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Abstract
We discuss how the observation of population localization effects in periodically driven
systems can be used to quantify the presence of quantum coherence in interacting qubit arrays.
Essential for our proposal is the fact that these localization effects persist beyond tight-binding
Hamiltonian models. This result is of special practical relevance in those situations where
direct system probing using tomographic schemes becomes infeasible beyond a very small
number of qubits. As a proof of principle, we study analytically a Hamiltonian system
consisting of a chain of superconducting flux qubits under the effect of a periodic driving. We
provide extensive numerical support of our results in the simple case of a two-qubit chain. For
this system we also study the robustness of the scheme against different types of noise and
disorder. We show that localization effects underpinned by quantum coherent interactions
should be observable within realistic parameter regimes in chains with a larger number of
qubits.

(Some figures may appear in colour only in the online journal)

1. Introduction

Transport processes are of fundamental importance in a wide
variety of physical and biological systems, ranging from the
actual motion of particles on a lattice [1, 2] to the transfer
of classical and quantum information across spin or harmonic
chains [3–5]. Relevant for our purposes, there exist specific
features of the transport process that are intrinsically linked to
the dynamics of the chain and in particular to whether or not the
chain elements can interact coherently [6]. In the mid-80s the
motion of a charged particle on a one-dimensional lattice under
the influence of a time-dependent electric field was studied
and shown to exhibit dynamic localization (DL) [1]. The
canonical situation to illustrate this phenomenon is provided by
an infinite linear chain of sites along which a charged particle

6 Authors to whom any correspondence should be addressed.

moves under the combined influence of a nearest-neighbour
exchange interaction and a time-dependent external driving.
In that setting, it was found that the mean-square displacement
of the particle as a function of the field modulation E1, rather
than exhibiting a diffusive behaviour, does not grow without
bounds but oscillates sinusoidally. A related phenomenon is the
so-called coherent destruction of tunnelling (CDT), initially
formulated in dissipationless conditions for a symmetric,
externally driven, double-well potential [7] and subsequently
also studied in a dissipative environment [8] (and references
therein). Both DL and CDT are genuine manifestations of
coherent quantum effects resulting from the interference
between different transition paths that leads to the selective
inhibition of transport [9]. In contrast, in the classical case, and
from an initially localized state, an equilibrium state would
be attained in which neighbouring sites would be equally
populated.
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Ample experimental evidence supports the existence of
both types of localization effects in a variety of systems. DL
has been observed in Rydberg atoms, where the localization
regime is characterized by ‘freezing’ the width of the
wave packet with respect to the Rydberg levels [10], in
driven quantum wells or semiconductor superlattices, where
a suppression of the conductance was observed [11] and
in ultracold atoms interacting with a standing wave of
near-resonant light, where this phenomenon was found in
the suppression of momentum [12, 13]. There also exist
experimental proposals to use CDT as a means to control
the dynamics of ultracold atoms in optical lattices [14] and
to create long-distance entanglement between atoms with
the possibility to use it in the implementation of quantum
logical gates [14, 15]. CDT has also been recently observed in
both noninteracting [16] and interacting systems [17]. Further,
motivated by the desire to study the effects of quantum
coherence and dephasing noise and the interplay of the two
on transport processes in biological systems [18], recently the
detection of DL was proposed as a way to demonstrate the
possible existence of coherence effects in ion channels [19],
i.e. protein complexes that regulate the flow of particular ions
across the cell membrane and that are essential for a wide
variety of cellular functions.

Here we extend this work and discuss the possibility of
observing localization effects beyond the canonical setting,
including deviations from a strict tight-binding Hamiltonian
as well as the inclusion of non-Hamiltonian (noisy) effects.
We will show that signatures of localization effects can still be
observed in this case and apply these results to the problem of
qualitatively witnessing quantum coherence in an interacting
chain of superconducting qubits.

