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Abstract: We further analyze a recent perturbative two-loop calculation of the expecta-

tion value of two axi-symmetric circular Maldacena-Wilson loops in N = 4 gauge theory.

Firstly, it is demonstrated how to adapt the previous calculation of anti-symmetrically

oriented circles to the symmetric case. By shrinking one of the circles to zero size we then

explicitly work out the first few terms of the local operator expansion of the loop. Our

calculations explicitly demonstrate that circular Maldacena-Wilson loops are non-BPS ob-

servables precisely due to the appearance of unprotected local operators. The latter receive

anomalous scaling dimensions from non-ladder diagrams. Finally, we present new insights

into a recent conjecture claiming that coincident circular Maldacena-Wilson loops are de-

scribed by a gaussian matrix model. We report on a novel, supporting two-loop test, but

also explain and illustrate why the existing arguments in favor of the conjecture are flawed.

Keywords: Duality in Gauge Field Theories, AdS-CFT Correspondance, Extended

Supersymmetry, Matrix Models.
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1. Introduction and conclusions

Wilson loops are interesting non-local observables in gauge theories. They are functionals

of macroscopic space-time contours and are widely suspected to be the proper observables

to describe the strong coupling physics of Yang-Mills theories. While they have been quite

useful as order parameters in lattice gauge theory, Wilson loops have unfortunately been

rather difficult to work with in continuum gauge theories. One of the chief reasons is

that they are plagued by various infinities whose removal obscures the seeming simplicity

of their bare equations of motion. The form of the renormalized, non-perturbative loop

equations remains unknown.

For smooth loop contours the mentioned infinities can be divided into two classes: in

addition to the usual quantum field theoretic “bulk” divergences stemming from Feynman

diagrams containing internal loops there are further “boundary” divergences due to contact

interactions on the boundaries of the Wilson loops.

Recently, a much more transparent situation has begun to emerge in maximally super-

symmetric gauge theory. In [1] a modification of the usual Wilson loop operators has been

proposed. Here the loops are not only coupled to the gauge field but in addition to the

six scalar fields of the model. This modification significantly improves the just mentioned

divergence problems: The boundary divergences of individual Feynman graphs are either

absent or, even more interestingly, cancel against bulk divergences. This phenomenon has

so far been observed in a number of one-loop and two-loop calculations [2, 3]. However,

a general proof of the perturbative, let alone non-perturbative, finiteness of these novel

Maldacena-Wilson loop operators is still lacking to date. Finding such a proof would yield

an infinite set of finite geometric probes of a four-dimensional quantum field theory.

A further — actually the initial — motivation for being interested in these operators

is that they are conjectured to be directly related, at strong coupling and in the so-called

planar limit, to certain classical supergravity solutions in a special background [1]. Finally,

there is even hope that for some special contours such as a circle these loops might be exactly

calculable [2, 4], which, if proven, might lead to non-trivial analytic tests of the proposed
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supergravity-gauge correspondence for these macroscopic observables. To date the corre-

spondence [5, 6, 7] has only been rigorously tested on the level of certain local operators.

In [3] the first two-loop perturbative study of Maldacena-Wilson loops was reported.

The specific situation analyzed consisted in two axi-symmetric circular contours of arbitrary

radii and distance. The motivation of [3] was to perform a two-loop test of the finiteness

properties, as well as to establish that the static potential, obtained by sending the radii

to infinity, receives contributions from non-ladder diagrams, in contradistinction to an

accidental one-loop cancellation of interactive diagrams. For related work on Maldacena-

Wilson loops see [8]–[13].

In the present paper the results of [3] are applied to two further situations of physical

interest. This requires a rather straightforward extension of our previous results, which

were derived for circles of opposite orientation, to also include the equal-orientation case

(see section 2). We find that it simply corresponds to formally flipping the relative sign

of the two radii. In section 3 we then study, for both orientations, the limit where either

one of the two circles shrinks to zero size. In this limit one expects that the shrinking loop

should be expandable in local operators of increasing scaling dimension. This allows to

extract term-by-term the expectation value of local operators with the remaining “large”

circle. It is shown that our previous results contain enough information to extract the one-

loop anomalous dimension of the fields of approximate scaling dimension two and three. In

particular we recover the known one-loop anomalous dimension of the Konishi field, which

is the lowest (∼ 2) dimension unprotected operator of the theory. More importantly, it

is reassuring that the anomalous scaling turns out to be precisely due to the non-ladder

diagrams. In turn, it is seen that the unprotected operators appearing in the operator

expansion are responsible for the global non-BPS nature of closed Maldacena-Wilson con-

tours. We also comment on the appearance of unprotected operators of classical dimension

three and four and their correspondence to the supergravity limit.

