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Abstract
The ground-state correlation functions of a one-dimensional homogeneous
Bose system described by the Lieb–Liniger Hamiltonian are investigated by
using exact quantum Monte Carlo techniques. This paper is an extension of
a previous study published in Astrakharchik G E and Giorgini S (2003 Phys.
Rev. A 68 031602). New results on the local three-body correlator as a function
of the interaction strength are included and compared with the measured value
from three-body loss experiments. We also carry out a thorough study of the
short- and long-range behaviour of the one-body density matrix.

1. Introduction

Recent progress achieved in techniques of confining Bose condensates has led to experimental
realizations of quasi-one-dimensional (1D) systems [1–6]. The quasi-1D regime is reached
in highly anisotropic traps, where the axial motion of the atoms is weakly confined while
the radial motion is frozen to zero-point oscillations by the tight transverse trapping. These
experimental achievements have revived interest in the theoretical study of the properties of
1D Bose gases. In most applications, a single parameter, the effective 1D scattering length
a1D, is sufficient to describe the interatomic potential, which in this case can be conveniently
modelled by a δ-function pseudopotential. For repulsive effective interactions, the relevant
model is provided by the Lieb–Liniger Hamiltonian [7]. Many properties of this integrable
model such as the ground-state energy [7], the excitation spectrum [8] and the thermodynamic
functions at finite temperature [9] were obtained exactly in the 1960s using the Bethe ansatz
method. Less is known about correlation functions, for which analytic results were obtained
only in the strongly interacting regime of impenetrable bosons [10] and for the long-range
behaviour of the one-body density matrix [11]. More recently, the properties of correlation
functions of the Lieb–Liniger model have attracted considerable attention and the short-range
expansion of the one-body density matrix [12], as well as the local two- and three-body
correlation function [13], has been investigated. However, a precise determination of the
spatial variation of correlation functions for arbitrary interaction strength is lacking.

We use exact quantum Monte Carlo methods to investigate the behaviour of correlation
functions in the ground state of the Lieb–Liniger model. Over a wide range of values, for
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the interaction strength, we calculate the one- and two-body correlation function and their
Fourier transform giving, respectively, the momentum distribution and the static structure
factor of the system. These results were already presented in a previous study [14] and are
briefly reviewed here. We present new results on the local three-body correlation function
ranging from the weakly up to the strongly interacting regime. We have also investigated in
more details the long- and short-range behaviour of the one-body density matrix, including
a discussion of finite-size effects and of the validity of the trial function used for importance
sampling. We always provide quantitative comparisons with known analytical results obtained
in the weak- or strong-correlation regime or holding at short or large distances. In the case of
the local three-body correlator, we also compare available experimental results obtained from
three-body loss measurements [4].

The structure of the paper is as follows. In section 2, we introduce the definitions of
the spatial correlation functions and their Fourier transform. In section 3, we discuss the
Lieb–Liniger model and give a summary of the main known results concerning correlation
functions in this model. Section 4 is devoted to a brief description of the quantum Monte
Carlo method used for the numerical solution of the Schrödinger equation. The optimization
of the trial wavefunction used for importance sampling and the effects due to finite size are
discussed here. The results for correlation functions are presented in section 5. Finally, in
section 6 we draw our conclusions.

2. Correlation functions

We use the first quantization definition of correlation functions in terms of the many-body
wavefunction of the system �(z1, . . . , zN), where z1, . . . , zN denote the coordinates of the N
particles. We are interested in the regime where the most relevant fluctuations are of quantum
nature. In the following, we will always consider homogeneous systems at T = 0 and the
ground-state wavefunction of the system will be denoted by �0(z1, . . . , zN).

The one-body density matrix g1(z) describes the spatial correlations in the wavefunction
and is defined as

g1(z) = N

n

∫
�∗

0 (z1 + z, . . . , zN)�0(z1, . . . , zN) dz2 · · · dzN∫ |�0(z1, . . . , zN)|2 dz1 · · · dzN

, (1)

where n = N/L is the one-dimensional density. The normalization of g1(z) is chosen in such
a way that g1(0) = 1.