2. Renormalization of intra-qubit interactions by
means of an external modulation

Motivated by specific qubit realizations in the solid state, we
analyse an array of interacting qubits subject to a Hamiltonian
of the form (� = 1):

H0 =
N∑

k=1

ωk

2
σ z

k +
N−1∑
k=1

Jk,k+1σ
x
k σ x

k+1, (1)

with N denoting the number of qubits in the chain, ωk the
site energies for each qubit and Jk,k+1 the coupling between
neighbouring qubits k and k + 1. In the presence of a time-
dependent external driving of the form

Hac(t) = 1

2

N∑
k=1

k · Eac cos(ωt)σ z
k (2)

the Hamiltonian H(t) = H0 + Hac(t) of the chain reads

H = 1

2

N∑
k=1

(ωk + kEac cos(ωt))σ z
k +

N−1∑
k=1

Jk,k+1σ
x
k σ x

k+1. (3)

With the substitution σ x
k = σ+

k + σ−
k , the Hamiltonian above

can be rewritten as the sum of three contributions,

H(t) = Hz(t) + H1 + H2 (4)

with,

Hz(t) ≡ 1

2

N∑
k=1

(ωk + kEac cos(ωt))σ z
k (5)

H1 ≡
N−1∑
k=1

Jk,k+1
(
σ+

k σ−
k+1 + h.c.

)
(6)

H2 ≡
N−1∑
k=1

Jk,k+1
(
σ+

k σ+
k+1 + h.c.

)
. (7)

Defining the total excitation number operator as

N̂ ≡
N∑

k=1

σ+
k σ−

k , (8)

it is easy to see that [Hz(t), N̂] = [H1, N̂] = 0 while
[H2, N̂] �= 0. For this reason, the term H1 is usually referred
to as an exchange interaction, in the sense that it allows for
a hopping of the excitations within the chain, but it does not
create or annihilate them. This is the canonical interaction in
previous studies of dynamical localization in systems that can
be modelled with a tight-binding Hamiltonian [1].

In the following lines we will show that the interactions
described by the terms H1 and H2 can indeed be enhanced or
inhibited separately by the proper tuning of frequency ω and
amplitude Eac of the external field.

To gain an insight into the problem, it is convenient
to move to an interaction picture with respect to the time-
dependent term Hz(t). That is, we first define

U0(t) ≡ exp+

{
−i

∫ t

0
dτHz(τ )

}
= exp

{
−i

∫ t

0
dτHz(τ )

}
,

(9)

where we have made use of the fact that Hz(t) commutes
with itself at different times to write the last equality above.
Computing explicitly the integral above and taking into
account that the operators acting on different sites commute,
we have that

U0 =
N∏

k=1

exp

{
−i

ωkt

2
σ z

k − i
kEac

2ω
sin(ωt)σ z

k

}
. (10)

Hence, the interaction picture Hamiltonian of our chain can be
written as

H ′(t) ≡ U0(t)
†(H1 + H2)U0(t) ≡ H ′

1(t) + H ′
2(t), (11)

where we have defined H ′
1(t) ≡ U0(t)†H1U0(t) and H ′

2(t) ≡
U0(t)†H2U0(t). Now, making use of equation (9) and the
Jacobi–Anger expansion eiz sin(φ) = ∑∞

n=−∞ Jn(z) einφ , where
Jn(x) are the Bessel functions of the first kind, we can proceed
further and evaluate the form of these terms explicitly as

H ′
1(t)=

N−1∑
k=1

Jk,k+1σ
+
k σ−

k exp

{
i(ωk − ωk+1)t − i

Eac

ω
sin(ωt)

}

+h.c.

=
N−1∑
k=1

Jk,k+1σ
+
k σ−

k ei(ωk−ωk+1)t
∞∑

n=−∞
Jn

(
Eac

ω

)
einwt

+h.c. (12)
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H ′
2(t) =

N−1∑
k=1

Jk,k+1σ
+
k σ+

k exp

{
i(ωk + ωk+1)t

+i
Eac(2k + 1)

ω
sin(ωt)

}
+ h.c.

