Table of contents

Volume 23

Number 38, 28 September 2012

Previous issue Next issue

Buy this issue in print

Papers

Biology and medicine

385101

, , , , , and

This work describes an original and simple technique for protein immobilization into nanowells, fabricated using nanopatterned array fabrication methods, while ensuring the protein retains normal biological activity. Nanosphere lithography was used to fabricate a nanowell array with nanowells 100 nm in diameter with a periodicity of 500 nm. The base of the nanowells was gold and the surrounding material was silicon dioxide. The different surface chemistries of these materials were used to attach two different self-assembled monolayers (SAM) with different affinities for the protein used here, cytochrome P450 (P450). The nanowell SAM, a methyl terminated thiol, had high affinity for the P450. The surrounding SAM, a polyethylene glycol silane, displayed very little affinity toward the P450 isozyme CYP2C9, as demonstrated by x-ray photoelectron spectroscopy and surface plasmon resonance. The regularity of the nanopatterned array was examined by scanning electron microscopy and atomic force microscopy. P450-mediated metabolism experiments of known substrates demonstrated that the nanowell bound P450 enzyme exceeded its normal activity, as compared to P450 solutions, when bound to the methyl terminated self-assembled monolayer. The nanopatterned array chips bearing P450 display long term stability and give reproducible results making them potentially useful for high-throughput screening assays or as nanoelectrode arrays.

385102

, , , , and

Myocardial tissue lacks the ability to appreciably regenerate itself following myocardial infarction (MI) which ultimately results in heart failure. Current therapies can only retard the progression of disease and hence tissue engineering strategies are required to facilitate the engineering of a suitable biomaterial to repair MI. The aim of this study was to investigate the in vitro properties of an injectable biomaterial for the regeneration of infarcted myocardium. Fabrication of core/shell fibers was by co-axial electrospinning, with poly(glycerol sebacate) (PGS) as core material and poly-l-lactic acid (PLLA) as shell material. The PLLA was removed by treatment of the PGS/PLLA core/shell fibers with DCM:hexane (2:1) to obtain PGS short fibers. These PGS short fibers offer the advantage of providing a minimally invasive injectable technique for the regeneration of infarcted myocardium. The scaffolds were characterized by SEM, FTIR and contact angle and cell–scaffold interactions using cardiomyocytes. The results showed that the cardiac marker proteins actinin, troponin, myosin heavy chain and connexin 43 were expressed more on short PGS fibers compared to PLLA nanofibers. We hypothesized that the injection of cells along with short PGS fibers would increase cell transplant retention and survival within the infarct, compared to the standard cell injection system.

Electronics and photonics

385201

, , , , and

We have systematically studied the single-particle states in quantum rings produced by a set of concentric circular gates over a graphene sheet placed on a substrate. The resulting potential profiles and the interaction between the graphene layer and the substrate are considered within the Dirac Hamiltonian in the framework of the envelope function approximation. Our simulations allow microscopic mapping of the character of the electron and hole quasi-particle solutions according to the applied voltage. General conditions to control and operate the bound state solutions are described as functions of external and controllable parameters that will determine the optical properties ranging from metallic to semiconductor phases. Contrasting behaviors are obtained when comparing the results for repulsive and attractive voltages as well as for variation of the relative strength of the graphene–substrate coupling parameter.

385202

, , , and

Imprinted silver nanovoid arrays are investigated via angle-resolved reflectometry to demonstrate their suitability for plasmonic light trapping. Both wavelength- and subwavelength-scale nanovoids are imprinted into standard solar cell architectures to achieve nanostructured metallic electrodes which provide enhanced absorption for improving solar cell performance. The technique is versatile, low-cost and scalable and can be applied to a wide range of organic semiconductors. Absorption features which are independent of incident polarization and weakly dependent on incident angle reveal localized plasmonic modes at the structured interface. Metallic nanostructure–PCPDTBT:PCBM samples demonstrate absorption enhancements of up to 40%. The structured interface provides light trapping, which boosts absorption at wavelengths where the semiconductors absorb poorly.