The second application, presented in section 4, involves the limit of equal but finite

radii and vanishing distance of the equally oriented circles.1 This allows us to perform the

first two-loop test of a conjecture due to Drukker and Gross [4] (see also [2]), which holds

that multiple coincident circular Maldacena-Wilson loops can be described by a gaussian

matrix model. We find that all connected non-ladder diagrams cancel to O(g6) for the case
of two circles, in line with the conjecture.

We nevertheless feel the need to add some cautionary observations. The fact that so

far the gaussian matrix model description appears to be valid might be a purely accidental

low-order phenomenon. At any rate we argue that no real arguments exist that vertex

diagrams should not contribute to the circle, and that the analysis presented in [4], which

involves a conformal map of an infinite line to a circle, does not directly apply to vertex

graphs. As an illustration we consider a particular two-loop non-ladder graph for a single

circle and demonstrate that it is, just like the ladder graphs, zero for the line but perfectly

finite and non-zero for the circle. It might still be true that the sum of all non-ladder

1This is the identical to the “static potential” limit considered in [3] except that there the orientation

was anti-symmetric.
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diagrams cancels, but we so far lack any argument for this. Short of a general proof, it

would clearly be desirable to complete the full two-loop calculation for a single circle.

2. Two loops of equal orientation

In [3] a two loop perturbative calculation of the (connected) expectation value of two

circular Maldacena-Wilson loops of opposite orientation was performed. Here we shall be

interested in the scenario with two loops of equal orientation. That is we consider the

connected correlator of two Maldacena-Wilson loops

〈W(C1)W(C2)〉c = 〈W(C1)W(C2)〉 − 〈W(C1)〉 〈W(C2)〉 . (2.1)

The Maldacena-Wilson loop operator is defined by

W[C] = TrP exp

[
∮

C

dτ
(

iAµ(x)ẋ
µ +ΦI(x)θ

I |ẋ|
)

]

. (2.2)

Here θI is a point on the unit five-sphere, i.e. θIθI = 1, and xµ(τ) parameterizes the

curve C. We take the curves C1 and C2 to be two parallel, axi-symmetric circles of equal

orientation and, respectively, radii R1 and R2 separated by a distance h

xµ(τ) = (R1 cos τ,R1 sin τ, 0 , 0)

yµ(σ) = (R2 cos σ,R2 sinσ, h , 0) τ, σ ∈ [0, 2π] . (2.3)

All our conventions follow [3]. For calculational purposes it is useful to go ten dimen-

sional notation M = (µ, I), Aa
M [x] = (Aa

µ(x),Φ
a
I (x)) and ẋ(τ) = (ẋµ(τ), θI |ẋµ|) with the

combined gluon-scalar propagator in 2ω dimensions

〈Aa
M [x]Ab

N [y]〉 = g2 δab δMN
Γ(ω − 1)

4πω

1

[(x− y)2]ω−1 (2.4)

in Feynman gauge where x and y are points in 2ω dimensional Euclidean space. As a

matter of fact the results of [3] may be directly translated to our new scenario of circles

of equal orientation.2 To do so consider the integrated Maldacena-Wilson loop associated

with R2 with an open leg at the point xµ

xM

=

∫ 2π

0
dσ ẏ(σ) 〈Aa

M [y(σ)]Ab
N [x] 〉

=
g2 δab Γ(ω − 1)

4πω

∫ 2π

0
dσ

(ẏµ(σ), θIR2)

[(y(σ) − x)2]ω−1

=
g2 δab Γ(ω − 1)

4πω

∫ 2π

0
dσ

R2 (− cos σ sinφ, cos σ cosφ, 0 , 0 , θI)

(A2 − 2R2 ρ cos σ)ω−1
, (2.5)

2We wish to thank N. Drukker for independently suggesting that our calculation could be easily modified

to also cover this situation. He also, correctly, proposed that the equal orientation case could be obtained

by simply flipping the sign of one of the two radii.
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where we have introduced polar coordinates x1 = ρ cosφ, x2 = ρ sinφ and A2 = R2
2+ρ2+