=
N−1∑
k=1

Jk,k+1σ
+
k σ+

k ei(ωk+ωk+1)t

×
∞∑

n=−∞
Jn

(
Eac(2k + 1)

ω

)
einwt + h.c.. (13)

For the sake of clarity we will consider in the following
the case of a homogeneous chain with ωk = ω0 and Jk,k+1 = J
for all values of k. Under this assumption the Hamiltonian
H ′(t) can be written as

H ′(t) =
N−1∑
k=1

g(t)σ+
k σ−

k+1 + g′
k(t)σ

+
k σ+

k+1 + h.c. (14)

with time-dependent renormalized couplings g(t) and g′(t)
defined as

g(t) ≡ J
∞∑

n=−∞
Jn

(
Eac

ω

)
einwt (15)

g′
k(t) ≡ J

∞∑
n=−∞

Jn

(
Eac(2k + 1)

ω

)
ei(2ω0+nw)t . (16)

In the regime where the tunnelling frequency of the qubits is
much smaller than the frequency of the driving field, that is
J � ω, we can invoke the rotating wave approximation in the
series above and neglect those terms that rotate faster than J. In
particular, for g(t) this means that only the non-rotating term
with n = 0 survives and we can write

g(t) ≡ g = J · J0

(
Eac

ω

)
. (17)

Applying the same reasoning to g′(t) it follows that the only
possibility to have surviving terms is that a resonance between
ω0 and ω occurs such that 2ω0+n′ω = 0 for some integer value
n′ ∈ Z. In this case, equation (16) can be further simplified,
yielding

g′
k(t) ≡ g′

k = J · J|n′ |

( |n′|Eac(2k + 1)

2ω0

)
. (18)

We therefore see that the effect of the external modulation
can be interpreted as renormalization of the coupling constants,
imprinting a periodic dependence that will lead to a selective
inhibition of transport. In the following sections we will
provide numerical evidence of the accuracy of the expressions
derived above. This type of localization effect will be later
exploited to detect signatures of coherent interaction in arrays
of coupled qubits.

3. System description

We will study the persistence of population localization effects
induced by the renormalization of the hopping coupling,
as explained in the previous section, in the dynamics of
superconducting qubit arrays. Superconducting qubits are

effective two-level systems with a controllable transition
frequency between their eigenstates, whose potential to be
manufactured lithographically in a controlled manner and in
a variety of geometries makes them a promising candidate
for the implementation of quantum registers and information
processors [20]. On the other hand, while the fabrication of
structures involving many qubits is indeed feasible [21], its
effective probing, and in particular the verification that the
system does exhibit quantum coherence, is beyond the realm of
current technology even for moderate system size. The current
state of the art is provided by the tomographic analysis and the
entanglement verification of three-qubit systems [22–24].

In general, the superconducting qubit Hamiltonian can
be written as Hs = (ε/2) σ z + (�/2) σ x. Depending on the
particular qubit realization, the parameters ε and � refer to
different variables defining ‘charge’, ‘phase’ or ‘flux’ qubits.
The latter, also called ‘persistent current qubit’, consists
of a superconducting loop interrupted by three Josephson
junctions, two with capacitance C1 and the third with C2

[25, 26, 20]. The values of the three Josephson junctions
coupling constants, EJ,1 corresponding to capacitance C1 and
EJ,2 to capacitance C2, respectively, are chosen so that the
Josephson part of the Hamiltonian alone defines a bistable
system. At a value of external magnetic flux � ≈ 0.5�0 (�0 =
h/2e is the superconducting flux quantum), the system carries
either a clockwise or counterclockwise persistent current, each
generating an equal but opposite magnetic flux and defining the
two possible states of this qubit. With an appropriate choice
of the parameters EJ,1,2 and C1,2, the barrier in phase space
separating the left and right current states can be made low
enough so that tunnelling between the two classical states
can occur. For the flux qubits, � represents the tunnelling
amplitude, while the energy bias ε = −Ip(� − 0.5�0) is
proportional to the detuning �−0.5�0, with Ip the circulating
current. The energies of the ground and first excited states are
thus E∓ = ∓√

ε2 + �2.
For flux qubits, the most natural implementation for

the interaction is through the mutual inductances between
the loops. The flux generated by the one-qubit loop, which
depends on its internal state, adds to the total flux picked
up by the neighbouring qubits, thereby changing the energy
biases of those qubits. The mutual inductance, and therefore
the strength of the interaction (J), depends on the geometry
of the qubit loops, specifically their size and their proximity
to each other. The strength of the coupling can be enhanced
in two steps. First by physically connecting the loops so that
their persistent currents share a common line. In this case the
kinetic inductance of the shared line adds to the geometrical
inductance, where the former term can easily be the dominating
part in the total interaction strength. To reach very strong
coupling, for example to reach the regime J > �, a fourth
junction can be placed in the shared line. If the capacitance and
Josephson junction coupling constant of this fourth junction
are large compared to parameters of the qubit junctions, then
the single-qubit properties are not significantly altered, while
still the interaction strength can be enhanced dramatically.
Coupling strengths of several GHz are easily achieved. For
the sake of the suggested experiments in this paper it is