385203

, , , , and

Gate dependent photoconductivity of carbon nanotube (CNT) field effect phototransistors (FEPs) was systematically investigated in this study. The photo-response comparisons of CNT FEPs with symmetric and asymmetric metal structures connecting to the same CNT revealed that the gate effect contributed to a sensitivity improvement with a lower dark current, a higher photocurrent, and an enhanced photovoltage. A functionalized asymmetric FEP, fabricated by partially doping the CNT utilizing a polyethylene imine (PEI) polymer, verified that FEPs delivered a better performance by using asymmetric structures. A multi-gate FEP, with three pairs of side-gates that can electrostatically dope different sections of a CNT independently, was fabricated to examine the gate structure dependent photo-responses. Experimental measurements showed an unconventional photocurrent improvement that was weakly dependent on the gate location, which was attributed to the unique charge distribution of one-dimensional semiconductors.

385204

, , , and

A novel phase modulation method for dynamic manipulation of surface plasmon polaritons (SPPs) with a phase engineered optical vortex (OV) beam illuminating on nanoslits is experimentally demonstrated. Because of the unique helical phase carried by an OV beam, dynamic control of SPP multiple focusing and standing wave generation is realized by changing the OV beam's topological charge constituent with the help of a liquid-crystal spatial light modulator. Measurement of SPP distributions with near-field scanning optical microscopy showed an excellent agreement with numerical predictions. The proposed phase modulation technique for manipulating SPPs features has seemingly dynamic and reconfigurable advantages, with profound potential for development of SPP coupling, routing, multiplexing and high-resolution imaging devices on plasmonic chips.

385205

, , , and

The interplay between crystal phase purity and radial growth in InP nanowires is investigated. By modifying the growth rate and V/III ratio, regions of high or low stacking fault density can be controllably introduced into wurtzite nanowires. It is found that regions with high stacking fault density encourage radial growth. Through careful choice of growth conditions pure wurtzite InP nanowires are then grown which exhibit narrow 4.2 K photoluminescence linewidths of 3.7 meV at 1.490 meV, and no evidence of emission related to stacking faults or zincblende insertions.

Patterning and nanofabrication

385301

, , and

Bio-nanopatterning of surfaces is becoming a crucial technique with applications ranging from molecular and cell biology to medicine. Scanning probe microscopy (SPM) is one of the most useful tools for nanopatterning of flat surfaces. However, these patterns are usually built on homogeneous surfaces and require chemical functionalization to ensure specific affinity. Layered magnesium–aluminum hydroxide–silicates have already shown unique self-assembly properties on DNA molecules, due to their peculiar crystal chemistry based on alternating positive and negative crystal layers. However, patterns on these surfaces tend to be randomly organized. Here we show etching and oxidation at the nanometer scale of magnesium–aluminum hydroxide–silicates using the same SPM probe for the creation of organized nanopatterns. In particular, it is possible to produce three-dimensional structures in a reproducible way, with a depth resolution of 0.4 nm, lateral resolution of tens of nm, and a speed of about 10 μm s−1. We report, as an example, the construction of an atomically flat charged pattern, designed to guide DNA deposition along predetermined directions without the need of any chemical functionalization of the surface.

385302

, , and

This work demonstrates electron beam induced deposition of silicon from a SiCl4 liquid precursor in a transmission electron microscope and a scanning electron microscope. Silicon nanodots of tunable size are reproducibly grown in controlled geometries. The volume of these features increases linearly with deposition time. The results indicate that secondary electrons generated at the substrate surface serve as the primary source of silicon reduction. However, at high current densities the influence of the primary electrons is observed to retard growth. The results demonstrate a new approach to fabricating silicon nanostructures and provide fundamental insights into the mechanism for liquid phase electron beam induced deposition.

385303

, , , , and

This paper reports a novel highly ordered tripetaloid structure array (TPSA) which performs very well as an active surface-enhanced Raman scattering (SERS) substrate. The TPSA is easily fabricated by anisotropic etching of a self-assembly silica-nanoparticle bilayer and a subsequent metal deposition step, with notable uniformity and reproducibility. Electromagnetic simulation indicates that the narrow inter-gaps and edge protrusions in the TPSA act as hot spots. In addition, the peak electromagnetic field intensity in the inter-gaps changes slightly and periodically as the polarization of the incident light varies from 0° to 360°. SERS experiments show that the SERS enhancement factor (EF) of a Au-film-covered TPSA is 12 times higher than that of regular Au-film-over-nanoparticles, and not sensitive to the polarization of the incident light. The spatially averaged EF of the TPSA is as high as 5.7 × 106, and the local EF of its hot spots is much higher.

