Brought to you by:

Table of contents

Volume 29

Number 28, 19 July 2017

Previous issue Next issue

Buy this issue in print

Topical Review

283001

and

The modification of an idealized infinite bulk system by dimensional reduction or structural distortion results in quantum confinement effects (QCEs). For example, dimensional reduction of a black phosphorus structure leads to the realization of few-layer systems, creation of edges and surfaces, nanoribbons, quantum dots, and antidot lattices while structural distortion involves simple bending (including nanotubes) and rippling. Black phosphorus ('phosphorene' in the single-layer limit) has been of recent interest due to its relatively large charge carrier mobility and moderate semiconducting band gap, which remains direct irrespective of the number of layers. In this review the state-of-the-art properties of black phosphorus in its dimensionally reduced and structurally distorted forms are discussed, with emphasis on how quantum confinement impacts the material's properties.

Special issue paper

284001
The following article is Open access

, , , , , , and

Special Issue on Ferroelastics and Domain Walls

The instability of ferroelectric ordering in ultra-thin films is one of the most important fundamental issues pertaining realization of a number of electronic devices with enhanced functionality, such as ferroelectric and multiferroic tunnel junctions or ferroelectric field effect transistors. In this paper, we investigate the polarization state of archetypal ultrathin (several nanometres) ferroelectric heterostructures: epitaxial single-crystalline BaTiO3 films sandwiched between the most habitual perovskite electrodes, SrRuO3, on top of the most used perovskite substrate, SrTiO3. We use a combination of piezoresponse force microscopy, dielectric measurements and structural characterization to provide conclusive evidence for the ferroelectric nature of the relaxed polarization state in ultrathin BaTiO3 capacitors. We show that even the high screening efficiency of SrRuO3 electrodes is still insufficient to stabilize polarization in SrRuO3/BaTiO3/SrRuO3 heterostructures at room temperature. We identify the key role of domain wall motion in determining the macroscopic electrical properties of ultrathin capacitors and discuss their dielectric response in the light of the recent interest in negative capacitance behaviour.

Papers

284002

, , and

Special issue on soft quasicrystals

Like metal alloys and micellar systems in soft matter, the viral capsid structures can be of crystalline and quasicrystalline types. We reveal the local quasicrystalline order of proteins in small spherical viral capsids using their nets of dodecahedral type. We show that the structure of some of the viral shells is well described in terms of a chiral pentagonal tiling, whose nodes coincide with centers of mass of protein molecules. The chiral protein packing found in these capsids originates from the pentagonal Penrose tiling (PPT), due to a specific phason reconstruction needed to fit the protein order at the adjacent dodecahedron faces. Via examples of small spherical viral shells and geminate capsid of a Maize Streak virus, we discuss the benefits and shortcomings of the usage of a dodecahedral net in comparison to icosahedral one, which is commonly applied for the modeling of viral shells with a crystalline local order.

Nanostructures and nanoelectronics

285301

, , and

An ambipolar np double quantum dot defined by potential variation along a semiconducting carbon-nanotube is considered. We focus on the (1e,1h) charge configuration with a single excess electron of the conduction band confined in the n-type dot and a single missing electron in the valence band state of the p-type dot for which lifting of the Pauli blockade of the current was observed in the electric-dipole spin resonance (Laird et al 2013 Nat. Nanotechnol. 8 565). The dynamics of the system driven by periodic electric field is studied with the Floquet theory and the time-dependent configuration interaction method with the single-electron spin-valley-orbitals determined for atomistic tight-binding Hamiltonian. We find that the transitions lifting the Pauli blockade are strongly influenced by coupling to a vacuum state with an empty n dot and a fully filled p dot. The coupling shifts the transition energies and strongly modifies the effective g factors for axial magnetic field. The coupling is modulated by the bias between the dots but it appears effective for surprisingly large energy splitting between the (1e,1h) ground state and the vacuum (0e, 0h) state. Multiphoton transitions and high harmonic generation effects are also discussed.