3
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excite

readoutH
ac

(t
)

Figure 1. Schematic depiction of a superconducting qubit chain with
controllable injection and readout as well as individual addressing
for local modulation. By means of population measurements on a
selected qubit, the presence of quantum coherence is inferred from
dynamical localization effects, as described in the main text.

however not necessary to reach such high coupling values
since the hopping inhibition between the qubits is enhanced
in the regime where the hopping constant is smaller than the
driving frequency, i.e. J � ω (see equations (15), (16) and the
explanations below those expressions).

In the experiment described in [27], it is demonstrated how
the standard flux qubit design, for which only ε is a tunable
parameter, can be extended to also have a tunable �. The main
change is that the smallest junction of the qubit is replaced by a
small loop containing one junction in each arm, i.e. in a SQUID
(superconducting quantum interference device) geometry. The
SQUID acts as a single junction with tunable EJ , tuned by the
flux penetrating the small loop. Local control lines can be used
to change the flux through this loop, thereby controlling the
EJ,2 of the qubit, and thus the �. Figure 1 shows a schematic
of a possible implementation of a chain of strongly interacting
flux qubits with tunable tunnelling splitting �. When the array
of interacting superconducting flux qubits is operated at their
corresponding degeneracy point, the chain is described by a
Hamiltonian of the form (1), with ωi = �i. Typical values for
the tunnelling amplitudes are in the range of 5–20 GHz while
nearest-neighbour couplings J ∼ 200 MHz. The residual next-
to-nearest coupling is smaller than 10 MHz.

As far as the coupling to the environment is concerned,
typically, noise sources that are located relatively far away
from the chain couple to multiple or all qubits in the chain,
for example magnetic coils, or some parts of the control
and readout circuits. Noise sources that are located much
closer, such as local control lines for the individual qubits,
or microscopic noise sources in the materials surrounding the
qubits, couple only, or mostly, to a single qubit. In this work
we focus on the latter type: we suppose the array to be in
contact with an external environment that acts locally on each
qubit and can lead in principle to both pure dephasing and
dissipation. In our model each qubit is coupled to its local
environment via a spin-boson Hamiltonian of the form

HSB = Hs + Hb + Hs−b, (19)

where the bath is modelled as a collection of harmonic
oscillators, Hb = ∑

k ωkâ†
k âk, and the system and bath couple

linearly through the Hamiltonian [28]

Hs−b = σ i
z X̂i. (20)

Here X̂i = ∑
k gk

(
âk + â†

k

)
denotes the bath’s force operator.

In the qubit eigenbasis and using the same symbols to denote
the Pauli matrices in this new frame in order not to complicate

Figure 2. Coherent destruction of tunnelling. Simulations
corresponding to a N = 2 chain with ω1 = ω2 = 10 GHz and
hopping J = 10 MHz. The black dots have been computed with
ω = 0.3 GHz and H(t) = Hz(t) + H1 (see definitions in the text).
The black line has been computed with ω = 0.3 GHz and
H(t) = Hz(t) + H1 + H2. The red line has been computed with
ω = 2.0 GHz and H(t) = Hz(t) + H1 + H2. The dissipation rate is
the same in all curves, γdiss = 1 MHz. The dashed vertical lines
represent the first z0,1 � 2.4048 and second z0,2 � 5.5201 zeros of
the Bessel function J0(z).

the notation, we can derive, using the standard assumptions, a
Markovian master equation ρ̇ = −i[H, ρ]+Ldeph(�)+Ldiss(�)

for the qubit array where the coupling to the local environment
is described in terms of Lindblad terms of the form [29–32]

Ldeph(�) = γdeph

N∑
i=1

(
2σ+

i σ−
i �σ+

i σ−
i − {

σ+
i σ−

i , �
})

(21)