385304

, , and

The interaction between single wall carbon nanotubes (SWNTs) and amphiphilic molecules has been studied in a solid phase. SWNTs are allowed to interact with different amphiphilic probes (e.g. lipids) in a narrow capillary interface. Contact between strong hydrophobic and amphiphilic interfaces leads to a molecular restructuring of the lipids at the interface. The geometry of the diffusion front and the rate and the extent of diffusion of the interface are dependent on the structure of the lipid at the interface. Lecithin having a linear tail showed greater mobility of the interface as compared to a branched tail lipid like dipalmitoyl phosphatidylcholine, indicating the hydrophobic interaction between single wall carbon nanotube core and the hydrophobic tail of the lipid. Solid phase interactions between SWNT and lipids can thus become a very simple but efficient means of discriminating amphiphilic molecules in general and lipids in particular.

385305

, , , and

We present a simple, efficient, and high-throughput methodology for the fabrication of ordered nanoporous polymeric surfaces with areas in the range of cm2. The procedure is based on a two-stage replication of a master nanostructured pattern. The process starts with the preparation of an ordered array of poly(tetrafluoroethylene) (PTFE) free-standing nanopillars by wetting self-ordered porous anodic aluminum oxide templates with molten PTFE. The nanopillars are 120 nm in diameter and approximately 350 nm long, while the array extends over cm2. The PTFE nanostructuring process induces surface hydrocarbonation of the nanopillars, as revealed by confocal Raman microscopy/spectroscopy, which enhances the wettability of the originally hydrophobic material and facilitates its subsequent use as an inverse pattern. Thus, the PTFE nanostructure is then used as a negative master for the fabrication of macroscopic hexagonal arrays of nanopores composed of biocompatible poly(vinylalcohol). In this particular case, the nanopores are 130–140 nm in diameter and the interpore distance is around 430 nm. Features of such characteristic dimensions are known to be easily recognized by living cells. Moreover, the inverse mold is not destroyed in the pore array demolding process and can be reused for further pore array fabrication. Therefore, the developed method allows the high-throughput production of cm2-scale biocompatible nanoporous surfaces that could be interesting as two-dimensional scaffolds for tissue repair or wound healing. Moreover, our approach can be extrapolated to the fabrication of almost any polymer and biopolymer ordered pore array.

385306

, , , and

We exploit the localized surface-plasmon resonance (LSPR) of terahertz gold gammadion structures for wafer scale critical dimension metrology of nanostructures. The proposed characterization method, LSPR spectroscopy, is based on optical transmission measurements and is benchmarked against numerical simulations of imprinted structures characterized by atomic force microscopy. There is a fair agreement between the two methods and the simulations enable the translation of optical spectra to critical dimensions of the physical structures, a concept known from scatterometry. The results demonstrate the potential of LSPR spectroscopy as an alternative characterization method to scanning electron microscopy, atomic force microscopy and scatterometry.

385307

, , and

A novel stitching method is presented which does not require special purpose alignment markers and which is particularly adapted to probe lithographic methods, enabling the writing of large patterns exceeding the size limitations imposed by high precision scan stages. The technique exploits the natural roughness of polymeric resist surfaces as a fingerprint marker for the sample position. Theoretical and experimental evidence is provided that sub-nanometer metrological accuracy can be achieved by inspecting the surface roughness in areas with 1 μm linear dimensions. The method has been put to the test in a thermal probe lithography experiment by writing a composite pattern consisting of five 10 μm  × 10 μm fields which are seamlessly joined together. The observed stitching error of 10 nm between fields is dominated by inaccuracies of the scanning hardware used in the experiment and is not fundamentally limited by the method per se.

385308

, , and

We report the fabrication and characterization of uniformly sized nanopore arrays, integrated into an optical detection system for high-throughput DNA sequencing applications. Nanopore arrays were fabricated using focused ion beam milling, followed by TiO2 coating using atomic layer deposition. The TiO2 layer decreases the initial pore diameter down to the sub-10 nm range, compatible with the requirements for nanopore-based sequencing using optical readout. We find that the TiO2 layers produce a lower photoluminescence background as compared with the more widely used Al2O3 coatings. The functionality of the nanopore array was demonstrated by the simultaneous optical detection of DNA–quantum dot conjugates, which were electro-kinetically driven through the nanopores. Our optical scheme employs total internal reflection fluorescence microscopy to illuminate a wide area of the TiO2-coated membrane. A highly parallel system for observing DNA capture events in a uniformly sized 6 × 6 nanopore array was experimentally realized.

