Table of contents

Volume 25

Number 48, 3 December 2014

Previous issue Next issue

Buy this issue in print

Editorial

Viewpoint

480501

A recent publication presents a new computational approach to the local electrochemical potential in the vicinity of a graphene grain boundary subject to an in-plane electric current [1]. The local electrochemical potential can be measured using scanning tunneling potentiometry, a method related to scanning tunneling microscopy. The paper predicts that atomistic features should be measurable. These features reflect the local electrochemical potential drop caused by the opaque grain boundary which is non-transparent to ballistic electrons. The paper has implications not only for scanning tunneling potentiometry, but also for Kelvin probe-force microscopy which can also measure the local electrochemical potential. In addition it could help to understand electronic transport across metallic nanocontacts.

Topical Review

482001
The following article is Free article

, , , and

Photovoltaics and photocatalysis are two significant applications of clean and sustainable solar energy, albeit constrained by their inability to harvest the infrared spectrum of solar radiation. Lanthanide-doped materials are particularly promising in this regard, with tunable absorption in the infrared region and the ability to convert the long-wavelength excitation into shorter-wavelength light output through an upconversion process. In this review, we highlight the emerging applications of lanthanide-doped upconversion materials in the areas of photovoltaics and photocatalysis. We attempt to elucidate the fundamental physical principles that govern the energy conversion by the upconversion materials. In addition, we intend to draw attention to recent technologies in upconversion nanomaterials integrated with photovoltaic and photocatalytic devices. This review also provides a useful guide to materials synthesis and optoelectronic device fabrication based on lanthanide-doped upconversion materials.

Papers

Biology and medicine

485101

, , and

There is increasing interest in the use of nanoparticles as fillers in polymer matrices to develop biomaterials which mimic the mechanical, chemical and electrical properties of bone tissue for orthopaedic applications. The objective of this study was to prepare poly(epsilon-caprolactone) (PCL) nanocomposites incorporating three different perovskite ceramic nanoparticles, namely, calcium titanate (CT), strontium titanate (ST) and barium titanate (BT). The tensile strength and modulus of the composites increased with the addition of nanoparticles. Scanning electron microscopy indicated that dispersion of the nanoparticles scaled with the density of the ceramics, which in turn played an important role in determining the enhancement in mechanical properties of the composite. Dielectric spectroscopy revealed improved permittivity and reduced losses in the composites when compared to neat PCL. Nanofibrous scaffolds were fabricated via electrospinning. Induction coupled plasma-optical emission spectroscopy indicated the release of small quantities of Ca+2, Sr+2, Ba+2 ions from the scaffolds. Piezo-force microscopy revealed that BT nanoparticles imparted piezoelectric properties to the scaffolds. In vitro studies revealed that all composites support osteoblast proliferation. Expression of osteogenic genes was enhanced on the nanocomposites in the following order: PCL/CT > PCL/ST > PCL/BT > PCL. This study demonstrates that the use of perovskite nanoparticles could be a promising technique to engineer better polymeric scaffolds for bone tissue engineering.

485102

, , , and

Resveratrol, a potent natural antioxidant, possesses a wide range of pharmacological activities, but its oral bioavailability is very low due to its extensive hepatic and presystemic metabolism. The aim of the present study was to formulate a kinetically stable nanoemulsion (o/w) using vitamin E:sefsol (1:1) as the oil phase, Tween 80 as the surfactant and Transcutol P as the co-surfactant for the better management of Parkinson's disease. The nanoemulsion was prepared by a spontaneous emulsification method, followed by high-pressure homogenization. Ternary phase diagrams were constructed to locate the area of nanoemulsion. The prepared formulations were studied for globule size, zeta potential, refractive index, viscosity, surface morphology and in vitro and ex vivo release. The homogenized formulation, which contained 150 mg ml−1 of resveratrol, showed spherical globules with an average globule diameter of 102 ± 1.46 nm, a least poly dispersity index of 0.158 ± 0.02 and optimal zeta potential values of −35 ± 0.02. The cumulative percentage drug release for the pre-homogenized resveratrol suspension, pre-homogenized nanoemulsion and post-homogenized nanoemulsion were 24.18 ± 2.30%, 54.32 ± 0.95% and 88.57 ± 1.92%, respectively, after 24 h. The ex vivo release also showed the cumulative percentage drug release of 85.48 ± 1.34% at 24 h. The antioxidant activity determined by using a DPPH assay showed high scavenging efficiency for the optimized formulation. Pharmacokinetic studies showed the higher concentration of the drug in the brain (brain/blood ratio: 2.86 ± 0.70) following intranasal administration of the optimized nanoemulsion. Histopathological studies showed decreased degenerative changes in the resveratrol nanoemulsion administered groups. The levels of GSH and SOD were significantly higher, and the level of MDA was significantly lower in the resveratrol nanoemulsion treated group.