(x3 − h)2 + x24. Moreover a shift in σ → σ + φ was performed. Now consider the same

graph with a circle of opposite orientation, parametrized by

ȳµ(σ) = (R2 cos σ,−R2 sinσ, h , 0) . (2.6)

Performing the analogous manipulations as in (2.5) one arrives at

xM

=
g2 δab Γ(ω − 1)

4πω

∫ 2π

0
dσ

( ˙̄y
µ
(σ), θIR2)

[(ȳ(σ)− x)2]ω−1

=
g2 δab Γ(ω − 1)

4πω

∫ 2π

0
dσ

R2 (cos σ sinφ,− cos σ cosφ, 0 , 0 , θI)

(A2 − 2R2 ρ cosσ)ω−1
. (2.7)

Now clearly (2.7) may be transformed into (2.5) by first shifting the integration variable

σ → σ+π, thereafter sending R2 → −R2 and multiplying the total graph by −1. We have

hence shown that

xM

= −
[

xM

]

R2→−R2

. (2.8)

This reasoning is applicable to all graphs where there is at least one circle with no occur-

rence of path ordering along the loop. By looking at the relevant graphs up to order g6 in

[3] we see that the rule (2.8) is applicable to all graphs except for the 3-ladder diagrams

and . A careful reanalysis of these two diagrams, however, reveals that also for

these two path ordered diagrams the rule (2.8) continues to hold.

In fact one wonders whether the rule (2.8) holds in general, i.e. for any graph. However,

we have not yet found a proof due to the path ordering problems.

In summary we now have the complete two loop (O(g6)) computation for two connected

Maldacena-Wilson loops of equal orientation at our disposal. For this geometry we again

observe the complete finiteness of the Maldacena-Wilson loop, as the subtle bulk-boundary

cancellation of divergences of the self-energy and the IY graphs of [3] continues to hold due

to the simple rule (2.8).

3. Local operator expansion

We now turn to the study of our geometry when one of the two circles shrinks to zero size,

i.e. the limit R1 → 0 while keeping R2 and h finite. In [3] we derived explicit analytic

expressions for all ladder graphs but had to content ourselves with somewhat complicated

if finite integral representations for the non-ladder diagrams. Remarkably, in the present

limit our expressions simplify sufficiently and we are able to deduce explicit analytic results

for all graphs. Quite generally, one expects that the shrinking loop may be represented

by an infinite sum of local composite operators of increasing scaling dimension. The two

loop results of [3] allow to extract informations on the leading lower dimensional operators

appearing in this expansion and make contact with recent studies of local composite op-

erators in N = 4 gauge theory performed in the context of the AdS/CFT correspondence

(see e.g. [14]–[19]).
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Consider the following local operator expansion of a Maldacena-Wilson loop

W (C)

〈W 〉 =
�
+
∑

k

ckR
∆kO(k)(x) , (3.1)

where O(k) denotes a local composite operator of scaling dimension ∆k. Assume the special

case where the loop is a circle with radius R and lies in the (x1, x2) plane centered at x.

Then the loop is sufficiently symmetric to only partially break Lorentz invariance. Thus

the operator content in (3.1) is classified by irreducible representations of SO(2) × SO(2),

the unbroken subgroup of SO(4). Then every four-dimensional index µ naturally splits

into i and ī, where i = 1, 2 and ī = 3, 4. Moreover the loop possesses a definite orientation

captured by the two-form εij with ε12 = 1.

In the case where R is small compared to any other distance in the problem at hand

the Maldacena-Wilson loop operator may be replaced by its local operator expansion. In

particular, for the connected Green function of two parallel Wilson loops C1 and C2 with

radii R1 and R2, separated along the 3-axis by a distance h, eq. (3.1) implies the following

decomposition
〈W (C1)W (C2)〉c

〈W 〉2 =
∑

k

ckR
∆k
1

〈O(k)(0)W (C2)〉
〈W 〉2 (3.2)

assuming that R1 ¿ R2, h. In perturbation theory the scaling dimension of an operator

can be represented as

∆ = ∆(0) +∆(1) +∆(2) + · · · , (3.3)

where ∆(0) is the free field dimension and ∆(1), ∆(2) are anomalous dimensions at order

g2, g4 and so on. Therefore every term R∆ in eq. (3.2) produces logarithmic terms as

R∆ = R∆(0)

(

1 +∆(1) logR+∆(2) logR+
1

2
∆(1)2 log2R+ · · ·

)

(3.4)

quite similar to the perturbative logarithms appearing in correlation functions of local

correlators.3 Hence, singling out in the limit R → 0 the coefficients of the divergent

logarithms logR in the connected Green function of two Wilson loops will allow us to

determine the one-loop anomalous dimensions of the operators appearing in (3.1).

