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Abstract
The interaction between transverse domain walls is calculated analytically using a multipole
expansion up to third order. Starting from an analytical expression for the magnetization in the
wall, the monopole, dipole, and quadrupole moments are derived and their impact on the
interaction is investigated using the surface and volume charges. The surface charges are
important for the dipole moment while the volume charges constitute the monopole and
quadrupole moments. For domain walls that are situated in different wires it is found that there
is a strong deviation from the interaction of two monopoles. This deviation is caused by the
interaction of the monopole of the wall in the first wire with the dipole of the wall in the
second wire and vice versa. The dipole–dipole and the quadrupole–monopole interactions are
found to be also of considerable size and non-negligible. A comparison with micromagnetic
simulations shows a good agreement.

(Some figures may appear in colour only in the online journal)

1. Introduction

The observation that a current that is traversing a magnetic
sample may alter the magnetic configuration [1–6] triggered
an intensive investigation of the interplay between currents,
magnetic fields, and the magnetization in nanostructured
samples.

Recently memory devices have been proposed that
consist of magnetic domain walls that are beaded along a
magnetic nanowire. A current flowing in the wire can be used
to shift these walls passing a reading and a writing device [7].
For a high storage density the magnetic nanowires have to
be close to each other and for a reliable description of the
dynamics it is important to take the interaction with other
walls into account.

If the two interacting domain walls have a sizable
distance between them there is no exchange interaction
and the interaction via the demagnetization energy can be
expanded in a series of multipoles. On discarding their
internal structure, the interaction of two domain walls can
be modeled by an interaction of two monopoles. Numerical
simulations of domain walls in neighboring wires that are
close together showed that this is a good approximation for
vortex walls but for transverse walls it is not sufficient [8, 9].

It was proposed that this discrepancy between numerical
simulations and the monopole model is due to a dipole–dipole
coupling between the transverse magnetization components in
both walls [9].

In this work the interaction between two walls is
calculated analytically, taking the monopole–monopole,
dipole–monopole, dipole–dipole, and quadrupole–monopole
interactions into account. Using an analytical expression for
the magnetization in the domain walls [10], the monopole,
dipole, and quadrupole moments of a transverse domain
wall are calculated by using the so called surface and
volume charges. The surface charges depend on the normal
component of the magnetization at the surfaces of the wire
and are important for the dipole moment. The volume charges
depend on the divergence of the magnetization and constitute
the monopole and quadrupole moments. The results are
compared with micromagnetic simulations.

This work is organized as follows. In section 2 the
equation of motion of a single domain wall is discussed. In
section 3 it is discussed how the equation of motion can
be expanded to account for the interaction between different
domain walls. For this purpose the interaction energy of two
walls is calculated. Sections 4 and 5 deal with the special cases
where the two walls are located in the same wire and where
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the two walls are located in different wires, respectively. The
results for the latter case are compared with micromagnetic
simulations in section 6. Finally a conclusion is given.

2. The equation of motion

In this section the dynamics of the domain wall is described
using a one-dimensional model, i.e., the magnetization
depends only on the position x along the wire. In the
following, θ denotes the angle between the magnetization and
the wire axis. χ is the angle of the magnetization around the
wire axis as illustrated in figure 1. In the wall there are two
competing energies. The exchange energy A

∫
dV[(∂θ/∂x)2+

sin2(θ)(∂χ/∂x)2] with the exchange constant A tends to align
neighboring magnetic moments parallel to each other. The
anisotropy energy K

∫
dV sin2(θ), where K is the strength of

the anisotropy, is lower when the magnetization points in the
wire direction. The sum of the two energies is minimized for
an angle χ that is uniform along the wire and an angle θ that
is given by

cos(θ) = −a tanh
(

x− X

λ

)
and

sin(θ) =
1

cosh( x−X
λ
)
.

(1)

Here, X is the position of the center of the wall, λ =
√

A/K
is the width of the wall, and a distinguishes between a
head-to-head wall (a = +1) and a tail-to-tail wall (a = −1;
see figure 1). The domain wall moves like a composite
particle [11] and it is possible to derive the equations of
motion [12, 10]

Ẋ = −
γ
′

αλ

2Sµ0Ms

∂E

∂X
+

aγ
′

2Sµ0Ms

∂E

∂χ
− (1+ αξ)b

′

jj (2)

for the center of the wall and

χ̇ = −
aγ
′

2Sµ0Ms

∂E

∂X
−

γ
′

α

2Sµ0Msλ

∂E

∂χ
− a

ξ − α

λ
b
′

jj (3)

for the angle of the magnetization in the wall. Here S = wd
is the cross section of the wire, α is the Gilbert damping
parameter, ξ is the strength of the non-adiabatic spin torque, γ
is the gyromagnetic ratio, Ms is the saturation magnetization,
and bj is the strength of the coupling between the current
density j and the magnetization. In equations (2) and (3) the
abbreviations γ

′

= γ /(1+α2) and b
′

j = bj/(1+α2) have been
used.