Ldiss(�) = γdiss

N∑
i=1

(
2σ−

i �σ+
i − {

σ+
i σ−

i , �
})

, (22)

with γdeph and γdiss denoting the dephasing and dissipation
rate, respectively, σ±

i = (
σ x

i ± iσ y
i

)
/2 acting on the ith

qubit of the chain and { , } the anticommutation operation.
The value of the noise rates in these expressions depends
strongly on the selected qubit operating point via the parameter
θ = arctan(�/ε). Measured values for T1 = γ −1

diss range from
150 to 500 ns while pure dephasing times

(
T 

2

)
are typically

around 300 ns. In the specific case where each qubit in the chain
is operated at the degeneracy point, so that ε = 0 for every
qubit, the pure dephasing term, which has a rate γdeph ∼ cos(θ )

[29], cancels out and the chain is subject to dissipative noise
only. This is the first parameter regime that we are going to
analyse in the following section with the aim of unveiling
coherent dynamics through dynamical localization effects in a
driven chain. Later, still operating each qubit at its degeneracy
point, we will relax the constraint of having only dissipation
noise and we will consider possible dephasing effects arising
from terms with the form of equation (21).

4. Numerical results

The phenomenon described above concerning the renormal-
ization of the coupling constants in the interaction Hamiltonian
(4) under the effect of an external sinusoidal driving field can
be clearly observed in figure 2. There we study the dynamics

4



J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 104002 J Almeida et al

Figure 3. Resonance conditions. Simulations for a N = 2 chain with
ω1 = ω2 = 10 GHz, J = 10 MHz and a dissipation rate
γdiss = 1 MHz. For each value of ω, the electric field is fixed so that
Eac/ω = z0,1, where z0,1 � 2.4048 is the first zero of the Bessel
function J0(z). The axis on the top represents some integer values
n′ = 2ω0/ω for which the resonance condition in the coupling
constant g′ is fulfilled.

of a chain consisting in two inductively coupled supercon-
ducting qubits operated at their degeneracy points, so that the
(undriven) system Hamiltonian is given by equation (1). In this
case, as discussed before, the noise is purely dissipative when
expressed in the rotated basis. The system is initialized so that
only the first site is excited. The different curves correspond to
the maximum value of the population that has been transferred
from the first to the second qubit within a sufficiently long time
interval (1 μs). The black line corresponds to an off-resonance
situation (ω0 = 10 GHz, ω = 0.3 GHz, with no integer value
n′ such that 2ω0+n′ω = 0). In this situation the coupling of the
contribution given by H2 effectively renormalizes to zero and
the dynamics is governed by the tight-binding term H1. Ac-
cording to expression (15), it is the Bessel function J0(Eac/ω)

which governs this behaviour and when its argument Eac/ω

coincides with one of its zeros, then the hopping between
both qubits is suppressed. On the other hand, the red curve
has been computed on a resonance situation (ω0 = 10 GHz,
ω = 2.0 GHz, such that 2ω0 + n′ω = 0 for n′ = −10). In this
situation both couplings g and g′ in equations (15) and (16) are
in general different from zero and the total dynamics is hence
more convoluted. Note that the fact that both the red and black
curves are indistinguishable to the eye for low values of Eac/ω

is due to the slow buildup of the Bessel function Jn′ (z) (with
n′ = 10) that governs the H2 term. Finally, the black circles in
figure 2 have been computed using the same parameters that
we used for the off-resonance situation but this time we explic-
itly excluded the contribution given by the H2 terms. The fact
that the black line and the black circles superimpose each other
is a clear indication that the term H2 effectively renormalizes
to zero when the field is out of resonance with this term.

The existence of resonance conditions for the terms
contributed by H2 in expression (4) is clearly illustrated in
figure 3, which has been evaluated with the same parameters
as in figure 2. We have however fixed the ratio Eac/ω = z0,1

with z0,1 � 2.4048, the first zero of the Bessel function of
order zero. With this constraint the population transfer induced
by the terms contributed by H1 in equation (4) is completely

Figure 4. Effect of frequency inhomogeneities. Maximum value of
the population transferred from qubit 1 to qubit 2 in a N = 2 chain
after a fixed time tmax = 500 ns. The frequency of the external field
is ω = 1.3 GHz and its magnitude is fixed so that Eac/ω = 1.2, far
from the closest zero of the J0(z) Bessel function. The parameters of
the qubits are ω0 = 10 GHz and J = 10 MHz. The dephasing and
dissipation rates have been set to zero for clarity.

suppressed. We have however the freedom to use different
values of the driving field ω such that the term H2 is either on-
or off-resonance with the frequency ω0. We can clearly see in
figure 3 those values (compatible with the discrete grid used
to sample the frequency ω) where the resonance condition is
fulfilled and a peak in the population transfer appears, induced
entirely by the terms in H2.