Let us briefly comment on the relation of the field-theoretic behavior of the expan-

sion (3.1) with supergravity predictions. All local gauge-invariant operators in the N = 4

super Yang-Mills theory are classified by irreducible representations of the superconfor-

mal group SU(2, 2|4). In particular, operators transforming in short representations, i.e.

carrying a certain amount of supersymmetry, are protected from quantum corrections.

Conversely, scaling dimensions of long superfields are subject to renormalization. In the

supergravity approximation the correlator of two loops can be computed by evaluating the

exchange amplitude of supergravity fields between two string worldsheets with loops as

their boundaries [20]. Since supergravity fields are dual to protected operators transform-

ing in short representations of the superconformal group, it is these operators that survive

3We thank T. Petkou for a discussion on this point.
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in the local operator expansion (3.1) in the limit of large N and large ’t Hooft coupling

λ. However a closed Maldacena-Wilson loop completely breaks supersymmetry. Therefore

its operator expansion at finite λ should certainly contain unprotected operators. We will

show that this is indeed the case and that the operators with non-vanishing anomalous

dimensions are the only ones coupling to the interacting (i.e. non-ladder) Feynman graphs

in the limiting geometry we study.

We start with describing the lower dimensional operator content of the expansion (3.1)

in field theory. There are only two types of gauge invariant operators of free field dimension

two: the chiral primary operators (CPOs) Oa and the Konishi scalar K. Canonically

normalized in the large N -limit they are given by

Oa =
4
√
2π2

λ
Ca

IJ : Tr(ΦIΦJ) : , K =
4π2√
3λ

: Tr(ΦIΦI) : . (3.5)

Here the traceless symmetric tensor Ca
IJ obeys Ca

IJC
b
IJ = δab; a = 1, . . . , 20. The protected

operators Oa lie in a short supermultiplet and transform in the irrep 20 of the R-symmetry

group SO(6). They have vanishing anomalous dimension. The Konishi scalar is the lowest

component of the long supermultiplet [21] and it acquires an anomalous dimension in

perturbation theory [22, 23]. In particular, its one-loop anomalous dimension is ∆
(1)
K = 3λ

4π2

[23] which was extensively confirmed in recent studies [16]–[19].

Among the operators of classical dimension three we have to consider

: Tr(ΦIΦJΦJ) : , : Tr(Φ{IΦJΦK}) : (3.6)

and

JI
µν =: Tr(ΦIFµν) : , (3.7)

where {, } stands for symmetrization with all traces removed. In particular the second op-

erator in (3.6) is the protected CPO transforming in the 50 of SO(6). The leading contribu-

tion to the correlation function of W with any of the operators in (3.6) is of order λ3 ∼ g6
and, therefore, in order to find the one-loop anomalous dimensions of these operators

one has to analyze the order g8 contribution of the correlator 〈W W 〉, which is beyond our

present knowledge. As to the operator J I
µν , since the leading order behavior is 〈WJ I

µν〉 ∼ λ2,
we are able to use our perturbative results to deduce its anomalous scaling dimension.

The operator J I
µν is particularly interesting because its renormalization involves fer-

mions. Indeed, the gauged 5-dimensional supergravity contains an antisymmetric tensor

field aµ̂ν̂ which is dual4 to a dimension three tensor current J I +
µν belonging to the stress

tensor multiplet of the boundary conformal field theory [24, 25]. This current is not a

purely bosonic operator but also contains bilinear fermion terms. Hence, although in

the free theory fermions do not couple to the Maldacena-Wilson loop, a naive operator

JI
µν does not fit into the local operator expansion at strong coupling. Apparently we are

encountering a splitting phenomenon which also occurs for operator product expansions of

local operators [23, 17]: the free field operator J I
µν splits in perturbation theory into the

4In the formulation of N = 4 SYM with Weyl fermions aµ̂ν̂ couples to the YM operator O+
µν of reference

[24, 25] transforming in the self-dual irrep 6c of SU(4).
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sum of two operators, one of which is a protected operator whereas the other develops an

anomalous scaling dimension and decouples at strong coupling.