Electronics and photonics

485201

, , , , , , , and

By repeating oxidation and subsequent wet chemical etching, we produced ultra-thin silicon nanomembranes down to 10 nm based on silicon-on-insulator structures in a controllable way. The electrical property of such silicon nanomembranes is highly influenced by their contacts with metal electrodes, in which Schottky barriers (SBs) can be tuned by light illumination due to the surface doping. Thermionic emission theory of carriers is applied to estimate the SB at the interface between metal electrodes and Si nanomembranes. Our work reveals that the Schottky contacts with Si nanomembranes can be influenced by external stimuli (like light luminescence or surface state) more heavily compared to those in the thicker ones, which implies that such ultra-thin-film devices could be of potential use in optical detectors.

485202
The following article is Open access

, and

We use a metal assisted chemical etch process to fabricate silicon nanowire arrays (SiNWAs) onto a dense periodic array of pyramids that are formed using an alkaline etch masked with an oxide layer. The hybrid micro-nano structure acts as an anti-reflective coating with experimental reflectivity below 1% over the visible and near-infrared spectral regions. This represents an improvement of up to 11 and 14 times compared to the pyramid array and SiNWAs on bulk, respectively. In addition to the experimental work, we optically simulate the hybrid structure using a commercial finite difference time domain package. The results of the optical simulations support our experimental work, illustrating a reduced reflectivity in the hybrid structure. The nanowire array increases the absorbed carrier density within the pyramid by providing a guided transition of the refractive index along the light path from air into the silicon. Furthermore, electrical simulations which take into account surface and Auger recombination show an efficiency increase for the hybrid structure of 56% over bulk, 11% over pyramid array and 8.5% over SiNWAs.

485203

, , , , and

Integration of III–V semiconductors on Si substrates allows for the realization of high-performance, low power III–V electronics on the Si-platform. In this work, we demonstrate the implementation of single balanced down-conversion mixer circuits, fabricated using vertically aligned InAs nanowire devices on Si. A thin, highly doped InAs buffer layer has been introduced to reduce the access resistance and serve as a bottom electrode. Low-frequency voltage conversion gain is measured up to 7 dB for a supply voltage of 1.5V. Operation of these mixers extends into the GHz regime with a $-3\;{\rm dB}$ cut-off frequency of 2 GHz, limited by the optical lithography system used. The circuit dc power consumption is measured at 3.9 mW.

485204

and

Advances made in the fabrication of micro/nano-electromechanical (M/NEM) devices over the last ten years necessitate the understanding of the attractive force that arises from quantum fluctuations (generally referred to as Casimir effects) [Casimir H B G 1948 Proc. K. Ned. Akad. Wet. 51 793]. The fundamental mechanisms underlying quantum fluctuations have been actively investigated through various theoretical and experimental approaches. However, the effect of the force on M/NEM devices has not been fully understood yet, especially in the transition region involving gaps ranging from 10 nm to 1 μm, due to the complexity of the force. Here, we numerically calculate the Casimir effects in M/NEM devices by using the Lifshitz formula, the general expression for the Casimir effects [Lifshitz E 1956 Sov. Phys. JETP 2 73]. Since the Casimir effects are highly dependent on the permittivity of the materials, the KramerKronig relation [Landau L D, Lifshitz E M and Pitaevskii L P 1984 Electrodynamics of Continuous Media (New York: Pergamon Press)] and the optical data for metals and dielectrics are used in order to obtain the permittivity. Several simplified models for the permittivity of the materials, such as the Drude and Lorentz models [Jackson J D 1975 Classical Electrodynamics (New York: Wiley)], are also used to extrapolate the optical data. Important characteristic values of M/NEM devices, such as the pull-in voltage, pull-in gap, detachment length, etc, are calculated for devices operating in the transition region. Our results show that accurate predictions for the pull-in behaviour are possible when the Lifshitz formula is used instead of the idealized expressions for Casimir effects. We expand this study into the dynamics of M/NEM devices, so that the time and frequency response of M/NEM devices with Casimir effects can be explored.