With the energy density given above, the wall is able
to rotate freely around the wire; thus for a wire with a
non-circular cross section one adds a second anisotropy term
K⊥sin2(θ)sin2(χ) that describes a hard axis perpendicular
to the wire. The introduction of an external magnetic
field in the direction of the wire yields the additional
term −µ0MsHext cos(θ). A pinning potential in the wire is
described by a pinning energy Epin(X, χ). With the aid of
equation (1) one finds the additional energy

E = 2SλK⊥sin2(χ)− 2Saµ0MsHextX + Epin(X, χ), (4)

Figure 1. Scheme of the magnetization (arrows) of two transverse
walls in a nanowire with width w and thickness d. The parameter a,
that is the sign of the volume charges of the wall, distinguishes
between (a) a tail-to-tail (a = −1) and (b) a head-to-head (a = +1)
domain wall. The orientation of the perpendicular magnetization,
that is important for the surface charges of the wall, is given by the
angle χ .

which includes all three terms. Inserting this energy into
equations (2) and (3) one ends up with

Ẋ =
aλ sin(2χ)

2ατd
−
α2τd

m

∂Epin

∂X
+

aατd

mλ

∂Epin

∂χ
+
λκ1

τd
(5)

for the position and

χ̇ = −
sin(2χ)

2τd
−

aατd

mλ

∂Epin

∂X
−
α2τd

mλ2

∂Epin

∂χ
+

aακ2

τd
, (6)

for the angle of the wall. Here, the intrinsic damping time τd =

µ0Ms/(2γ
′

K⊥α) and the mass m = Sµ2
0M2

s /(γ
′2

K⊥λ) of the
domain wall have been used [10, 13]. The dimensionless
abbreviations κ1 and κ2 describe the strength of the excitation
due to the current and the field. They are defined as κ1 =

aατdγ
′

Hext−(1+αξ)τdb
′

jj/λ and κ2 = aτdγ
′

Hext/α−(ξ/α−

1)τdb
′

jj/λ.
In the absence of a pinning potential and for a constant

field and a constant current, equation (6) has the solution

sin(2χ)
2

=
a

2

1± 2ακ2 cos(ωχ t)

2ακ2 ± cos(ωχ t)
(7)

with ωχ =
√

4α2κ2
2 − 1/τd. For small excitations (2α|κ2| <

1) there is an equilibrium value for χ with sin(2χeq) = 2aακ2,
while for large excitations (2α|κ2| > 1) the wall performs a
continuous rotation around the wire axis. By inserting this
solution in equation (5) it is possible to derive the velocity
of the wall. For small excitations this velocity is

Ẋeq =
λ(κ1 + κ2)

τd
(8)

when χ has reached its equilibrium value. For 2α|κ2| > 1
the velocity changes with time. For increasing excitations its
average value

Ẋav =
λ(κ1 + κ2)

τd
−
λκ2

τd

τdωχ√
τ 2

dω
2
χ + 1

(9)

2
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changes continuously from λ(κ1 + κ2)/τd to λκ1/τd as
calculated by Hayashi et al [14]. The limiting case for large
excitations has also been derived by Mougin et al [15].

In the presence of pinning potentials, equations (5)
and (6) are solved numerically [12, 16, 13, 17, 18]. These
solutions have been found to reproduce the experimental
results very well and have proven to be helpful in the
interpretation [12, 16, 13, 17]. Furthermore, this model was
also successful in predicting new effects in the dynamics of
a single domain wall [18]. If more than one domain wall is
involved in the dynamics, the interactions between two walls
have to be taken into account to obtain a reliable prediction of
the motion of the walls.

3. Domain wall interaction

For one domain wall the wall moves in a potential Epin that
is given by pinning centers in the wire. For systems with
more domain walls the potential for each wall is influenced
by the presence of the other walls. Thus the dynamics of
the wall can be derived by adding the interaction energy to
Epin in equations (5) and (6). This interaction can be between
domain walls in neighboring wires that are close together or
between two walls in the same wire. The interaction energy is
calculated in the following.