To justify this picture define the following two operators

JI ±
µν = 2Tr(ΦIFµν)±

1√
8
ΣI

AB Tr(ψ̄Aγµνψ
B) . (3.8)

Here ΣI
AB is an antisymmetric matrix which intertwines the adjoint irrep of SO(4) with the

fundamental of SO(6), A,B = 1, . . . , 4. One can take for instance ΣI
AB = (ηkAB , η̄

k
AB), where

k = 1, 2, 3 and ηkAB and η̄kAB are self-dual and anti-self dual ’t Hooft symbols respectively.

In free field theory the operators J I ±
µν are orthogonal with respect to the two-point function

and satisfy 4J I
µν = JI +

µν + JI−
µν . One also has5

〈JI ±
µν (x)JJ ±

λρ (y)〉 = − λ2δIJ

π4(x− y)6

[

δµ[λδρ]ν + 2
(xµδν[λ − xνδµ[λ)xρ]

x2

]

. (3.9)

In perturbation theory J I +
µν and J I−

µν have different renormalization group behavior, where-

as JI +
µν belongs to the stress tensor multiplet and is non-renormalized, the operator J I −

µν

has a non-vanishing anomalous scaling dimension.

The analysis of the dimension four operators is more involved because they also contain

descendent fields, which are not orthogonal to primaries with respect to the two-point

function. A given primary operator O contributes to the local operator expansion with all

its derivative descendents. This contribution can be found by evaluating the correlation

function of W with O

〈W (C)O(0)〉
〈W 〉 =

∑

k

ckR
∆k〈O(k)(x)O(0)〉 , (3.10)

where k enumerates the infinite set of descendents of the primary operator O. In particular,

the leading contributions of the descendents of the CPO, of the Konishi scalar and of the

currents J±µν = θIJI ±
µν read as

〈W (C)Oa(x)〉
〈W 〉 = κa

λ
√
2

4

R2

(R2 + h2)2
, (3.11)

〈W (C)K(x)〉
〈W 〉 =

λ

4
√
3

R2

(R2 + h2)2
, (3.12)

〈W (C) J±µν(x)〉
〈W 〉 = εijδ

i
µδ

j
ν

iλ2

4π2
R3

(R2 + h2)3
, (3.13)

where x = (0, 0, h, 0) and the loop of radius R is centered at the origin. Moreover we have

defined ka = Ca
IJθ

IθJ so that kak
a = 5/6.

Expanding (3.11)–(3.13) in powers of R2/h2 one can identify every monomial as coming

from a certain derivative descendent in the local operator expansion of W (C). It is not

difficult to find the form of these descendents in the free theory. For example to construct

5The fermionic propagator is 〈ψa,Aα (x)ψ̄b,Bβ (y)〉 = −iδAB
δabγ

µ
αβ

(x−y)µ

2π2(x−y)4
.
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the dimension four descendents of the Konishi scalar one has to consider the following

independent operators : ∂iΦ
I∂iΦ

I :, : ∂īΦ
I∂īΦ

I : and : ∂2i Φ
IΦI :. There is only one linear

combination of these operators6 which is orthogonal to K while the other two provide the

descendents we are looking for. Since we have several derivative operators of the same

free field dimension we expect that they will mix under renormalization. The correlation

function of two Maldacena-Wilson loops to order g6 does not contain enough information

to establish their individual one-loop anomalous dimensions. We shall therefore restrict

the further discussion to the operators of approximate dimension two and three mentioned

above.

Summarizing the lower dimensional content of the local operator expansion we have

W (C)

〈W 〉 =
�
+R∆K

[

λ

4
√
3
+ · · ·

]

K(x) +R∆O

[

λ

2
√
2
+ · · ·

]

κaO
a(x) +

+R∆+

[

iπ2

4
+ · · ·

]

J+
ij (x)ε

ij +R∆−

[

iπ2

4
+ · · ·

]

J−ij (x)ε
ij + higher . (3.14)

Some comments are in order. In (3.14) the dots indicate higher order terms in λ of the cor-

responding operator expansion coefficients. Note that the coefficient of the CPO has been

computed in [26] to all orders in λ under the assumption of vanishing radiative corrections.