Another important quantity is the pair distribution function g2(|z1 − z2|), which
corresponds to the probability of finding two particles separated by |z1 − z2|:

g2(|z1 − z2|) = N(N − 1)

n2

∫ |�0(z1, . . . , zN)|2 dz3 · · · dzN∫ |�0(z1, . . . , zN)|2 dz1 · · · dzN

. (2)

The normalization is chosen in such a way that at large distances g2(z) goes to 1 − 1
N

, i.e.
becomes unity in the thermodynamic limit N → ∞.

The value at zero distance of the three-body correlation function gives the probability of
finding three particles at the same position in space

g3(0) = N(N − 1)(N − 2)

n3

∫ |�0(0, 0, 0, z4, . . . , zN)|2 dz4 · · · dzN∫ |�0(z1, . . . , zN)|2 dz1 · · · dzN

. (3)

The knowledge of the density dependence of g3(0) allows one to estimate the rate of
three-body recombinations which is of great experimental relevance [4].
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Much useful information can be obtained from the Fourier transform of the above
correlation functions. The momentum distribution n(k) is related to the one-body density
matrix (equation (1)):

n(k) = n

∫
eikzg1(z) dz, (4)

and the static structure factor S(k) is instead related to the pair distribution function
(equation (2)):

S(k) = 1 + n

∫
eikz(g2(z) − 1) dz. (5)

The momentum distribution can be measured in time-of-flight experiments [5] and the
static structure factor using Bragg spectroscopy [15].

3. Lieb–Liniger Hamiltonian

A bosonic gas at T = 0, confined in a waveguide or in a very elongated harmonic trap, can be
described in terms of a one-dimensional model if the energy of the motion in the longitudinal
direction is insufficient to excite the levels of the transverse confinement. Further, if the range
of the interatomic potential is much smaller than the interparticle distance and the characteristic
length of the external confinement, a single parameter is sufficient to describe interactions,
namely the effective one-dimensional scattering length a1D. In this case, the particle–particle
interactions can be safely modelled by a δ-pseudopotential. Such a system is described by the
Lieb–Liniger (LL) Hamiltonian [7]:

Ĥ LL = − h̄2

2m

N∑
i=1

∂2

∂z2
i

+ g1D

∑
i<j

δ(zi − zj ), (6)

where the coupling constant g1D is related to a1D by g1D = −2h̄2/ma1D,m being the particle
mass. In the presence of a tight harmonic transverse confinement, characterized by the
oscillator length a⊥ = √

h̄/mω⊥, the scattering length a1D was shown to exhibit a non-
trivial behaviour in terms of the 3D s-wave scattering length a3D due to virtual excitations of
transverse oscillator levels [16]

a1D = −a⊥

(
a⊥
a3D

− 1.0326

)
. (7)

In typical experimental conditions, far from a Feshbach resonance, one has a3D � a⊥.
In this case, the above equation simplifies to a1D = −a2

⊥
/
a3D, which coincides with the

mean-field prediction [17]. In the vicinity of a magnetic Feshbach resonance, the value of a3D

can become comparable with a⊥ and the coupling constant g1D varies over a wide range as it
goes through a confinement induced resonance [16].

All properties in the model depend only on one parameter, the dimensionless density
n|a1D|. Contrary to the 3D case, where at low density the gas is weakly interacting, in 1D
small values of the gas parameter n|a1D| correspond to strongly correlated systems. This
peculiarity of 1D systems can be easily understood by comparing the characteristic kinetic
energy h̄2n2/D/2m, where D denotes the dimensionality, to the mean-field interaction energy
gn. In 3D, g3Dn ∝ n|a3D| � n2/3 if n|a3D|3 � 1. In 1D, instead, g1Dn ∝ n/|a1D| � n2 if
n|a1D| � 1.