The demagnetization energy of the whole sample is given
by

ED =
µ0

8π

∫
(dV ρv(Er)+ dA σs(Er))

×

∫
(dV

′

ρv(Er
′

)+ dA
′

σs(Er
′

))
1

|Er − Er′ |
(10)

with the volume charges

ρv(Er) = −E∇ EM(Er) (11)

and surface charges

σs(Er) = EM(Er)En(Er), (12)

where En(Er) is the normal vector of the surface at position Er.
These charges are depicted in figure 2. In the following all
terms that are independent of the distance apart of the walls
are neglected. The interaction energy of two walls is then
given as

E =
µ0

4π

∫
(dV1 ρv1(Er1)+ dA1 σs1(Er1))

×

∫
(dV2 ρv2(Er2)+ dA2 σs2(Er2))

1

|ER+ Er2 − Er1|
(13)

where Er1 and Er2 are the positions with respect to the center of
the first and second domain walls, respectively. The distance
vector ER points from the center of the first wall to the center
of the second wall. V1 and V2 are the volumes of the first and
second domain walls, respectively. A1 and A2 represent the
respective surfaces. In the following it is assumed that both
walls are situated in nanowires that are aligned along the x
direction. Then equation (13) can be written as

E =
µ0

4π

∫
dV1 ρ1(Er1)

∫
dV2 ρ2(Er2)

1

|ER+ Er2 − Er1|
(14)

Figure 2. Scheme of the volume (upper wire) and the surface
charges (lower wire) of a transverse wall in a wire with a
rectangular cross section. The absolute values of the charges are
given by the color gradient. The arrows denote the magnetization.

with the charge density

ρi(Er) =
aiMs

λicosh2( x
λi
)
2
(wi

2
− |y|

)
2

(
di

2
− |z|

)
+ cos(χi)Ms

δ(y− wi
2 )− δ(y+

wi
2 )

cosh( x
λi
)

2

(
di

2
− |z|

)

+ sin(χi)Ms
δ(z− di

2 )− δ(z+
di
2 )

cosh( x
λi
)

2
(wi

2
− |y|

)
(15)

that includes volume and surface charges. Here the
analytical expressions for the magnetization that are given
in equation (1) are used. The surface integrals are translated
to volume integrals with the aid of a δ-function. 2(x) is
the Heaviside step function. wi and di denote the width and
thickness of the wire in which the ith domain wall is situated,
respectively. The constant ai and the angle χi describe the
magnetization in the ith domain wall as depicted in figure 1.
The term that depends on ai denotes the volume charges and
the terms that depend on χi denote the surface charges. For
a head-to-head wall the volume charges are positive. For a
tail-to-tail wall the volume charges are negative. The angle
χi describes the location of the surface charges. This location
changes when the magnetization in the domain wall rotates
around the wire axis. The energy given in equation (14) is
valid as long as the volumes V1 and V2 of the two walls
do not overlap. However, one has to keep in mind that the
charge density is derived from equation (1), i.e. using the
approximation of a one-dimensional model.

For |Er1| � |ER| and |Er2| � |ER| one is able to expand the
interaction in equation (14) in a series of multipoles. A Taylor
series up to second order in Er1 and Er2 at Er1 = 0 and Er2 = 0
yields

E ≈
µ0

4π |ER|
q1q2 +

µ0

4π |ER|3
(Ep1q2 − q1Ep2)ER

+
µ0

8π |ER|5
ER(2(Ep1Ep2)1− 6Ep1 ⊗ Ep2+Q1q2+q1Q2)ER, (16)

where qi, pi, and Qi are the monopole, dipole, and quadrupole
moments of the ith wall, respectively.

3
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In the following it is assumed for simplicity that the two
domain walls are in wires that have the same width w and
thickness d. Since the width λ of the wall depends only on
material parameters and the cross section of the wire, the
widths of the two walls are the same. The monopole of the
ith wall is

qi = 2MsaiS. (17)

Here, S = wd is the cross section of the wire. The dipole and
quadrupole moments are given by

Epi = MsSπλ(0, cos(χi), sin(χi)) (18)

and

Qi = Ms
aiS

6

×

2π2λ2
− w2

− d2 0 0

0 2w2
− π2λ2

− d2 0

0 0 2d2
− π2λ2

− w2

 .
(19)