As a result, the presence of a correction to the
canonical Hamiltonian H1 does not hinder the manifestation
of localization effects. By appropriate tuning of the external
driving we can select resonance conditions that lead to
inhibition of transport and provide a fingerprint of the
underlying coherent evolution. In figure 4 we illustrate the
effect of an inhomogeneous distribution of the tunnelling
amplitudes of the qubits within the chain. Not surprisingly, the
presence of this sort of disorder in the array leads to a quick
loss of contrast. However, the fact that the tunnelling amplitude
of superconducting flux qubits is actually tunable can provide
a mechanism to overcome this difficulty by minimizing or
even suppressing the local disorder in the chain7. On the other
hand, real implementations of interacting superconducting flux
qubits typically result in interaction strength differences of the
order of a few per cent between different nearest neighbours.
It is important to stress at this point that these differences have
little effect in our previous discussion since they do not affect
the resonance conditions in equations (15) and (16) that are
the key to the hopping inhibition effect presented in this work.

In real implementations of superconducting flux qubits
we should also expect deviations from a purely dissipative
model of noise. This motivates the study of the effect of
pure dephasing processes in our system. To this end we will
introduce in the master equation a Lindblad term of the form
given in equation (22), with dephasing rate γdeph. To single out
the effect of pure dephasing, we will take a vanishingly small
dissipation rate, that is γdiss = 0.

In figure 5 we have studied how the transference
of population in a chain is affected by pure dephasing
noise terms. In figure 5 (top) we plot the dynamics of

7 Recent work on tunable schemes is for instance reported in [33].
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Figure 5. Effect of pure dephasing noise. Top: population transfer
from qubit 1 to qubit 2 in a N = 2 chain and the following
parameters: ω1 = ω2 = 10 GHz, J = 10 MHz, ω = 1.3 GHz. The
dissipation rate has been set to zero (γdiss = 0.0) for clarity and a
new dephasing rate γdeph has been included (Ldeph ≡ γdeph

∑
Lk(σ

z),
with Lk(σz) = σ z

k ρσ z
k − ρ). Each panel corresponds to a fixed value

z = Eac/ω with z0,1 � 2.4048, the first zero of the Bessel function
J0(z). Bottom: maximum value of the population transferred to the
second qubit in the time interval and with the same parameters as
those in the figure on top and the following dephasing rates (in
GHz): γdeph = 0.0 (blue), γdeph = 0.001 (green), γdeph = 0.005 (red),
γdeph = 0.01 (turquoise), γdeph = 0.05 (cyan), γdeph = 0.1 (yellow).

the population for different values of the dephasing rate,
γdeph = {0.0, 0.001, 0.01, 0.1}GHz. It is worth remarking
that the inclusion of these terms in the master equation
leads to an asymptotic stationary state that is maximally
mixed [34]. However, the transient dynamics still provides
valuable information. It is remarkable to note that even though
the dephasing rapidly destroys the coherent oscillations of
the population, still the renormalization of the hopping rate
survives for surprisingly large values of γdeph. This fact can be
clearly appreciated in the panel with Eac/ω = z0,1 where the
hopping is strongly inhibited and still notable for dephasing
rates as high as γdeph = 100 MHz. In figure 5 (bottom) we
have plotted the same information in a more compact format.
In this graph the effect of dephasing can be clearly seen to
reduce the visibility of the population transfer oscillations (as a
function of Eac/ω ). Nonetheless, as stated above, the hopping
modulation is quite visible also in this graph even for large
values of the dephasing rate.