485205

, , , , , , and

Using a step-graded (SG) buffer structure via metal-organic chemical vapor deposition, we demonstrate a high suitability of In0.5Ga0.5As epitaxial layers on a GaAs substrate for electronic device application. Taking advantage of the technique's precise control, we were able to increase the number of SG layers to achieve a fairly low dislocation density (∼106 cm−2), while keeping each individual SG layer slightly exceeding the critical thickness (∼80 nm) for strain relaxation. This met the demanded but contradictory requirements, and even offered excellent scalability by lowering the whole buffer structure down to 2.3 μm. This scalability overwhelmingly excels the forefront studies. The effects of the SG misfit strain on the crystal quality and surface morphology of In0.5Ga0.5As epitaxial layers were carefully investigated, and were correlated to threading dislocation (TD) blocking mechanisms. From microstructural analyses, TDs can be blocked effectively through self-annihilation reactions, or hindered randomly by misfit dislocation mechanisms. Growth conditions for avoiding phase separation were also explored and identified. The buffer-improved, high-quality In0.5Ga0.5As epitaxial layers enabled a high-performance, metal-oxide-semiconductor capacitor on a GaAs substrate. The devices displayed remarkable capacitance–voltage responses with small frequency dispersion. A promising interface trap density of 3 × 1012 eV−1 cm−2 in a conductance test was also obtained. These electrical performances are competitive to those using lattice-coherent but pricey InGaAs/InP systems.

Patterning and nanofabrication

485301

, , , , and

Highly ordered TiO2 nanotubes (NTs) were synthesized by the electrochemical anodization of Ti foils subjected to electropolishing (EP) pre-treatment. We found that the Ti surface roughness plays an important role in the onset of pore nucleation in enhancing the local focusing effect of the electrical field. Additionally, EP induces the formation of dimple structures on the metal surface, which can work as a pre-pattern prior to anodization. These shallow ripples lead to a preferentially ordered pore nucleation, offering an organizational improvement of the anodic oxide NTs. We found that, depending on the EP applied potential, the roughness and the spatial period of the ripple-like structures varies from 8–2 nm and from 122–30 nm, respectively. Such tuning allowed us to focus on the influence of the initial Ti pre-surface topography features on the NTs' length, organization, and hexagonal arrangement quality, as well as diameter and density. Our results show that an EP under 10 V is the most suitable to obtain a small Ti surface roughness, the largest NT length (40% enhancement), and the effective improvement of the ordered hexagonal NTs' arrays over larger areas. Furthermore, the NTs' dimensions (pore diameters and density) were also found to depend on the initial Ti surface topography. The use of optimized EP allows us to obtain highly hexagonal self-ordered samples at a reduced time and cost.

485302

, , , , , , and

Gold nanospheres have been manipulated by atomic force microscopy on a rippled glass surface produced by ion beam sputtering and coated with an ultrathin (10 nm thick) graphitic layer. This substrate is characterized by irregular wavy grooves running parallel to a preferential direction. Measurements in ambient conditions show that the motion of the nanoparticles is confined to single grooves ('channels'), along which the particles move till they are trapped by local bottlenecks. At this point, the particles cross the ripple pattern in a series of consecutive jumps and continue their longitudinal motion along a different channel. Moreover, due to the asymmetric shape of the ripple profiles, the jumps occur in the direction of minimum slope, resembling a ratchet mechanism. Our results are discussed, extending a collisional model, which was recently developed for the manipulation of nanospheres on flat surfaces, to the specific geometry of this problem.

Energy at the nanoscale

485401

, , , and

We report on an optimal BaTiO3-P(VDF-HFP) composite thin-film formation process for high performance piezoelectric nanogenerators (NGs). By examining different solvent ratios in a solvent-assisted composite thin film formation process, the BTO nanoparticle (NPs) clustering and related performance enhancements were carefully investigated. Using the optimal process, the fabricated BTO NGs exhibited an excelling output power performance. Under a compressive force of ∼0.23 MPa normal to the surface, the measured open-circuit output voltage and short-circuit current were over 110 V and 22 μA, respectively, with a corresponding peak output power density of 0.48 Wcm−3. Our results clearly demonstrate the effectiveness of a solvent-assisted BTO cluster formation process for fabricating high performance piezoelectric energy harvesting devices.