With these multipole moments one is able to expand the
interaction energy in terms of 1/R with R= |ER|. The first order
is given by the interaction between the two monopole terms.
The corresponding energy is

Eqq =
µ0M2

s S2

πR
a1a2. (20)

The second order is the interaction between the monopole of
the first wall with the dipole of the second wall and vice versa.
This energy is then given as

Epq =
µ0M2

s S2

2R3 λa1a2(Ry(a1 cos(χ1)− a2 cos(χ2))

+ Rz(a1 sin(χ1)− a2 sin(χ2))). (21)

The next order consists of two terms, that are the
dipole–dipole and quadrupole–monopole interactions. The
dipole–dipole term is

Epp =
µ0M2

s S2

4R5 πλ2(R2
− 3R2

y) cos(χ1) cos(χ2)

+
µ0M2

s S2

4R5 πλ2(R2
− 3R2

z ) sin(χ1) sin(χ2)

− 3
µ0M2

s S2

4R5 πλ2RyRz(cos(χ1) sin(χ2)

+ sin(χ1) cos(χ2)). (22)

The energy of the quadrupole–monopole interaction can be
calculated as

EQq =
µ0M2

s S2

12πR5 ((2π
2λ2
− w2

− d2)R2
x + (2w2

− π2λ2

− d2)R2
y + (2d2

− π2λ2
− w2)R2

z )a1a2. (23)

The energies in equations (20)–(23) have to be added to
the energy of the wall that is used in equations (5) and (6).
Thus the interaction has an influence on the domain wall
dynamics.

The interaction energy should be invariant under a
rotation of the sample by 180◦ around the x axis with a
renumbering of the walls and under an inversion of the
magnetization. The rotation is equivalent to the substitutions

a1 → a2, a2 → a1, χ1 → χ2 + π,

χ2 → χ1 + π, and Rx →−Rx.
(24)

Here Ry and Rz remain the same because both the rotation
and the renumbering change their sign. The inversion of the
magnetization is equivalent to the substitutions

a1 →−a1, a2 →−a2,

χ1 → χ1 + π, and χ2 → χ2 + π.
(25)

Obviously, equations (20)–(23) are invariant under the above
substitutions.

4. Domain walls in the same wire

If both domain walls are in the same wire, Ry = Rz = 0. Thus
the dipole–monopole interaction vanishes. The remaining
contributions to the interaction energy become

Eqq =
µ0M2

s S2

πR
a1a2 (26)

for the monopole–monopole interaction,

Epp =
µ0M2

s S2

4R3 πλ2 cos(χ1 − χ2) (27)

for the dipole–dipole interaction, and

EQq =
µ0M2

s S2

12πR3 (2π
2λ2
− w2

− d2)a1a2, (28)

for the quadrupole–monopole interaction. Thus the interaction
energy is

EWW =
µ0M2

s S2a1a2

πR

×

(
1+

π2λ2(2+ 3a1a2 cos(χ1 − χ2))− w2
− d2

12R2

)
(29)

where the second term in brackets describes the deviation
from the pure monopole model.

5. Domain walls in neighboring wires

For two domain walls that are located in neighboring wires the
dipole–monopole interaction may be finite. In the following
the distance between the centers of the wires points in the y
direction and is denoted by D. The maximum contribution
of the dipole–monopole energy is obtained if | cos(χ1)| =

| cos(χ2)| = 1. In this case the magnetization for both walls
lies in the xy plane as depicted in figure 3. The interaction
energy of two walls that have the smallest possible distance
between them is calculated by setting Rx = Rz = 0 and Ry = D

4
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Figure 3. Schemes of the four different magnetic configurations of a domain wall with a magnetization that lies in the xy plane. The figure
shows domain walls with (a) a = +1 and cos(χ) = +1, (b) a = +1 and cos(χ) = −1, (c) a = −1 and cos(χ) = +1, and (d) a = −1 and
cos(χ) = −1.

in equations (20)–(23). With these assumptions for the angles
and the distance, the energies reduce to

Eqq =
µ0M2

s S2

πD
a1a2 (30)

for the monopole–monopole interaction,

Epq =
µ0M2

s S2

2D2 λa1a2(a1c1 − a2c2) (31)

for the dipole–monopole interaction,

Epp = −
µ0M2

s S2

2D3 πλ2c1c2

= −
µ0M2

s S2

2D3 πλ2a1a2

(
1−

(a1c1 − a2c2)
2

2

)
(32)

for the dipole–dipole interaction, and

EQq =
µ0M2

s S2

12πD3 (2w2
− π2λ2

− d2)a1a2, (33)

for the quadrupole–monopole interaction. Here the abbrevia-
tions c1 = cos(χ1) and c2 = cos(χ2) are used. The interaction
energy is given by

