1 − φ2

2
τknk.

We will assume that the orientational coordinates ~n are functions of the string worldsheet

coordinates. ~n becomes a field of a 1 + 1 dimensional sigma model. This effective theory

has no potential due to the fact that the nk parameterize some zero modes; in the following

we will compute the kinetic term. For the gauge field components A0,3, we will use the

same ansatz as used in refs. [6, 16]:

Ak = −1

2
(τaǫabcnb∂knc)ρ(r), k = 0, 3. (6.2)

The field strength components Fki with k = 0, 3 and i = 1, 2 are not zero any more:

Fki =
1

2
∂kn

aτaǫij
xj

r2
f3[1 − ρ(r)] +

1

2
(τaǫabcnb∂knc)

xi

r

d

dr
ρ(r). (6.3)

Substituting this expression into the kinetic term for the gauge field and for the squark

fields, we obtain a simple generalization of the BPS case discussed in refs. [6, 16, 33]:

S1+1 =
β

2

∫

dtdz(∂jn
k)2, (6.4)
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where:

β =
2π

e2
3

∫

rdr

{

ρ′2 +
f2
3 (1 − ρ)2

r2
+ λ2

3(1 − ρ)2 + e2
3

{

(φ2
1 + φ2

2)
ρ2

2
+ (1 − ρ)(φ1 − φ2)

2

}}

.

(6.5)

We have to solve the Euler-Lagrange equations for ρ(r), with ρ(0) = 1 and ρ(r → ∞) = 0.

In the BPS case, where λ3 is trivially 0, we can show from the equations of motion [16] that

ρ = 1− φ1/φ2 and that β = 2π/e2
3 (see also [33, 34]); in the general case η3, η0 6= 0 there is

not such powerful analytical result, here we have to solve the equations for ρ numerically

and then calculate β.

In the BPS case we have additional fermionic zero modes, associated with the unbroken

supercharges; at small η0, η3 6= 0 these modes should be still present, but they will not be

described anymore by the fermionic sector of a supersymmetric effective theory in 1 + 1

dimensions. We will not discuss this aspect in this paper and we will leave it as a problem

for further investigation.

The color-flavor modes of the (2, 0) vortex are very similar to the (1, 0) ones: both the

vortices have a CP
1 moduli space and the value of β can be determined using eq. (6.5). For

the (1, 1) vortex,nevertheless, these modes are just trivial because all the profile functions

are proportional to the identity matrix.

6.2 Two well separated vortices

A proper description of the system has to take into account also the quantum aspects of the

sigma model physics. Let us consider two vortices with internal orientations ~n1, ~n2. The

relative distance between them can be promoted to a complex field R; the global position

of the system, on the other hand, decouples from the other the degrees of freedom. If the

distance of the two vortices is large (|R| → ∞), we expect that the effective worldvolume

description of the bosonic degrees of freedom is:

S =

∫

dtdz

{

β

2
(∂kn

a
1)

2 +
β

2
(∂kn

a
2)

2 + T |∂kR|2 + vs(|R|) + vt(|R|)~n1 · ~n2

}

, (6.6)

where:

vs(|R|) = −2πb2
2

√

π

2MS2|R|e
−MS2|R|, (6.7)

vt(|R|) = −2πb2
4

√

π

2MT2|R|e
−MT2|R|,

where T is the tension of a single vortex. This description is good only for large values of

the VEV of the field R; at R = 0 the internal degrees of freedom are no longer described

by CP
1 × CP

1, but by a space with topology CP
2/Z2 (see refs. [20, 21]). Moreover, the

expression used for the potential is good only for large vortex separation.

If we keep the VEV of R fixed (which physically corresponds to keep the distance of

the two vortices fixed with some external device), the effective description is given by two

CP
1 sigma models with a small interaction term of the form c~n1 · ~n2.
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7. Conclusion and discussion

For Abelian type I superconductors, the force between two vortices with the same winding

number is always attractive. This is true at large and at small distances, as shown by

numerical calculations in ref. [24]. In the model discussed in this paper, for η0, η3 > 0,

the masses of some of the scalars fields are always found to be less than the mass of the

corresponding vector boson. In this sense we can think the system as a generalization of

the Abelian type I superconductor. However, here is an important difference: the force

between two vortices is not always attractive; there is a non-trivial dependence on the

coupling, the relative internal orientation and the distance.

In this paper, we have studied the problem in two different limits: large vortices

separation and coincident vortices. For large separations we have computed the leading

potential analytically; the behavior at large distance is dominated by the particle with the

lowest mass Mlow. There are two main alternatives, which hold for different values of the

couplings:

U(R) ∝







−
√

1
2MS2Re−MS2R for Mlow = MS2, Type I

−(~n1 · ~n2)
√

1
2MT2Re−MT2R for Mlow = MT2, Type I∗

(7.1)

where MS2, MT2 are the masses of the scalars in eq. (2.11). In order to distinguish these

regimes, we call them Type I and Type I∗; for Type I∗ vortices the sign of the asymptotic

force depend on ~n1 · ~n2. For the fine-tuned values e0 = e3 and η0 = η3 6= 0, the relation

MS2 = MT2 = M2 holds, and the effective vortex potential has the form:

U(R) ∝ −(1 + ~n1 · ~n2)

√

1

2M2R
e−M2R, (7.2)

which gives a flat potential for ~n1 = −~n2.