Energy at the nanoscale

385401

, and

Mesoporous carbon frameworks were synthesized using the soft-template method. Ca(BH4)2 was incorporated into activated mesoporous carbon by the incipient wetness method. The activation of mesoporous carbon was necessary to optimize the surface area and pore size. Thermal programmed absorption measurements showed that the confinement of this borohydride into carbon nanoscaffolds improved its reversible capacity (relative to the reactive portion) and performance of hydrogen storage compared to unsupported borohydride. Hydrogen release from the supported hydride started at a temperature as low as 100 °C and the dehydrogenation rate was fast compared to the bulk borohydride. In addition, the hydrogen pressure necessary to regenerate the borohydride from the dehydrogenation products was reduced.

Materials: synthesis or self-assembly

385601

, , and

Growth of TiO2 nanotubes on thin Ti film deposited on Si wafers with site-specific and patterned growth using a photolithography technique is demonstrated for the first time. Ti films were deposited via e-beam evaporation to a thickness of 350–1000 nm. The use of a fluorinated organic electrolyte at room temperature produced the growth of nanotubes with varying applied voltages of 10–60 V (DC) which remained stable after annealing at 500 °C. It was found that variation of the thickness of the deposited Ti film could be used to control the length of the nanotubes regardless of longer anodization time/voltage. Growth of the nanotubes on a SiO2 barrier layer over a Si wafer, along with site-specific and patterned growth, enables potential application of TiO2 nanotubes in NEMS/MEMS-type devices.

385602

, and

We describe the decoration of multiwalled carbon nanotubes (MCNTs) with Pt–Pd alloy nanoelectrocatalysts of three different compositions and their electrocatalytic performance toward the oxygen reduction reaction (ORR). The decoration of the MCNTs involves polymer-assisted impregnation of metal precursors ${\mathrm{PtCl}}_{6}^{2-}$ and ${\mathrm{PdCl}}_{4}^{2-}$ and the subsequent reduction of the impregnated precursors by a modified polyol route. The composition of the catalyst was controlled by tuning the molar ratio of the precursors during their impregnation. Electron probe microscopic analysis shows that the catalysts have compositions of Pt46Pd54, Pt64Pd36 and Pt28Pd72. The Pt46Pd54 and Pt64Pd36 catalysts have truncated octahedral and icosahedral shapes with a size ranging from 8 to 10 nm. On the other hand, the catalyst of Pt28Pd72 composition has a spherical/quasispherical shape with a size distribution of 1–2 nm. The XPS measurement confirms the signature of metallic Pt and Pd. The Pt46Pd54 catalyst has a pronounced electrocatalytic activity toward the ORR with a specific and mass activity of 378 $~\mu \mathrm{A}~{\mathrm{cm}}_{\mathrm{Pt}-\mathrm{Pd}}^{-2}$ and $6 4~\mu \mathrm{A}~\mu {\mathrm{g}}_{\mathrm{Pt}-\mathrm{Pd}}^{-1}$, respectively at 0.8 V. Moreover, the Pt46Pd54 nanoelectrocatalyst is highly durable and it retains its initial catalytic activity even after 1000 extensive cycles. Interestingly, this catalyst has a very high tolerance toward methanol and it does not favor the oxidation of methanol in the potential window of 0.1–1.4 V. The electrocatalytic activity of the alloy electrocatalyst is compared with commercially available Pt black and MCNT-supported spherical Pt nanoparticles. The catalytic activity of the Pt46Pd54 nanoelectrocatalyst is higher than the other catalysts. The Pt46Pd54 catalyst outperforms the electrocatalytic activity of all other catalysts.

385603

, , and

We report on the directed synthesis of germanium oxide (GeOx) nanowires (NWs) by locally catalyzed thermal oxidation of aligned arrays of gold catalyst-tipped germanium NWs. During oxygen anneals conducted above the Au–Ge binary eutectic temperature (T > 361 °C), one-dimensional oxidation of as-grown Ge NWs occurs by diffusion of Ge through the Au–Ge catalyst droplet, in the presence of an oxygen containing ambient. Elongated GeOx wires grow from the liquid catalyst tip, consuming the adjoining Ge NWs as they grow. The oxide NWs' diameter is dictated by the catalyst diameter and their alignment generally parallels that of the growth direction of the initial Ge NWs. Growth rate comparisons reveal a substantial oxidation rate enhancement in the presence of the Au catalyst. Statistical analysis of GeOx nanowire growth by ex situ transmission electron microscopy and scanning electron microscopy suggests a transition from an initial, diameter-dependent kinetic regime, to diameter-independent wire growth. This behavior suggests the existence of an incubation time for GeOx NW nucleation at the start of vapor–liquid–solid oxidation.