EWW =
µ0M2

s S2a1a2

πD

(
1+

πλ(a1c1 − a2c2)

2D

+
2w2
− π2λ2(7− 3(a1c1 − a2c2)

2)− d2

12D2

)
. (34)

The second and third term in brackets describe the
deviation from the monopole model. It is worth noting that
the first term is of first order in 1/D, in contrast to the
case where the two domain walls are in the same wire. A
maximum attractive interaction is found for a1a2 = −1 and
a1c1 − a2c2 = +2. The dependence of the energy of the
spacing between the wires is depicted in figure 4.

6. Numerical calculations

For a comparison of the analytical expression in equation (34)
with numerical calculations a system that consists of
two parallel wires of length l and distance apart D is
simulated using the object oriented micromagnetic framework
(OOMMF) [19]. For these simulations, wires with rectangular

cross section with w = 100 nm and d = 10 nm are used.
The simulations are performed using the material parameters
of permalloy, which are A = 1.3 × 10−11 J m−1 and Ms =

8× 105 A m−1. The cell size is 1 nm in the x and y directions
and 10 nm in the z direction. A sketch of the interactions in
this system is shown in figure 5. The magnetization at the four
wire ends is kept constant in the direction of the wire. This
ensures that no end domains are formed and the energy of the
ends of the wire can be calculated analytically.

From the expression calculated in equation (1) one finds

m⊥ = MsSπλ (35)

for the magnetic moment m⊥ perpendicular to the wire. In
turn this allows for a calculation of λ from the numerically
obtained value m⊥ = 5.75×10−17 A m2. This leads to a width
of the domain walls of λ = 22.9 nm.

The energy of this system is

E(l,D) = 2EW + EWW(a1, a2, c1, c2,D)− 4EW1(l)

+ 4EW2(l,D)+ 4EWE − 2EEE(D)+ 2EE1(l)

− 2EE2(l,D) (36)

where EW is the self-energy of one domain wall,

EWE =
µ0M2

s d3

4π
FN

(w

d

)
(37)

is the energy of one of the four wire ends [20],

EEE =
µ0M2

s d3

4π

(
FN

(
D+ w

d

)
+ FN

(
D− w

d

)
− 2FN

(
D

d

))
, (38)

with D > w and

FN(x) = x arcsinh(x)+ x2 arcsinh
(

1
x

)

+
x3
+ 1−

√
1+ x23

3
, (39)

is the interaction energy of adjacent ends of different
wires [20], and EWW is the energy of interaction between the
two domain walls. The remaining terms are the interaction
energies as depicted in figure 5. The expressions in
equations (37) and (38) can be derived from equation (10),

5
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Figure 4. Interaction energy of two domain walls with a1a2 = −1 in two parallel wires with w = 100 nm and d = 10 nm calculated from
equation (34) including different orders in 1/D. The width of the domain walls is chosen as λ = 22.9 nm which is the same as for the
numerical results in figure 6. The values for a1c1 − a2c2 are (a) +2, (b) 0, and (c) −2. One magnetic configuration yielding the respective
values of a1a2 and a1c1 − a2c2 is shown in the inset of each subfigure.

Figure 5. Scheme of the different interactions in the two wires. The
positive and negative magnetic charges are denoted by blue plus
signs and red minus signs, respectively. The arrows denote the
magnetization in the domains. (a) Interactions between the two
domain walls and between the domain walls and the ends of the
wire. (b) Interactions between the ends of the wires.

bearing in mind that the magnetization at the ends of the wires
is kept constant as mentioned above.

Besides the sought interaction energy of the two domain
walls, the simulations also yield some additional energies that
are due to the finite distance between the walls and the ends of

the wires, the finite distance between two different ends, and
the self-energy of the ends. The self-energies of the four wire
ends and the interaction energies of adjacent ends of different
wires can be calculated analytically since the magnetization
at the ends of the wires is fixed. The remaining energies due
to interactions with the ends of the wires decrease for longer
wires. For an infinite length these interactions would vanish.