For coincident vortices we have found two stationary solutions of the equations of

motion, the (1, 1) and the (2, 0) vortices, and we computed their tensions numerically. The

results are shown in figure 2; both the cases T1,1 > T2,0 or T2,0 > T1,1 are possible for

different values of the coupling. The moduli space interpolating between these solutions at

η0 = η3 = 0 disappears for non-zero values of one of these parameters (see figure 5).

It is interesting to match the data of the two complementary approaches. Let us for

simplicity consider the case of parallel (~n1 = ~n2) and anti-parallel (~n1 = −~n2) vortices.

In the case of parallel vortices at large separation distance, the force is always attractive;

also from numerical calculations we find T2,0 < 2T1,0 for all the values of the coupling that

we have analyzed. We have not made the calculation for arbitrary distances, but we think

that the above are a good evidence for the fact that the force between two parallel vortices

is always attractive in our model.

For anti-parallel vortices, on the other hand, the situation is more complicated. At

large distances there is attraction if MT2 > MS2 and repulsion if MT2 < MS2. For the

choice e0 = e3 and η0 = η3, the relation MT2 = MS2 holds; as we already noticed in

section 3, for these particular values the two diagonal U(1) factors decouple: there is
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Figure 6: Qualitative plot of the vortex potential as function of the vortex distance for ~n1 = −~n2

and e0 = e3. For η0 > η3 we have attraction (left); for η0 < η3 we have repulsion (right). With the

choice η0 = η3 there is no net classical force.
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Figure 7: For e0 6= e3 the qualitative plot of the vortex potential as function of the vortex distance

for ~n1 = −~n2 can have maxima or minima for non-zero vortex separation.

no net classical force between the (1, 0) and the (0, 1) force for arbitrary distance (this

configuration is not stable, because if we allow ~n1, ~n2 to vary, we have that (2, 0) vortex

has a lower energy). Indeed, if we keep e0 = e3, we obtain MT2 > MS2, T1,1 < 2T1,0 for

η0 > η3 and MT2 < MS2, T1,1 > 2T1,0 for η0 < η3. This is a good evidence that for η0 > η3

we have an attractive force and for η0 < η3 we have a repulsive one (see figure (6)).

If we relax the condition e0 = e3, there are situations in which at large distance there

is attraction (because MT2 > MS2) and also we get T1,1 > 2T1,0, as is shown in figure 7

to the left: this means that there is a critical distance, in which there is a minimum of

the inter-vortex potential for anti-parallel vortices (if we allow the vortex orientation to

flip, probably it will not be a minimum any more, because we still have T2,0 < 2T1,0).

An example of this situation can be obtained with the couplings ξ = 2, e0 = 1/4, e3 =

1/2, η0 = 0, η3 = 4. Moreover we can obtain MT2 < MS2 and T1,1 < 2T1,0, which means

that there is a critical distance at which there is a maximum of the inter-vortex potential

(see figure 7 on the right). An example of this situation can be obtained with the couplings

ξ = 2, e0 = 1/2, e3 = 1/4, η0 = 3.5, η3 = 2.

It is interesting that at R = 0 there are two different regimes, which depend on the

values of the coupling, with very different properties. The physics of the (2, 0) vortex is

described by a bosonic CP
1 sigma model; the (1, 1) vortex on the other hand is an Abelian
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vortex with no internal degrees of freedom. For some values of the coupling we have an

evidence that both vortices are local minima of the tension (see figure 5): one of the two is

metastable (indeed for some fine tuned values of η0,3 we have that both the vortices have

the same tension).

A model with metastable vortices at weak coupling has already been studied in ref. [35].

This behavior is reminiscent of SU(N) Yang-Mills, where for each topological n-ality we

can have different string tensions for each representation of the Wilson Loop. In each

topological sector there is just one stable string, corresponding to the antisymmetric rep-

resentation; there are evidences that the strings with other representations are metastable

strings, at least in the large N limit (see ref. [36] for a discussion).

In this paper we have been interested in non-Abelian non-BPS vortices in an N = 1

supersymmetric model. In such a restricted model we have found a physics similar to

Abelian type I superconductors. In a companion paper [38], we will discuss a simpler

non-supersymmetric model in which we can have both type I and type II non-Abelian

superconductivity.

Acknowledgments

We are grateful to Toshiaki Fujimori, Bjarke Gudnason, Kenichi Konishi, Giacomo Mar-

morini, Muneto Nitta, Keisuke Ohashi, Mikhail Shifman, David Tong and Alexei Yung

for useful discussions and comments. The work of M.E. is supported by the Research

Fellowships of the Japan Society for the Promotion of Science for Research Abroad.