Sensing and actuating

485501

, , , and

The performance of Sm3+ doped TiO2 nanoparticles for luminescence temperature sensing was tested over a temperature range from room to 110 °C. The Sm3+ ions were incorporated into TiO2 nanocrystals using hydrolytic sol−gel route. Microstructural characterization of the obtained material was performed using transmission electron microscopy and x-ray diffraction measurements. Luminescence emission spectra of Sm3+ doped TiO2 nanoparticles consists of two distinct spectral regions: the high energy region associated with the trap emission of the TiO2 host, and the low energy region with well-resolved emission peaks of the Sm3+ ions. The ratio between Sm3+ emission and TiO2 trap emission shows strong temperature dependence, and is tested for temperature sensing. The relative sensor sensitivity was found to be higher than 1% °C−1 over given temperature range with the maximum value of 10.54% °C−1 at 57.5 °C. Lifetime data derived from the Sm3+ emission decay revealed that time-resolved measurements provide comparable quality of temperature sensing as corresponding ratiometric measurements, with a maximum relative sensitivity of 10.14% °C−1 at 66.5 °C.

Materials: synthesis or self-assembly

485601

, and

Controllable morphology and interfacial interactions within bulk heterojunction nanostructures show significant effects on optoelectronic device applications. In this study, a nanocarbon heterojunction, consisting of single-walled carbon nanotubes (s-SWCNTs) and fullerene derivatives, is reported by assembling/blending its structures through solution-based processes. A uniform and dense graphene oxide hole transport layer is used to facilitate the photoconversion at a near infrared (NIR) wavelength. Effective interfacial interaction between the s-SWCNTs and fullerene is suggested by the redshifted photoabsorption and nanoscale/micron-scale fluorescence, which is associated with self-assembled nanocarbon morphology.

485602

, , , , , , , and

InAs segments were grown on top of GaAs islands, initially created by droplet epitaxy on silicon substrate. We systematically explored the growth-parameter space for the deposition of InAs, identifying the conditions for the selective growth on GaAs and for purely axial growth. The axial InAs segments were formed with their sidewalls rotated by 30$^{{}^\circ }$ compared to the GaAs base islands underneath. Synchrotron X-ray diffraction experiments revealed that the InAs segments are grown relaxed on top of GaAs, with a predominantly zincblende crystal structure and stacking faults.

Materials: properties, characterization or tools

485701

We describe the results of atomistic molecular dynamics simulations of thermal rippling in graphene with the use of a generic harmonic constraint model. The distance and angular constraint constants are calculated directly from the second-generation bond-order interatomic potential that describes carbon binding in graphene. We quantify the thermal rippling process in detail by calculating the overall rippling averages, the normal-normal correlation distributions and the height distributions. In addition, we consider the effect of a dihedral angular constraint, as well as the effect of sample size on the simulated rippling averages. The dynamic corrugation morphologies of simulated graphene samples obtained with the harmonic constraint model at various temperatures are, overall, consistent with those obtained with the bond-order potential and are in qualitative accord with previously reported findings. Given the wide availability of the harmonic constraint model in various molecular mechanics implementations, along with its high computational efficiency, our results indicate a possible use for the presented model in multicomponent dynamic simulations, including atomically thin layers.

485702

, , , , , and

Monodisperse Ag-In-Zn-S (AIZS) nanorods with a length of 20 nm have been synthesized using a facile solution based route. These nanorods showed a wide range of fluorescence emissions from green to red, which was achieved by controlling the chemical composition. Moreover, the obtained AIZS nanorods showed high-quality photoluminescence, as well as attractive two-photon fluorescence properties, indicating their potential capability in biological tagging upon near-infrared excitation for deep tissue imaging. Furthermore, the AIZS nanorods presented in this report also show a promising perspective in applications such as solar cells and photocatalysts.