The ground-state energy of the Hamiltonian (6) with g1D > 0 was first obtained by Lieb
and Liniger [7] using the Bethe ansatz method. The energy of the system is conveniently
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Figure 1. Energy per particle: Bethe ansatz solution (solid line); GP limit (dashed line) and
TG limit (dotted line). The circles are the results of DMC calculations. Energies are in units of
h̄2/(ma2

1D).

expressed as E/N = e(n|a1D|)h̄2n2/2m, where the function e(n|a1D|) is obtained by
solving a system of integral equations. In the mean-field Gross–Pitaevskii (GP) regime,
n|a1D| � 1, the energy per particle is linear in the density EGP/N = g1Dn/2, while in the
strongly correlated Tonks–Girardeau (TG) regime, n|a1D| � 1, the dependence is quadratic
ETG/N = π2h̄2n2/6m. The equation of state resulting from a numerical solution of the LL
integral equations is shown in figure 1 as a function of the gas parameter n|a1D|.

In the TG regime, the energy of an incident particle is not sufficient to tunnel through the
repulsive interaction potential and two particles will never be at the same position in space.
This constraint, together with the spatial peculiarity of 1D systems, acts as an effective Fermi
exclusion principle. Indeed, in this limit, the system of bosons acquires many Fermi-like
properties. There exists a direct mapping of the wavefunction of strongly interacting bosons
onto a wavefunction of non-interacting spinless fermions due to Girardeau [18]. The chemical
potential, µ = ∂E/∂N , of a TG gas equals the 1D Fermi energy µ = h̄2k2

F

/
2m, where

kF = πn is the Fermi wave vector, and the speed of sound c, defined through the inverse
compressibility mc2 = n∂µ/∂n, is given by c = h̄kF /m.

Further, the pair distribution function

g2(z) = 1 − sin2 πnz

(πnz)2
, (8)

which exhibits Friedel-like oscillations, and the static structure factor of the TG gas

S(k) =
{|k|/(2πn), |k| < 2πn

1, |k| > 2πn
(9)

can be calculated exactly exploiting the Bose–Fermi mapping [18].
The one-body density matrix g1(z) of a TG gas has been calculated in terms of series

expansions holding at small and large distances in [10]. The leading long-range term decays
as

g1(z) =
√

πe2−1/3A−6

√|z|n , (10)

(A = 1.28 . . . is Glaisher’s constant) and yields an infrared divergence in the momentum
distribution n(k) ∝ 1/

√|k|/n.



Correlation functions of a Lieb–Liniger Bose gas S5

Outside the TG regime full expressions of the correlation functions are not known. The
long-range asymptotics can be calculated using the hydrodynamic theory of the low-energy
phonon-like excitations [19, 11, 20]. For g1(z) one finds the power-law decay

g1(z) = Casympt

|zn|α , (11)

where α = mc/(2πh̄n) and Casympt is a numerical coefficient. This result holds for distances
|z| � ξ , where ξ = h̄/(

√
2mc) is the healing length. In the TG regime, c = πh̄n/m

and α = 1/2 as anticipated above. In the opposite GP regime (n|a1D| � 1), one finds
α = 1/(π

√
2n|a1D|), yielding a vanishingly small value for α. The power-law decay of

the one-body density matrix excludes the existence of Bose–Einstein condensation in infinite
systems [21]. The behaviour of the momentum distribution for |k| � 1/ξ follows immediately
from equation (11):

n(k) = Casympt

∣∣∣∣2n

k

∣∣∣∣
1−α √

π�
(

1
2 − α

2

)
�

(
α
2

) , (12)

where �(z) is the gamma function.
The hydrodynamic theory allows one to also calculate the static structure factor in the

long-wavelength regime, |k| � 1/ξ . One finds the well-known Feynmann result [22]

S(k) = h̄|k|
2mc

. (13)

Recently, the short-range behaviour of the one-, two- and three-body correlation functions
has also been investigated. The value at z = 0 of the pair correlation function for
arbitrary densities can be obtained from the equation of state through the Hellmann–Feynman
theorem [13]

g2(0) = − (n|a1D|)2

2
e′, (14)

where the derivative of the equation of state e(n|a1D|) is to be taken with respect to n|a1D|.
The z = 0 value of the three-body correlation function was obtained within a perturbation

scheme in the regions of strong and weak interactions [13]. It is very small in the TG limit
(n|a1D| � 1)

g3(0) = (πn|a1D|)6

60
, (15)

and goes to unity in the GP regime (n|a1D| � 1)

g3(0) = 1 − 6
√

2

π
√

n|a1D| . (16)