The scaling dimensions of the CPO and J+
ij are ∆O = 2 and ∆+ = 3 respectively, while

∆K and ∆−, being the dimensions of the Konishi scalar and of the current J−ij , receive

perturbative corrections. The operator content of (3.1) is sensitive to the orientation of

the loop since the form εij flips the sign under change of orientation. In the following it

is convenient to distinguish different orientations by denoting a contour oriented clockwise

by C+ and the one with the opposite orientation by C−.

By using eqs. (3.2), (3.14) and (3.11)–(3.13) we get in the limit R1 → 0 the following

leading O(λ2) contribution to the Green function of two Maldacena-Wilson loops:

〈W (C1)W (C±2 )〉c
〈W 〉2 =

λ2

48
R∆K

1

R2
2

(R2
2 + h2)2

+
5λ2

48
R∆O

1

R2
2

(R2
2 + h2)2

∓

∓λ
2

8
R

∆+

1

R3
2

(R2
2 + h2)3

∓ λ2

8
R

∆−
1

R3
2

(R2
2 + h2)3

. (3.15)

Here the first line represents the contribution from the Konishi scalar and the CPO while

the second one is due to J±ij . Taking into account the one-loop anomalous dimension of

the Konishi field we therefore obtain

〈W (C1)W (C±2 )〉c
〈W 〉2 =

λ2

8

R2
1R

2
2

(R2
2 + h2)2

∓ λ2

4

R3
1R

3
2

(R2
2 + h2)3

+

+
λ3

64π2
R2
1R

2
2

(R2
2 + h2)2

logR1 ∓
λ3

8
∆

(1)
−

R3
1R

3
2

(R2
2 + h2)3

logR1 . (3.16)

This formula predicts that the correlator (2.1) develops a logarithmic singularity in the

limit R1 → 0 at order λ3.
6In fact this is a primary operator coinciding with the component Tii of the stress tensor Tµν of free six

bosons.

– 8 –



J
H
E
P
1
2
(
2
0
0
1
)
0
1
4

Now we are ready to compare the expected behavior of eq. (3.16), with the explicit

two-loop calculation of [3]. We first note that in the limit considered, R1 → 0, only the

interacting diagrams give rise to logarithmic terms, on which we shall focus. In agreement

with the above predictions the contribution of the graphs can be worked out explicitly

from the corresponding integral representations in this limit. We find for two loops of

equal orientation the logarithmic contributions

[ ]

R1→0

=
λ3

64π2
R3
1R

3
2

(R2
2 + h2)3

logR1 ,

[

(1) + =
λ3

32π2
R2
1R

2
2

(R2
2 + h2)2

logR1 −
7λ3

64π2
R3
1R

3
2

(R2
2 + h2)3

logR1 −

+

]

R1→0

−11λ3

96π2
R4
1R

2
2

(R2
2 + h2)3

logR1 ,

[ ]

R1→0

= − λ3

64π2
R2
1R

2
2

(R2
2 + h2)2

logR1 +
λ3

32π2
R3
1R

3
2

(R2
2 + h2)3

logR1 +

+
59λ3

1152π2
R4
1R

2
2

(R2
2 + h2)3

logR1 . (3.17)

The ladder graphs do not yield logarithmic contributions. Summing up we obtain

〈W (C)W (C)〉c
〈W 〉2 =

λ3

64π2
R2
1R

2
2

(R2
2 + h2)2

logR1 −
λ3

16π2
R3
1R

3
2

(R2
2 + h2)3

logR1 −

− 73λ3

1152π2
R4
1R

2
2

(R2
2 + h2)3

logR1 . (3.18)

The result for graphs of opposite orientation differs from (3.17) only by a sign in front of

the (R1R2)
3 logR1 terms. The first term in the last expression indeed confirms the one-

loop anomalous dimension of the Konishi field to be ∆
(1)
K = 3λ

4π2 . By comparing the second

term in (3.18) with the local operator expansion predictions (3.16) we read off the one-loop

anomalous dimension of the operator J I −
ij

∆
(1)
− =

λ

2π2
. (3.19)

Finally the last term in (3.18) carries information on the one-loop anomalous dimensions of

the approximate dimension four operators, which are not orthogonal to the Konishi scalar

and the CPO.