Figure 6. Quantum coherence in a N = 2 chain. In this graph we
plot the magnitude C ≡ max

∑
i, j �=i abs(ρi, j(t)) as a function of the

visibility of the transport pattern (population fringes in figure 5). We
have considered 27 values of the pure dephasing rate in a logarithmic
scale from γdeph = 0.1 GHz (Cmax � 0) to γdeph = 0.0 GHz
(Cmax = 0.5). For convenience we have fixed γdiss = 0.

Figure 7. Hopping inhibition in a N = 6 chain. Maximum value of
the population transferred from the first qubit to the last one in a
N = 6 chain within a time interval of 2.8 μs. The frequency of the
external field is ω = 1.3 GHz and its magnitude is fixed so that
Eac/ω = 1.2, far from the closest zero of the J0(z) Bessel function.
The parameters of the qubits are ω1 = 10 GHz and J = 10 MHz.
For this computation we have considered dissipation noise only,
with the following rates (in GHz): γdiss = 0.0001 (blue),
γdiss = 0.0005 (green), γdiss = 0.001 (red), γdiss = 0.005 (turquoise,
slightly visible).

The qualitative relation between the properties of the
transport dynamics and the coherence in the system is
illustrated in figure 6. In this figure we have represented
the coherence of the chain, quantified by the sum of
the off-diagonal elements of the density matrix C ≡
max

∑
i, j �=i abs(ρi, j(t)), as a function of the visibility of the

population fringes depicted in figure 5. For the sake of clarity
we have used a purely dephasing noise since it uniquely
affects the coherence terms of the density matrix. The main
conclusions are however unaffected by including dissipation
terms. We can see in this graph that the degree of quantum
coherence of the system can be properly quantified by the
transport schemes proposed in this work. For small values
of the dephasing rate, the relation between coherence and
visibility is indeed essentially linear. As a result, population
measurements alone would allow, in the presence of a tunable
driving, signatures of quantum coherence in the system to
be detected. The scalability of the procedure is illustrated
in figure 7 for an array of N = 6 qubits, a system size
that is currently untractable with tomographic schemes. As
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opposed to the previous graphs computed for N = 2, now the
one-excitation sector contains more than two eigenstates and
hence the population dynamics is affected by more than one
characteristic frequency. This results in a more convoluted
dynamics and different possible protocols to measure the
hopping inhibition. For this graph we have chosen to start with
a chain where only the first qubit is initially on its excited
configuration; we measure then the maximum population
transferred to the last qubit within a time interval of 2.8 μs,
long enough to allow the initial excitation to reach the end of
the chain. Note in this graph that the perfect hopping inhibition
is again only achieved at the zeros of the corresponding Bessel
functions. The fact that the hopping seems to vanish in an
extended interval around this point is only a consequence of
the interplay between the finite time interval used to perform
the population measure and the arrival time required for a wave
packet created at the beginning of the chain to reach its end
(see [15] for a thorough study of this topic), which increases
as the hopping rate decreases.

5. Conclusions

To summarize, we have analysed the persistence of localization
effects beyond exact tight binding Hamiltonians and beyond a
closed system description. Introducing an a.c. interaction term
of the form of equation (2), we have seen that the original
ZZ coupling, which provides the natural model for the actual
coupling in superconducting architectures, can be effectively
mapped into the Hamiltonian (14) where the excitation-
preserving and non-preserving terms are affected by two
different renormalized couplings g and g′. We have seen that
these effective couplings are determined by certain resonance
conditions (for the coupling g there is always a resonance
for n′ = 0, for g′ the stronger condition 2ω0 + n′ω = 0 is
required) and, given that the resonance conditions are fulfilled,
by the arguments of the Bessel functions that define these
couplings. In conclusion, we have proposed a method that
allows us to tune independently two kinds of interaction of
very different nature but with the common feature of leading
to localization phenomena. These are shown to be useful for
witnessing the coherent behaviour of coupled qubit arrays. As
a proof of principle, using typical parameter regimes in chains
of superconducting flux qubits, we have shown that transport
inhibition can be qualitatively linked to the degree of coherence
in the system. These types of experiments, which involve
population measurements only, can provide a benchmark
for quantum behaviour in systems whose complexity makes
them unsuited for detailed tomographic analysis, ranging
from arrays of self-assembled quantum dots [35] to coupled
nanomagnets [36].
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