The first terms of the short-range expansion of g1(z) can also be calculated from the
knowledge of the equation of state [12]

g1(z) = 1 − 1

2
(e + e′n|a1D|)(nz)2 +

e′

6
(n|z|3), (17)

holding for arbitrary densities and for small distances n|z| � 1.

4. Quantum Monte Carlo method

We use variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods in order
to study the ground-state properties of the system. In VMC, one calculates the expectation
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value of the Hamiltonian over a trial wavefunction ψT(R, A,B, . . .), where R = (z1, . . . , zN)

denotes the particle coordinates and A,B, . . . are variational parameters. According to the
variational principle, the energy

EVMC = 〈ψT|Ĥ |ψT〉
〈ψT|ψT〉 (18)

provides an upper bound to the ground-state energy, EVMC � E0. The variational parameters
A,B, . . . are optimized by the minimization of the variational energy (18).

In order to remove the bias in the estimate of the ground-state energy caused by the
particular choice of the trial wavefunction, we resort to the DMC method, which allows one to
solve exactly, apart from statistical uncertainty, the many-body Schrödinger equation of a Bose
system at zero temperature [23]. The evolution in imaginary time, τ = it/h̄, is performed for
the product f (R, τ ) = ψT(R)�(R, τ ), where �(R, τ ) denotes the wavefunction of the system
and ψT(R) is a trial function used for importance sampling. The time-dependent Schrödinger
equation for the function f (R, τ ) can be written as

−∂f (R, τ )

∂τ
= −D∇2

Rf (R, τ ) + D∇R[F(R)f (R, τ )] + [EL(R) − Eref]f (R, τ ), (19)

where EL(R) = ψT(R)−1HψT(R) denotes the local energy, F(R) = 2ψT(R)−1∇RψT(R) is
the quantum drift force, D = h̄2/(2m) plays the role of an effective diffusion constant and
Eref is a reference energy introduced to stabilize the numerical evaluation. The energy
and other observables of the state of the system are calculated from averages over the
asymptotic distribution function f (R, τ → ∞). It is easy to check, by decomposing
f (R, τ ) on the basis of stationary states of the Hamiltonian, that contributions of the excited
states vanish exponentially fast with the imaginary time τ and asymptotically one obtains
limτ→∞ f (R, τ ) = ψT(R)�0(R) for all trial wavefunctions non-orthogonal to the ground-
state wavefunction �0(R). The local energy EL sampled over the asymptotic distribution
equals exactly the ground-state energy

lim
τ→∞

∫
EL(R)f (R, τ ) dR∫

f (R, τ ) dR
= 〈ψT|Ĥ |�0〉

〈ψT|�0〉 = E0. (20)

In the present study, the trial wavefunction is chosen in the Bijl–Jastrow form

ψT(z1, . . . , zN) =
∏
i<j

f (zij ), (21)

where f (z) is a two-body term chosen as

f (z) =
{
A cos[k(|z| − B)], |z| < Z

sinβ(π |z|/L), |z| > Z.
(22)

We consider N particles in a box of size L with periodic boundary conditions. In the
construction of the trial wavefunction, we have ensured that f (z) is uncorrelated at the box
boundaries, f (z = ±L/2) = 1 and the derivative f ′(z = ±L/2) = 0. For |z| < Z, the Bijl–
Jastrow term f (z) corresponds to the exact solution of the two-body problem with the potential
g1Dδ(z) and provides a correct description of short-range correlations. Long-range correlations
arising from phonon excitations are instead accounted for by the functional dependence of
f (z) for |z| > Z [19]. The z = 0 boundary condition f ′(0+) − f ′(0−) = 2f (0)/|a1D|,
which accounts for the δ-function potential, fixes the parameter k through the relation
k|a1D| tan kB = 1. The remaining parameters A,B and β are fixed by the continuity conditions
at the matching point z = Z of the function f (z), its derivative f ′(z) and the local energy
−2f ′′(z)/f (z). The value of the matching point Z is a variational parameter which we optimize
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Figure 2. Study of finite-size effects in the calculation of the one-body density matrix g1(z) at
n|a1D| = 30. The thin solid line corresponds to the power-law decay A/(n|z|0.04) with A obtained
from a best fit to the N = 500 result.