This completes our considerations of the perturbative local operator expansion. We

conclude by emphasizing two observations concerning the above analysis. First, the inter-

acting Feynman diagrams are the ones responsible for the appearance of unprotected opera-

tors in the local operator expansion. The ladder diagrams do not produce any logarithmic

singularities (at the level of the perturbation theory we are working at) and contribute

only to the local operator expansion coefficients. In this respect it would be interesting to
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understand whether the interacting graphs also contribute to the local operator expansion

coefficient of the CPOs. If this is not the case this would mean that interacting graphs

couple solely to the unprotected operators of the theory, like the Konishi field. At strong

coupling the Konishi field decouples from the theory, which would imply in turn that the

sector of interacting graphs coupling to it becomes negligible in comparison to the ladders.7

Unfortunately the information we have at our disposal so far does not suffice to answer

this question. Second, in order to match the supergravity picture the operator expansion

of the bosonic Maldacena-Wilson loop should contain renormalized operators which are

constructed from bosons and fermions. Fermions emerge due to the splitting mechanism

and at the level of perturbation theory this can be viewed as a sign of supersymmetry in

the theory of a purely bosonic operator.

4. New results on the matrix model conjecture

Armed with the complete order g6 result for the connected correlator of two Maldacena-

Wilson loops of equal orientation, we may now perform a further test of the Drukker-Gross

matrix model conjecture [4]. Based on an anomaly argument these authors argue that the

expectation value of an arbitrary number of coincident, possibly multiply wound, circular

Maldacena-Wilson loops of equal orientation is given by solving a purely combinatorial

problem.8 The latter is easily seen to correspond to computing correlators in a simple

gaussian matrix model. If correct this conjecture amounts to the claim that all interacting

graphs contributing to the loop correlator vanish.

The relevant limit in order to extract the result of two incident circles of equal orien-

tation from our geometry is

R1 = R2 = R and h→ 0 . (4.1)

Given the explicit integral representations for individual diagrams found in [3] it is straight-

forward to analytically perform this limit. Remarkably, and quite non-trivially, one finds

after some calculation that all interacting non-ladder graphs cancel:

0 =

[

(1) + +

]

R1=R2
h→0

0 =

[ ]

R1=R2
h→0

0 =

[ ]

R1=R2
h→0

(4.2)

Therefore only the contribution of the ladder-diagrams survives. This result represents a

two loop order test of the Drukker-Gross conjecture [4]. For the ladder-graphs one has in

7On the other hand, the sector of interacting graphs coupling to unprotected operators of finite anoma-

lous dimension at strong coupling will survive.
8This more general problem is equivalent to finding the expectation value of a single circular Wilson

loop in an arbitrary representation of the gauge group.
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the limit (4.1)

λ

4
=

[ ]

R1=R2
h→0

3λ2

32
=

[

+ +

]

R1=R2
h→0

5λ3

384
=

[

+ + + + +

]

R1=R2
h→0

λ3

192N2
=

[

+ + + +

]

R1=R2
h→0

(4.3)

which indeed follows from the proposed matrix model description [12, 27]

〈W(C1)W(C2)〉c =
1

Z

∫

dM Tr eM Tr eM e−
2N
λ

TrM2 −
( 1

Z

∫

dM Tr eM e−
2N
λ

TrM2
)2

=

√
λ

2
I0(
√
λ)I1(

√
λ)+

λ2

192N2

(

3I1(
√
λ)2+I2(

√
λ)[2I0(

√
λ)+I2(

√
λ)]

)

+

+O
(

1

N4

)

, (4.4)

where In(x) is the nth order modified Bessel function. Expanding (4.4) reproduces our

findings to O(λ3).
Let us review the existing perturbative evidence for the matrix model conjecture.

Clearly, performing the sum of all ladder graphs for correlators of incident Maldacena-

Wilson circles may be rephrased by a gaussian matrix model of the form (4.4). This is due

to the fact that the combined gluon-scalar propagator trivializes to a constant if both of its

ends lie on a circle. An alternative way of understanding this starts from the observation

that the ladder graphs of an infinite Maldacena-Wilson line are identically zero. Under an

inversion the line is mapped to a circle, so one might expect the correlators of the line and

the circle to be identical by conformal invariance of the theory. However, as we know, this

is not the case, and as shown in [4] the discrepancy is due to additional total derivative

terms that the gluon propagator picks up under an inversion. These total derivatives let

the contribution from the ladder diagrams collapse to a point and turn the circle correlator

into a correlator in a zero dimensional field theory, the matrix model (4.4). The story

for the interacting graphs is, however, considerably more intricate.9 Now at least one leg

of the modified propagator is attached to an interaction vertex which may no longer be

simply integrated by parts. An explicit example where such a graph by graph consideration

fails appears already at the one loop (O(g4)) level [2]. Here the interacting graphs for the

infinite Maldacena-Wilson line vanish separately

= 0
(1)

= 0 (4.5)

9Here we cannot follow the arguments of [4] which claim that also the interacting sector collapses to a

point. Even stronger, the authors speculate that there are no contributions from the interacting graphs to

all orders in perturbation theory.