285302

This paper presents the results of ab initio studies of the electronic spin inversion and filtering in a ferromagnetic multilayer heterostructure. Spin-polarized electronic structure calculations are performed based on van der Waals density functional theory to give unique insights in to the generation, manipulation and transport of coherent spin conductance. By using an exact theory of the self-consistent ground state of the Fe-hBN/graphene multilayer as a model of the magnetic tunnel junction, hidden asymmetries are unraveled in the spin-resolved charge densities. It is shown that the injection of spin into the graphene/boron nitride tunnel layer from a ferromagnetic contact gives rise to coherent spin current. The projected Fermi surfaces of the up and down spin channels are analyzed to reveal Fermi arc topologies and spin anisotropies. It is also demonstrated that the coherent transport of pure spin-down current in the topological Weyl semimetal phase is robust. The implications of the results on out-of-plane transport of spin polarized conductance in van der Waals multilayer spintronic devices is discussed. The insights derived from this study are expected to open up prospects for further exploration of van der Waals magnetic multilayer heterostructures as a versatile platform for developing materials for Weyltronic applications.

285303
The following article is Open access

, and

A coupled two-temperature, molecular dynamics methodology is used to simulate the structural evolution of bcc metals (Fe and W) and fcc metals (Cu and Ni) following irradiation by swift heavy ions. Electronic temperature dependent electronic specific heat capacities and electron–phonon coupling strengths are used to capture the full effects of the variation in the electronic density of states. Tungsten is found to be significantly more resistant to damage than iron, due both to the higher melting temperature and the higher thermal conductivity. Very interesting defect structures, quite different from defects formed in cascades, are found to be created by swift heavy ion irradiation in the bcc metals. Isolated vacancies form a halo around elongated interstitial dislocation loops that are oriented along the ion path. Such configurations are formed by rapid recrystallization of the molten cylindrical region that is created by the energetic ion. Vacancies are created at the recrystallization front, resulting in excess atoms at the core which form interstitial dislocation loops on completion of crystallization. These unique defect structures could, potentially, be used to create metal films with superior mechanical properties and interesting nanostructures.

Electronic structure

285501

, , , , , , , , , et al

We have investigated the influence of metal adsorbates (sodium and cobalt) on the occupied and unoccupied electronic structure of MoS2(0 0 0 1) and WSe2(0 0 0 1), through a combination of both photoemission and inverse photoemission. The electronic structure is rigidly shifted in both the WSe2 and MoS2 systems, with either Na or Co adsorption, generally as predicted by accompanying density functional theory based calculations. Na adsorption is found to behave as an electron donor (n-type) in MoS2, while Co adsorption acts as an electron acceptor (p-type) in WSe2. The n-type transition metal dichalcogenide (MoS2) is easily doped more n-type with Na deposition while the p-type transition metal dichalcogenide (WSe2) is easily doped more p-type with Co deposition. The binding energy shifts have some correlation with the work function differences between the metallic adlayer and the transition metal dichalcogenide substrate.

Correlated electron systems

285601

, and

We study transport properties of a phosphorene monolayer in the presence of single and multiple potential barriers of height U0 and width d, using both continuum and microscopic lattice models, and show that the nature of electron transport along its armchair edge (x direction) is qualitatively different from its counterpart in both conventional two-dimensional electron gas with Schrödinger-like quasiparticles and graphene or surfaces of topological insulators hosting massless Dirac quasiparticles. We show that the transport, mediated by massive Dirac electrons, allows one to achieve collimated quasiparticle motion along x and thus makes monolayer phosphorene an ideal experimental platform for studying Klein paradox in the context of gapped Dirac materials. We study the dependence of the tunneling conductance $G\equiv {{G}_{xx}}$ as a function of d and U0, and demonstrate that for a given applied voltage V its behavior changes from oscillatory to decaying function of d for a range of U0 with finite non-zero upper and lower bounds, and provide analytical expression for these bounds within which G decays with d. We contrast such behavior of G with that of massless Dirac electrons in graphene and also with that along the zigzag edge (y direction) in phosphorene where the quasiparticles obey an effective Schrödinger equation at low energy. We also study transport through multiple barriers along x and demonstrate that these properties hold for transport through multiple barriers as well. Finally, we suggest concrete experiments which may verify our theoretical predictions.

Magnetism

285801

, , , and

We performed resistance measurements on $\text{F}{{\text{e}}_{1+\delta -x}}$ CuxTe with ${{x}_{\text{EDX}}}\leqslant 0.06$ in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cu content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For ${{x}_{\text{EDX}}}=0.06$ the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Thus we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.