385604

, , and

Multiwall carbon nanotubes grown by plasma enhanced chemical vapour deposition were functionalized by H2O plasma treatment. Through a controlled functionalization process of the carbon nanotubes (CNTs) we were able to modify and tune their chemical reactivity, expanding the range of potential applications in the field of energy and environment. In particular, different oxygen groups were attached to the surfaces of the nanotubes (e.g. carboxyl, hydroxyl and carbonyl), which changed their physicochemical properties. In order to optimize the main operational parameters of the H2O plasma treatment, pressure and power, a Box–Wilson experimental design was adopted. Analysis of the morphology, electrochemical properties and functional groups attached to the surfaces of the CNTs allowed us to determine which treatment conditions were suitable for different applications. After water plasma treatment the specific capacitance of the nanotubes increased from 23 up to 68 F g−1 at a scan rate of 10 mV s−1.

Materials: properties, characterization or tools

385701

, , , and

Porous polyaniline (PANI)-coated multi-walled carbon nanotube (MWNT) core/shell nanohybrids were fabricated through in situ polymerization and subsequently assembled into macroscopic composites. N2 adsorption/desorption analysis indicated that the volume of nanopores increased significantly, which could make a significant contribution to phonon scattering. Thermal annealing was also carried out to improve the Seebeck coefficient of the as-produced nanocomposites. The optimal sample showed electrical conductivity of 14.1 S cm−1, a Seebeck coefficient of 79.8 μV  K−1 and thermal conductivity of 0.27 W mK−1, resulting in a highest figure of merit (ZT) of 0.01 at a very low loading of MWNTs (<1 wt%). These results will provide a potential direction to enhance thermoelectric performance of organic materials and also facilitate the application of organic materials in thermal energy harvesting or cooling.

385702

, and

Classical molecular dynamics with the AIREBO potential is used to investigate and compare the thermal conductivity of both zigzag and armchair graphene nanoribbons possessing various densities of Stone–Thrower–Wales (STW) and double vacancy defects, within a temperature range of 100–600 K. Our results indicate that the presence of both kinds of defects can decrease the thermal conductivity by more than 80% as defect densities are increased to 10% coverage, with the decrease at high defect densities being significantly higher in zigzag compared with armchair nanoribbons. Variations of thermal conductivity in armchair nanoribbons were similar for both kinds of defects, whereas double vacancies in the zigzag nanoribbons led to more significant decreases in thermal conductivity than STW defects. The same trends are observed across the entire temperature range tested.

385703

, , , , , , , and

We have investigated the geometry and electronic structure of two different types of self-aligned silicon nanoribbons (SiNRs), forming either isolated SiNRs or a self-assembled 5 × 2/5 × 4 grating on an Ag(110) substrate, by scanning tunnelling microscopy and high resolution x-ray photoelectron spectroscopy. At room temperature we further adsorb on these SiNRs either atomic or molecular hydrogen. The hydrogen absorption process and hydrogenation mechanism are similar for isolated or 5 × 2/5 × 4 ordered SiNRs and are not site selective; the main difference arises from the fact that the isolated SiNRs are more easily attacked and destroyed faster. In fact, atomic hydrogen strongly interacts with any Si atoms, modifying their structural and electronic properties, while molecular hydrogen has first to dissociate. Hydrogen finally etches the Si nanoribbons and their complete removal from the Ag(110) surface could eventually be expected.

385704

, , , , and

From first-principles calculations, we predict a planar stable graphene allotrope composed of a periodic array of tetragonal and octagonal (4, 8) carbon rings. The stability of this sheet is predicted from the room-temperature molecular dynamics study and the electronic structure is studied using state-of-the-art calculations such as the hybrid density functional and the GW approach. Moreover, the mechanical properties of (4, 8) carbon sheet are evaluated from the Young's modulus and intrinsic strength calculations. We find this is a stable planar semiconducting carbon sheet with a bandgap between 0.43 and 1.01 eV and whose mechanical properties are as good as graphene's.