Table 1. Energy per particle for different values of the gas parameter n|a1D|: ELL—exact result
obtained by solving the Lieb–Liniger equations, EVMC—variational result, equation (18), obtained
from optimization of the trial wavefunction (22).

n|a1D| ELL/N EVMC/N

10−3 1.6408 × 10−6 1.6415(1) × 10−6

0.03 1.3949 × 10−3 1.3957(3) × 10−3

0.3 9.0595 × 10−2 9.093(1) × 10−2

1 0.5252 0.5259(1)

30 26.842 27.19(5)

103 981.15 983.6(3)

using VMC. The TG wavefunction of [18], �TG
0 = ∏

i<j | sin[π(zi − zj )/L]|, is obtained as
a special case of our trial wavefunction ψT for Z = B = L/2 and kL = π .

The choice of a good trial wavefunction is crucial for the efficiency of the calculation. In
order to prove that our trial wavefunction is indeed very close to the true ground-state �0(R),
in table 1 we compare the variational energy EVMC with the exact solution based on the use
of the Bethe ansatz [7]. The corresponding results obtained using DMC coincide, within
statistical uncertainty, with the exact ones and are shown in figure 1.

Besides the ground-state energy E0, the DMC method also gives exact results for local
correlation functions, such as the pair distribution function g2(z) and the three-body correlator
g3(0), for which one can use the method of ‘pure’ estimators [24]. Instead, in the calculation
of the non-local one-body density matrix g1(z), the bias from the trial wavefunction can be
reduced using the extrapolation technique: 〈�0|Â|�0〉 = 2〈�0|Â|ψT〉 − 〈ψT|Â|ψT〉, written
here for a generic operator Â. The ‘mixed’ estimator 〈�0|Â|ψT〉 is the direct output of the
DMC calculation and the variational estimator 〈ψT|Â|ψT〉 is obtained from a VMC calculation.
This procedure is accurate only if ψT  �0. In the present study, DMC and VMC give results
for g1(z) which are very close and we believe that the extrapolation technique completely
removes the bias from �T (R).

Calculations are carried out for a finite number of particles N. In order to extrapolate to
infinite systems, we increase N and study the convergence in the quantities of interest. The
dependence on the number of particles (so-called finite-size effect) is more pronounced in the
regime n|a1D| � 1, where correlations extend to very large distances. Finite-size effects can
be best investigated by considering the one-body density matrix. In figure 2, we show g1(z) at
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Figure 3. Pair distribution function for different values of the gas parameter. In ascending order
of the value at zero n|a1D| = 10−3, 0.3, 1, 30, 103. Arrows indicate the value of g2(0) as obtained
from equation (14).

a fixed density, n|a1D| = 30, for systems of N = 50, 100, 200, 500 particles and we compare
the long-range behaviour with the power-law decay g1(z) ∝ 1/(n|z|)α . For all values of N
deviations from a power-law decay are visible close to the boundary of the box, z = L/2, due
to the use of periodic boundary conditions. We find that the slope of g1(z) at large distances
depends on N, approaching the predicted hydrodynamic value as N increases. For N = 500,
we recover the result α = 0.04. For smaller values of n|a1D|, finite-size effects are less visible
and, for practical purposes, calculations with N < 500 are sufficient.

