$3 \mathrm{dnl} \mathrm{J}=0^{\mathrm{e}}-2^{\mathrm{e}}$ autoionizing levels of calcium: observation by laser optogalvanic spectroscopy and theoretical analysis

To cite this article: S Assimopoulos et al 1994 J. Phys. B: At. Mol. Opt. Phys. 272471

View the article online for updates and enhancements.

You may also like

- Excitation energies, radiative and autoionization rates, dielectronic satellite lines, and dielectronic recombination rates for excited states of Yb-like W U I Safronova, A S Safronova and P Beiersdorfer

The VMI study on angular distribution of ejected electrons from Eu $4 f^{\prime} 6 p_{1} 6 d$ autoionizing states Kai Zhang, , Li Shen et al.

The even-parity $\mathrm{J}=0$ autoionizing spectrum of strontium below the $4 \mathrm{~d}_{5,2}$ threshold: observation and theoreticalanalysis M Kompitsas, S Goutis, M Aymar et al.

3d $n l J=0^{\mathrm{e}}-\mathbf{2}^{\mathrm{e}}$ autoionizing levels of calcium: observation by laser optogalvanic spectroscopy and theoretical analysis

S Assimopoulos \dagger, A Bolovinos \dagger, A Jimoyiannis \dagger, P Tsekeris \dagger, E Luc-Koenig \ddagger and M Aymar \ddagger
\dagger Atomic and Molecular Physics Laboratory, Physics Department, University of Ioannina, GR-451 10 Ioannina, Greece
\ddagger Laboratoire Aimé Cotton, CNRS II, Bâtiment 505, 91405 Orsay Cedex, France

Received 9 December 1993, in final form 7 April 1994

Abstract

The even parity $J=0-2$ autoionizing spectra of calcium are investigated below the 3 d threshold by a two-step laser excitation from the 3d4s metastables through the $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} P_{0,1,2}$ intermediate states. The 3 d 4 s are populated by electronic collisions in a DC glow discharge through a Ca heat-pipe.

Around 300 resonance transitions are measured with an accuracy of $\sim 0.2 \mathrm{~cm}^{-1}$ for the narrow ones using standard laser calibration techniques. Their upper levels are assigned to 17 autoionizing 3dns, 3dnd and 3dng Rydberg series and several perturbers belonging to the $4 \mathrm{p}^{2}$ and 4 p 5 p configurations.

The theoretical interpretation is achieved by a combination of the eigenchannel R-matrix and multichannel quantum defect (MQDT) methods. Five, twelve and fourteen interacting channels are introduced for $J=0, J=1$ and $J=2$ series respectively. Theoretical energy level positions and excitation profiles are compared with the experimental data, confirming the identification of the observed structures and pointing out the behaviour of the different perturbed Rydberg series.

1. Introduction

The study of two-electron systems is of particular interest for understanding much of the atoms. The simplest case to treat theoretically is helium, but its high excitation energies are very inconvenient for experimental investigations. Alkaline earths are the next choice and they are actually very appropriate for such studies. Their two external s^{2} electrons have excitation energies within the range of easily available light sources and, at the same time, well below the excitation energies of the closed shell electrons of the ionic core.

The availability of tunable dye lasers and the application of multistep and multiphoton excitation schemes have provided a large number of data on the excited atomic states of such atoms with different angular momenta and either parity. Among the atoms investigated up to now experimentally in the autoionization regime, Ba has been the most extensively studied (Camus et al 1983, Jones et al 1991, Bente and Hogervost 1989a and references therein) followed by work on Sr (Jimoyiannis et al 1993 and references therein, Goutis et al 1992), while Ca is less explored (Garton and Codling 1965, Brown et al 1973, Morita and Suzuki 1988, Morita et al 1988).

The even parity $5 \mathrm{~d} n l$ series of Ba and $4 \mathrm{~d} n l$ series of Sr have been extensively investigated by laser spectroscopy. Series with $J=0-5$ were observed in Ba (Camus et al 1983) and Sr (Jimoyiannis et al 1992, 1993) using two-step optogalvanic spectroscopy. Twostep laser experiments in an atomic beam allowed the observation of $J=2-4$ series of Ba (Bente and Hogervost 1989b) and $J=0-2$ series of Sr (Kompitsas et al 1991, Goutis et al 1992). In contrast the homologous even parity $3 \mathrm{~d} n l$ spectrum of Ca was up to two years ago practically unexplored. A recent theoretical work (Aymar and Telmini 1991) carried out with a combination of the eigen channel R-matrix and multichannel quantum defect (MQDT) methods has been followed by a laser optogalvanic experiment (Bolovinos et al 1992). These works dealt only with the $J=0^{\circ}$ and $J=2^{c}$ spectra, data being reported for $3 \mathrm{~d} n l$ Rydberg levels with $n \leqslant 15$ only. In this report we present additional experimental and theoretical results obtained with the same method for the $J=0^{\mathrm{c}}$ and $J=2^{\mathrm{c}}$ spectra of Ca and new results for the $J=1^{\mathrm{c}}$ spectra.