385705

, , , , , , and

We present a surface-enhanced Raman scattering (SERS) substrate featured by large-scale homogeneously distributed Ag nanoparticles (Ag-NPs) with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film. The two-layered honeycomb-like TiO2 film was achieved by a two-step anodization of pure Ti foil, with its upper layer consisting of hexagonally arranged shallow nano-bowls of 160 nm in diameter, and the lower layer consisting of arrays of about fifty vertically aligned sub-20 nm diameter nanopores. The shallow nano-bowls in the upper layer divide the whole TiO2 film into regularly arranged arrays of uniform hexagonal nano-cells, leading to a similar distribution pattern for the ion-sputtered Ag-NPs in each nano-cell. The lower layer with sub-20 nm diameter nanopores prevents the aggregation of the sputtered Ag-NPs, so that the Ag-NPs can get much closer with gaps in the sub-10 nm range. Therefore, large-scale high-density and quasi-ordered sub-10 nm gaps between the adjacent Ag-NPs were achieved, which ensures homogeneously distributed 'hot spots' over a large area for the SERS effect. Moreover, the honeycomb-like structure can also facilitate the capture of target analyte molecules. As expected, the SERS substrate exhibits an excellent SERS effect with high sensitivity and reproducibility. As an example, the SERS substrate was utilized to detect polychlorinated biphenyls (PCBs, a kind of persistent organic pollutants as global environmental hazard) such as 3,3',4,4'-pentachlorobiphenyl (PCB-77) with concentrations down to 10−9 M. Therefore the large-scale Ag-NPs with sub-10 nm gaps assembled on the two-layered honeycomb-like TiO 2 film have potentials in SERS-based rapid trace detection of PCBs.

385706

, , , , , and

We have performed near-field scanning microwave microscopy (SMM) of graphene grown by chemical vapor deposition. Due to the use of probe–sample capacitive coupling and a relatively high ac frequency of a few GHz, this scanning probe method allows mapping of local conductivity without a dedicated counter electrode, with a spatial resolution of about 50 nm. Here, the coupling was enabled by atomic layer deposition of alumina on top of graphene, which in turn enabled imaging both large-area films, as well as micron-sized islands, with a dynamic range covering a low sheet resistance of a metal film and a high resistance of highly disordered graphene. The structures of graphene grown on Ni films and Cu foils are explored, and the effects of growth conditions are elucidated. We present a simple general scheme for interpretation of the contrast in the SMM images of our graphene samples and other two-dimensional conductors, which is supported by extensive numerical finite-element modeling. We further demonstrate that combination of the SMM and numerical modeling allows quantitative information about the sheet resistance of graphene to be obtained, paving the pathway for characterization of graphene conductivity with a sub-100 nm special resolution.

385707

, and

Resistive switching memory devices are promising candidates for emerging memory technologies because they yield outstanding device performance. Storage mechanisms for achieving high-density memory applications have been developed; however, so far many of them exhibit typical resistive switching behavior from the limited controlling conditions. In this study, we introduce photons as an unconventional stimulus for activating resistive switching behaviors. First, we compare the resistive switching behavior in light and dark conditions to describe how resistive switching memories can benefit from photons. Second, we drive the switching of resistance not by the electrical stimulus but only by the modulation of photon. ZnO nanorods were employed as a model system to demonstrate photo-stimulated resistive switching in high-surface-area nanomaterials, in which photo-driven surface states strongly affect their photoconductivity and resistance states.

385708

, and

The characterization of roughness at the nanoscale by the means of atomic force microscopy (AFM) was performed on high aspect ratio glancing angle deposited titanium thin films. With the use of scanning electron microscopy as well as x-ray photoelectron spectroscopy, it was shown that the AFM measurements gave rise to incorrect roughness values for the films consisting of the highest aspect ratio structures. By correcting for this experimental artefact, the difference between the saturated roughness value of a film grown with conventional physical vapour deposition and films grown with a glancing angle of deposition was shown to behave as a power law function of the deposition angle, with a saturated roughness exponent of κ = 7.1 ± 0.2. This power law scaling was confirmed by three-dimensional molecular dynamics simulations of glancing angle deposition, where the saturated roughness exponent was calculated to κ = 6.7 ± 0.4.