5. Results

We calculate the pair distribution function g2(z) for densities ranging from very small values
of the gas parameter n|a1D| � 1 (TG regime) up to n|a1D| � 1 (GP regime). The results
are presented in figure 3. In the GP regime, the correlations between particles are weak and
g2(z) is always close to the asymptotic value g2(|z| → ∞) = 1. By decreasing n|a1D| (thus
making the coupling constant g1D larger), we enhance beyond-mean-field effects and the role
of correlations. For the smallest considered value of the gas parameter n|a1D| = 10−3, we
see oscillations in the pair distribution function, which is a signature of strong correlations
present in the gas. At the same density, we compare the pair distribution function with the one
corresponding to a TG gas, equation (8), finding no visible difference.

In the same figure, we show the analytical predictions for the value of g2(0),
equation (14). In the TG regime, particles are never at the same position and consequently
g2(0) = 0. With a weaker interaction between particles, we find a finite probability that two
particles come close to each other in agreement with equation (14). As we go further towards
the GP regime, the interaction potential becomes more and more transparent and we approach
the ideal gas limit g2(0) = 1.

In figure 4, we present results of the static structure factor obtained from g2(z) according
to equation (5). At the smallest density, n|a1D| = 10−3, our results are indistinguishable from
the S(k) of a TG gas (equation (9)). For all densities, the small wave vector part of S(k) is
dominated by phononic excitations. We compare the DMC results with the asymptotic linear
slope (equation (13)). We see that in the strongly correlated regime the phononic contribution
provides a correct description of S(k) up to values of k of the order of the inverse mean
interparticle distance n. In the GP regime, the healing length becomes significantly larger
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Figure 4. Static structure factor at the density n|a1D| = 10−3, 0.3, 1, 30, 103 (solid lines). The
dashed lines are the corresponding long-wavelength asymptotics from equation (13).

Figure 5. Value at zero distance of the three-body correlation function g3(0) (circles); GP limit,
equation (16), dashed line; mean-field factorization, g3(0) = (g2(0))3, solid line. Inset: small
density region on a log–log scale: TG limit, equation (15), dotted line. Open symbol: measured
value of g3(0) from three-body loss experiments [4].

than the mean interparticle distance, leading to deviations from the linear slope for smaller
values of k.

In figure 5, we show the results for the value at zero distance of the three-body
correlation function, equation (3), calculated over a large range of densities. At large density,
n|a1D| = 104, the probability of three-body collisions is large and the result of Bogoliubov
theory, equation (16), provides a good description of g3(0). By reducing n|a1D|, the value
of g3(0) decreases, becoming vanishingly small for values of the gas parameter n|a1D| � 1.
In order to resolve the dependence of g3(0) on the density in the TG regime, we plot the
results on a log–log scale (inset of figure 5). We obtain that g3(0) is proportional to the fourth
power of the gas parameter in agreement with equation (15). A reliable evaluation of the
three-body correlator for small densities is difficult due to the very small value of g3(0) itself.
It is interesting to note that g3

2(0) is close to g3(0) over the whole density range. This estimate
of g3(0) has been discussed in [4]. The coefficient of three-body losses has been measured in
quasi-1D configurations realized with deep two-dimensional optical lattices [4]. The value of
g3(0) extracted from these measurements is also shown in figure 5.
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Figure 6. Short range behaviour of the one-body density matrix at density n|a1D| = 10−3,

0.3, 1, 30 (solid lines), compared with the series expansion at small distances (equation (17))
(dashed lines).

Figure 7. Long-range behaviour of the one-body density matrix (solid lines), best fits to
the long-wavelength asymptotics from equation (11) (dashed lines). Values of the density are
n|a1D| = 10−3, 0.3, 1, 30, 103. The arrows indicate the value of the product of the density and the
healing length ξn: the leftmost corresponds to n|a1D| = 10−3, the rightmost to n|a1D| = 103.

We calculate the spatial dependence of the one-body density matrix, equation (1), for
different values of the gas parameter. At small distances, we compare the DMC results with
the short-range expansion, equation (17), finding agreement for nz � 1 (see figure 6). For
distances larger than the healing length ξ , we expect the hydrodynamic theory to provide a
correct description. The long-range decay shown in figure 7 exhibits a power-law behaviour
in agreement with the prediction of equation (11). The coefficient of proportionality in
equation (11) is fixed by a best fit to the DMC results. The small deviations from the power-
law decay at the largest distances (z ≈ L/2) are due to finite-size effects (see figure 2).