– 11 –



J
H
E
P
1
2
(
2
0
0
1
)
0
1
4

due to the appearance of the standard combination ẋi · ẋj − |ẋi| |ẋj | in the numerators,

which vanishes for straight line trajectories. Their image graphs under inversion, however,

do not vanish and are actually individually divergent in four dimensions [2]

= divergent (1) = divergent . (4.6)

It is only that the sum of these two graphs vanishes, due to the subtle cancellation of bulk

(right diagram) versus boundary (left diagram) divergences for the Maldacena-Wilson loop

operator. Given this, one might speculate on the existence of a modified anomaly argument,

in which one only considers the inversion of classes of individually divergent graphs, which

sum to a finite result. This is indeed a necessity in view of the fact that the dimensional

regularization needed for divergent graphs breaks conformal invariance. If true and if the

resulting matrix model is indeed gaussian, such a modified conjecture would claim that the

image graph under inversion of a vanishing interacting graph on the line should either be

zero or divergent. Indeed the results of [2] in (4.6) and our reported two-loop findings of

(4.2) support this statement.

However, let us now give a counterexample to such a modified anomaly conjecture.

Consider the four point insertion on the line and the circle, an order g6 interacting graph.

On the circle it takes the form

=
g6N2(N − 1)

8

∫

d4z

(2π)8

∫ 2π

0
dτ1

∫ τ1

0
dτ2

∫ τ2

o

dτ3

∫ τ3

0
dτ4 ×

×2 · (2, 4) · (3, 1) − (1, 4) · (2, 3) − (1, 2) · (3, 4)
(x1 − z)2 (x2 − z)2 (x3 − z)2 (x4 − z)2

, (4.7)

where we have parametrized the four points on the circle by xi = (cos τi, sin τi, 0, 0) and

introduced the notation (i, j) := ẋi · ẋj − |ẋi| |ẋj |. From this structure one immediately

deduces the vanishing of the corresponding graph on the line

= 0 (4.8)

due to (i, j)|line = 0. The circle graph (4.7) on the other hand may be brought into the

form

=
g6N2(N − 1)

8 (2π)6

∫ ∞

0
dz

∫ ∞

0
dρ

∫ 2π

0
dτ1

∫ τ1

0
dτ2

∫ τ2

o

dτ3

∫ τ3

0
dτ4 ×

×ρ z 2 · [2, 4] · [3, 1] − [1, 4] · [2, 3] − [1, 2] · [3, 4]
∏4

i=1(1 + ρ2 + z2 − 2z cos τi)
, (4.9)

where [i, j] := (i, j)|circle = 1− cos(τi − τj). We claim that this integral is finite. Unfortu-

nately we have not yet been able to determine its value analytically, but could evaluate it

to a high degree of accuracy numerically. We find that

=
g6N2(N − 1)

27
· 9.25(47) · 10−3 ' g6N2(N − 1)

(4!)3
, (4.10)

where the last value represents our sophisticated guess for the exact value of the integral.
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This consideration shows that the structure of the interacting graphs at order g6 for

a single Maldacena-Wilson loop has a much richer structure than one would expect from

the g4 results. Although we have only considered a single graph, its finiteness casts some

doubt on the conjecture [4] that the circular loop can be obtained by simply solving a

combinatorial problem, described by a gaussian matrix model. Since it is far from clear

how to obtain the above X-graph by pure combinatorial reasoning it is, furthermore, not

obvious whether introducing interactions into the matrix model might help. Of course an

individual graph such as the one we just studied is not gauge invariant by itself, but that

is also true for the artificial — in the context of non-abelian gauge theory — restriction

to ladder graphs. Nevertheless, it might still be true that the sum of all vertex graphs, in

Feynman gauge, cancels. If so, we feel we have demonstrated that the true mechanism is

wanting. Clearly it would be highly desirable to know the complete O(g6) result and to

really understand the behavior of the interacting graphs under the inversion.
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