A. Large η0,η3 limit

If we take the limit e0η0 ≫ √
ξ we can integrate out the superfield a from the superpotential:

a =
ξ − TrQ̃Q

2η0
. (A.1)

Similarily way in the limit e3η3 ≫ √
ξ we can integrate out the superfield ak:

ak =
−TrQ̃τkQ

2η3
. (A.2)

The effective superpotential is:

W = − 1√
2

[

Tr(Q̃τkQ)Tr(Q̃τkQ)

4η3
+

(ξ − Tr(Q̃Q))2

4η0

]

. (A.3)

The potential is:

V =
e2
3

8

(

Tr(Q†τkQ) − Tr(Q̃τkQ̃†)
)2

+
e2
0

8

(

Tr(Q†Q) − Tr(Q̃Q̃†)
)2

(A.4)

+

(

|ξ − TrQ̃Q|2
8η2

0

+
|TrQ̃τkQ|2

8η2
3

)

(

Tr(Q†Q) + Tr(Q̃Q̃†)
)
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Figure 8: Tensions for the (1, 0) for η3 = η0 = η. The numerical values e0 = 1/2, e3 = 1/4, ξ = 2,

0 < η < 10 are used. The black dots give the result of the calculation in the full theory; the blue

one give the result in the large ηj effective theory. For ηj = 0 the vortex is of course BPS.

+
iǫklmTr(Q†τkQ̃†)Tr(Q̃τ lQ)

8η2
3

(

Tr(Q†τmQ) + Tr(Q̃τmQ̃†)
)

−(ξ − TrQ̃†Q†)Tr(Q̃τkQ) + (ξ − TrQ̃Q)Tr(Q†τkQ̃†)
8η0η3

(

Tr(Q†τ cQ) + Tr(Q̃τ cQ̃†)
)

.

Note that in this low energy action there is another vacuum at Q = Q̃ = 0.

The equations of the (p, k) vortices are a bit simpler, because we can integrate out the

adjoint fields a,ak and so we need less profile functions. The energy is:

xE = 2π

∫

rdr

(

f ′2
0

2e2
0r

2
+

f ′2
3

2e2
3r

2
+ 2(φ′2

1 + φ′2
2 )

+
(φ2

1 + φ2
2)(f

2
0 + f2

3 ) + 2f3f0(φ
2
1 − φ2

2)

2r2
+

(φ2
1 + φ2

2)(ξ − φ2
1 − φ2

2)
2

4η2
0

+
(φ2

1 − φ2
2)

2(φ2
1 + φ2

2)

4η2
3

− (ξ − φ2
1 − φ2

2)(φ
2
1 − φ2

2)
2

2η0η3

)

. (A.5)

The corresponding Euler-Lagrange equations are very similar to eqs. (3.10).

Numerical calculations can be performed for the profile functions and the tension. In

figure 8 there is a comparison between the tension calculated in the full theory and in

the large η0,3 approach. For small ηj the correction in the tension from the BPS case is

quadratic in ηj , as discussed in the Abelian case in ref. [37].

The asymptotic profiles are also simpler in this limit. Let us define:

s = δφ1 + δφ2, d = δφ1 − δφ2, (A.6)

we the find two linear differential equation:

s′′ +
s′

r
− 2ξ2

η2
0

s = 0, d′′ +
d′

r
− 2ξ2

η2
3

d = 0. (A.7)

So the asymptotic solutions for the field profiles are:

δφ1,2 = s0

√

1

r
e−(

√
2ξ/η0)r ± d0

√

1

r
e−(

√
2ξ/η3)r, (A.8)
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where s0, d0 are constants analogous to bk.

B. BPS equations

In terms of fields, the BPS equations for two coincident vortices for η0, η3 = 0 read:

F a
12 + e2

3 Tr(Q†τaQ) = 0,

F 0
12 + e2

0 (Tr(Q†Q) − ξ) = 0, (B.1)

(∇1 + i∇2)Q = 0 .

In term of profiles functions the following system of seven first order equations holds:

f ′
0

r
= e2

0

{

(

cos
α

2

)2
(κ2

1 + κ2
4) +

(

sin
α

2

)2
(κ2

2 + κ2
3) − ξ

}

,

f ′
3

r
= e2

3

{

(

cos
α

2

)2
(κ2

1 − κ2
4) +

(

sin
α

2

)2
(κ2

2 − κ2
3)

}

,

g′

r
= e2

3 {κ1κ3 − κ2κ4} ,

κ′
1 =

g − 1

r
sin2

(α

2

)

κ3 +
1 − cos(α) + f0 + f3

2r
κ1,

κ′
2 = −g − 1

r
cos2

(α

2

)

κ4 −
1 + cos(α) − f0 − f3

2r
κ2,

κ′
3 =

g − 1

r
cos2

(α

2

)

κ1 +
1 + cos(α) + f0 − f3

2r
κ3,

κ′
4 = −g − 1

r
sin2

(α

2

)

κ2 −
1 − cos(α) − f0 + f3

2r
κ4. (B.2)

In our numerical analysis of section 6.1 we used the second order Euler-Lagrange equations;

at the end we used these first order equations as a check of our calculation. We have found

an excellent agreement between the two approaches.
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