In the weakly interacting GP regime, the coefficient Casympt of equation (11) can be
calculated from a hydrodynamic approach [25]. One obtains

Casympt =
(

e1−γ

8πα

)α

(1 + α), (23)

where γ = 0.577 is Euler’s constant and α = mc/(2πh̄n).
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Figure 8. Momentum distribution at density n|a1D| = 10−3, 0.3, 1, 30, 103. The dashed lines
correspond to the infrared behaviour of equation (12). The arrows indicate the value of 1/ξn: the
rightmost corresponds to n|a1D| = 10−3, the leftmost to n|a1D| = 103.

Table 2. Coefficient of the long-range decay of the one-body density matrix as defined in
equation (11). The first column is the one-dimensional gas parameter, the second column is
the coefficient extracted from the best fit to the DMC results (see figure 7), the third column
is Popov’s prediction, and the fourth column is equation (23). The value of the gas parameter
n|a1D| = 0.001 corresponds to the deep TG regime where one can apply equation (10) yielding
CTG

asympt = 0.5214.

n|a1D| CDMC
asympt C

Popov
asympt Casympt

1000 1.02 1.0226 1.0226
30 1.06 1.0588 1.0579
1 0.951 0.9646 0.9480
0.3 0.760 0.8145 0.7814
0.001 0.530 0.5746 0.5227

Although result (23) is formally derived in the weakly interacting limit, α � 1, it works
well in the whole range of densities. Indeed, the value of Casympt obtained from the best fit
to g1(z), as shown in figure 7, is always in good agreement with the prediction (23). For
example, in the strongly interacting TG regime the comparison between equation (23) and the
exact result in equation (10) gives only 0.3% difference. A different expression was obtained
by Popov [26] (and later recovered in [27]) giving C

Popov
asympt = (

e2−γ

8πα

)α
. Both expressions

coincide for small values of α, but Popov’s coefficient yields larger errors approaching the TG
regime, with 10% maximal error, as it was pointed out in [28]. A comparison of the different
coefficients is presented in table 2.

The momentum distribution, equation (4), is obtained from the Fourier transform of
the calculated one-body density matrix at short distances and the best fitted power-law
decay at large distances. The momentum distribution exhibits the infrared divergence of
equation (12). We present the results for n(k) in figure 8 by plotting the combination kn(k),
where the divergence is absent. We note that the infrared asymptotic behaviour is recovered for
values of k considerably smaller than the inverse healing length 1/ξ . At large k, the momentum
distribution n(k) should decay with a 1/k4 law [12] as a consequence of the short-range
behaviour of the one-body density matrix g1(z) reported in equation (17). As shown in figure 6,
we do find evidence of this short-range expansion, but we should carry out a much more detailed
study of the spatial dependence of g1(z) for n|z| � 1 to be able to extract the correct large-k
asymptotic behaviour of n(k) from the Fourier transform of g1(z).
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6. Conclusions

This paper presents a thorough study of the correlation functions in a one-dimensional
homogeneous Bose gas described by the Lieb–Liniger Hamiltonian. The correlation functions
are calculated for all interaction regimes using exact quantum Monte Carlo methods.
The results on the pair distribution function, one-body density matrix and their Fourier
transformations have already been presented in [14] and are briefly reviewed here. We
carry out a more detailed study of the short- and long-range behaviour of the one-body density
matrix, including the comparison with analytic expansions. We also calculate the probability
of finding three particles at the same spatial position as a function of the interaction strength
and we compare it with the asymptotic results holding in the weakly and strongly interacting
regime and with available experimental results from three-body loss measurements.
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(MIUR).

References

[1] Görlitz A et al 2001 Phys. Rev. Lett. 87 130402
[2] Schreck F et al 2001 Phys. Rev. Lett. 87 080403
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