485703

, , , , , , , and

The capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure. Varying the substrate temperature during deposition, we were able to grow both amorphous (low substrate temperature) and polycrystalline (high substrate temperature) films of TiOPc. Regardless of the film morphology and structure, CNT electrodes led to superior charge injection and transport performance with respect to benchmark Au electrodes. Vacuum annealing of polycrystalline TiOPc films with CNT electrodes yielded ambipolar OTFTs.

485704

, , and

A three dimensional Monte Carlo simulation program was developed to model physical sputtering and to emulate vias nanomachined by the gas field ion microscope. Experimental and simulation results of focused neon ion beam induced sputtering of copper are presented and compared to previously published experiments. The simulation elucidates the nanostructure evolution during the physical sputtering of high aspect ratio nanoscale features. Quantitative information such as the energy-dependent sputtering yields, dose dependent aspect ratios, and resolution-limiting effects are discussed. Furthermore, the nuclear energy loss and implant concentration beneath the etch front is correlated with the sub-surface damage revealed by transmission electron microscopy at different beam energies.

485705

, , , , and

Highly ordered 'Chrysanthemum petal' arrangements of silver nano wires were fabricated in a biodegradable polymer of polyvinyl alcohol using a simple one-step blending method without any template. The degree of the arrangement increased with the decreasing content of polyvinyl alcohol. The mechanism for the formation of these 'Chrysanthemum petal' arrangements was discussed specifically. These 'Chrysanthemum petal' arrangements will be helpful to increase the electrical conductivity of silver nano wires films.

485706

, , and

Raman spectroscopy and in situ Raman spectroelectrochemistry were applied to study the lithium vapor doping of C70@SWCNTs (peapods). A strong degree of doping was proved by the vanishing of the single walled carbon nanotubes (SWCNT's) radial breathing mode (RBM) and by the attenuation of the tangential (TG) band intensity. In contrast to potassium vapor doping, the strong downshift of the frequency of the TG band has not been observed for Li-doping. The Li vapor treated peapods remained partly doped even if they were exposed to humid air. This has been reflected by a reduced intensity of the nanotube and the fullerene modes and by the change of the shape of the RBM band as compared to that of the undoped sample. The modes of the intratubular fullerene were almost unresolved after the contact of the Li-doped sample with water. A lithium insertion into the interior of a peapod and its strong interaction with the intratubular fullerene is suggested to be responsible for the air-insensitive residual doping. This residual doping was studied by spectroelectrochemical measurements. The TG band of the Li doped peapods is partly upshifted during the anodic doping, which points to the different state of C70@SWCNTs and C60@SWCNTs studied previously.

485707

, , , , , , , , and

We investigate the electromagnetic properties of assemblies of nanoscale epsilon-cobalt crystals with size range between 5 to 35 nm, embedded in a polystyrene matrix, at microwave (1–12 GHz) frequencies. We investigate the samples by transmission electron microscopy imaging, demonstrating that the particles aggregate and form chains and clusters. By using a broadband coaxial-line method, we extract the magnetic permeability in the frequency range from 1 to 12 GHz, and we study the shift of the ferromagnetic resonance (FMR) with respect to an externally applied magnetic field. We find that the zero-magnetic field ferromagnetic resonant peak shifts towards higher frequencies at finite magnetic fields, and the magnitude of complex permeability is reduced. At fields larger than 2.5 kOe the resonant frequency changes linearly with the applied magnetic field, demonstrating the transition to a state in which the nanoparticles become dynamically decoupled. In this regime, the particles inside clusters can be treated as non-interacting, and the peak position can be predicted from Kittelʼs FMR theory for non-interacting uniaxial spherical particles combined with the Landau–Lifshitz–Gilbert equation. In contrast, at low magnetic fields this magnetic order breaks down and the resonant frequency in zero magnetic field reaches a saturation value reflecting the interparticle interactions as resulting from aggregation. Our results show that the electromagnetic properties of these composite materials can be tuned by external magnetic fields and by changes in the aggregation structure.

485708

, , and

Conventional dynamic atomic force microscopy (AFM) can be extended to bimodal and multimodal AFM in which the cantilever is simultaneously excited at two or more resonance frequencies. Such excitation schemes result in one additional amplitude and phase images for each driven resonance, and potentially convey more information about the surface under investigation. Here we present a theoretical basis for using this information to approximate the parameters of a tip-surface interaction model. The theory is verified by simulations with added noise corresponding to room-temperature measurements.