Supporting Information

Azide photochemistry for facile modification of graphitic surfaces: preparation of DNA-coated carbon nanotubes for biosensing

Minoo J. Moghaddam,1,* Wenrong Yang,1,† Barbara Bojarski,1 Thomas R. Gengenbach,2 Mei Gao,2 Hadi Zareie,3,+ and Maxine J. McCall4

1CSIRO Materials Science and Engineering, North Ryde, NSW 2113, Australia

2CSIRO Materials Science and Engineering, Clayton, VIC 3169, Australia

3Institute for Nano-scale Technology, University of Technology, Sydney, NSW 2007, Australia

4CSIRO Animal, Food and Health Sciences, North Ryde, NSW 2113, Australia

*Address correspondence to minoo.moghaddam@csiro.au
Figure 1S. SEM of DNA-modified (a) and unmodified (b) MWCNTS
X-ray Photoemission Spectroscopy (XPS)

Survey spectra were acquired first to determine all elements present on the surface of the MWCNTs and to determine their atomic concentrations. The peak positions versus the binding energy provide information about the chemical state for a material. High resolution spectra were then recorded for selected elements (e.g. O, C, N & P) in order to obtain more specific data regarding chemical structure. Chemically different species were quantified by fitting model functions from a set of Gaussian/Lorentzian line-shapes to the corresponding spectra.
Figure 2S. Survey spectra of all samples (low binding energy region). Intensity has been normalized against the carbon 1s peak.
Figure 3S. Nitrogen 1s spectra of all MWCNT samples.