It is not possible to simulate wires of infinite length.
However, it is possible to vary the length l while the distance
D is kept constant. The resulting energies can now be fitted
by an analytical expression that reveals the energy for very
long wires. In the limit of long wires the l dependent energies
can be expressed as a monopole–monopole interaction. For
a1 = +1, a2 = −1, equation (36) becomes

E(l,D) = 2EW + EWW(c1, c2,D)−
7µ0M2

s S2

2π l

+
4µ0M2

s S2

π
√

l2 + 4D2
+
µ0M2

s d3

π

(
FN

(w

d

)
+ FN

(
D

d

))
−

µ0M2
s S2

2π
√

l2 + D2
−
µ0M2

s d3

2π

(
FN

(
D+ w

d

)
+ FN

(
D− w

d

))
. (40)

Here, it is taken into account that the monopoles of the ends
of the ith wire are given by −MsSai.
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Figure 6. ((a)–(d)) Total energies of the systems shown in (f) as determined from micromagnetic simulations (dots), depending on the
length L of the wires and their distance D. The lines are fits using equation (40). (e) Interaction energy of the two domain walls calculated
from the fits in (a)–(d) using equation (41). The values found from (b) and (c) (both configurations have a1c1 − a2c2 = 0) are the same
within the numerical accuracy. The solid (dashed) lines are the analytical results from equation (34) up to third (second) order in 1/D. Here
w = 100 nm, d = 10 nm, and λ = 22.9 nm have been used. The Roman numerals denote the corresponding magnetization configuration in
(f). (f) Scheme of the magnetization for four different domain wall configurations with attractive interaction.

Numerically calculated energies for a1 = +1 and a2 =

−1, and different values of c1, c2, D, and L are depicted
in figure 6. The energies are plotted versus the inverse
wire length and fitted with the asymptotic expression in
equation (40) that is valid for large values of l. From this fit
one fit parameter is determined. This parameter is given by
the energy Efit(c1, c2,D) = 2EW + EWW(c1, c2,D). For an
infinite distance apart D of the wires the interaction energy
EWW certainly vanishes. This yields Efit(c1, c2,∞) = 2EW.
Thus the interaction energy of the domain walls is given by

EWW(c1, c2,D) = Efit(c1, c2,D)− Efit(c1, c2,∞). (41)

In figure 6(e) these energies are compared with the analytical
result from equation (34) up to different orders in 1/D. It
can be clearly seen that the second order in 1/D, that is the
monopole–dipole interaction, is important for reproducing the
behavior of the numerical data. The third order in 1/D is also
found to be not negligible. For the configurations (ii) and (iii)
the monopole–dipole interaction vanishes (see equation (34)).
Thus the respective dashed line in figure 6(e) corresponds to
the value of the monopole–monopole interaction only. The
maximum interaction energy is found for a1c1 − a2c2 = +2
as predicted in equation (34). The contributions of the three

7
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Figure 7. Top view (from the +z direction) of the magnetic field that is generated by a head-to-head domain wall with c = +1. For the
scheme of the magnetization see figure 3(a). (a) Strength of the field determined from micromagnetic simulations. (b) The angle of the field
depicted in (a). ((c), (d)) Field of the same domain wall calculated from the analytically derived magnetization texture using a multipole
expansion up to the third order (quadrupole). ((e), (f)) Calculated strength of the field, using the monopole only. For the sake of clarity in the
illustration of the far field, which is important for the interaction with other walls, large fields in the vicinity of the wall are not shown in (a),
(c), and (e). Each figure depicts an area of 1000× 1000 nm2 with the domain wall in the center. The surfaces of the wire are illustrated by
solid black lines. The dashed and dashed–dotted blue lines in (a) illustrate the positions of the sections shown in figure 8.

different orders in 1/D to the interaction energies are plotted
in figure 4.

The field that is generated by one domain wall is depicted
in figures 7 and 8. It can be seen that there is a good
agreement between the fields that are calculated numerically
and analytically when the dipole and quadrupole moments are
taken into account.

7. Conclusion

The dynamics of interacting transverse domain walls is
calculated analytically making use of a multipole expansion
of the interaction energy up to third order. For domain
walls that are situated in different wires it is found that the
main deficiency of the monopole model is the interaction of
the monopole of the wall in the first wire with the dipole
of the wall in the second wire and vice versa. The next

order is the dipole–dipole and the quadrupole–monopole
interactions. These interactions are found to be also of
considerable size and non-negligible. If the two walls
are in the same wire the dipole–monopole interaction
vanishes and the first corrections are the dipole–dipole and
the quadrupole–monopole interactions. A comparison with
micromagnetic simulations shows a good agreement.
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