In the energy range between the first 4 s ($49305.95 \mathrm{~cm}^{-1}$), the second $3 \mathrm{~d}_{3 / 2}$ ($62956.14 \mathrm{~cm}^{-1}$) and third $3 \mathrm{~d}_{5 / 2}\left(63016.83 \mathrm{~cm}^{-1}\right)$ ionization limits several 4 p 5 p $J=0-2$ levels as well as the $4 \mathrm{p}^{2} \mathrm{~S}_{0}$ are expected to lie, and we were able to observe most of them. These perturbers affect strongly the quantum defects, transition probabilities and linewidths of the $3 \mathrm{~d} n l$ Rydberg series. In Sr the analogous 5 p 6 p and $5 \mathrm{p}^{2}$ perturbers are found in the same autoionization range (Goutis et al 1992), while in Ba the $6 \mathrm{p}^{2} \mathrm{~S}_{0}$ only is found there and the 6 p 7 p are above the $5 \mathrm{~d}_{5 / 2}$ threshold (Camus et al 1983).

The Ca levels reported here are detected in a DC glow discharge by a two-step laser optogalvanic ($O G$) technique. In such a discharge the Ca even parity metastable levels 3 d 4 s , which are $\sim 20000 \mathrm{~cm}^{-1}$ above the ground $4 \mathrm{~s}^{2}{ }^{1} \mathrm{~S}_{0}$ level, are sufficiently populated by electronic collisions. From these metastables we can excite in the first step the oddparity $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{0,1,2}$ levels using laser light in the green spectral range. In the second step we reach the dipole allowed $3 \mathrm{~d} n$ s and $3 \mathrm{~d} n \mathrm{~d} J=0-3$ levels, as well as the $3 \mathrm{~d} n g$ ones in as much as there is configuration mixing on the initial or final levels, using laser light in the blue and green mostly. The $J=3$ levels are going to be looked at through the $3 \mathrm{~d} 4 \mathrm{p}{ }^{1} \mathrm{~F}_{3}$ intermediate also and will be published separately, while preparations are under way for exciting the $3 \mathrm{~d} 4 \mathrm{p}^{3} \mathrm{~F}_{3,4}$ intermediates, using uv laser light, in order to cover the even-parity $3 \mathrm{~d} n$ d and $3 \mathrm{~d} n$ g levels up to $J=5$.

The advantage of the above technique, beside its simplicity, is that we can reach high energy and high angular momentum levels using only two easily available laser wavelengths. If we had to start from the ground $J=0$ level, we would need more steps (up to five for $J=5$) to reach the same levels and this would introduce complexity in the experimental set-up and the analysis of the results. In addition, since the excitation cross section for the different $3 \mathrm{~d} n l$ series depends on the particular intermediate level, the choice of the most convenient one is more easily made from the several 3 d 4 s initial levels that are available. On the other hand the small fluctuating local electric fields of the discharge produce, through the Stark effect, a line broadening and a subsequent peak amplitude reduction of the transitions to the strongly polarizable high n Rydberg levels. This reduces the resolution and detectability of the method to levels not higher than $n \sim 40$. Excitation of the metastables 3 d 4 s in an atomic beam by an electron beam (Bente and Hogervost 1989b) or a hollow cathode discharge (Salih and Lawler 1983) is a good way to extend the resolution and detection limits to higher n members.

The theoretical results presented here are obtained with the $j j$-coupled R-matrix method rather than the $L S$-coupled R-matrix, followed by a frame transformation used in the previous paper (Aymar and Telmini 1991). Therefore for the low lying levels
($n \leqslant 15$) of the $J=0^{e}$ and 2^{e} spectra, the present results differ slightly from the previous ones; new results for these spectra as well as for the $J=1^{e}$ are added. The $3 \mathrm{~d} n g$ channels, previously disregarded, have been included. Moreover photoionization spectra from the various intermediates used experimentally have been calculated and have proved to be very useful for the assignment of the J value to an autoionizing level. The calculations have been very helpful in interpreting the irregularities of the energy positions and spectral shapes of the autoionization resonances.

2. Experimental method

The experimental method has been described before (Camus et al 1979, Jimoyiannis et al 1992). Two-step excitations are induced in a glow discharge through a Ca heat-pipe, which uses He as a buffer gas. A 3 mJ nitrogen laser (SOPRA 804C) is used to pump, at a frequency of 17 Hz , a home-made dye laser oscillator for the first excitation step at wavelength λ_{1} and a commercial dye laser oscillator-amplifier (SOPRA LCR I) for the second step at λ_{2}. Both dye lasers have a linewidth of $0.3-0.4 \mathrm{~cm}^{-1}$. A part of the scanning laser beam λ_{2} is sent into a home-made Fabry-Perot interferometer ($1.841 \pm 0.001 \mathrm{~cm}^{-1}$ free spectral range) operating under vacuum. The light intensity interference fringes, which are produced as λ_{2} is varied, are detected with a fast photodiode (MRD 500) and are used for wavelength calibration. The two-step og spectrum of Ca and the Fabry-Perot fringes are processed via two gated integrators (PAR $164 / 165$) and are finally recorded on a dual pen recorder.

The heat-pipe, similar to that of Camus (1974), is a 30 cm long quartz tube of 15 mm diameter with two removable electrodes from stainless steel (anode) and nickel (cathode). The beated region has a length of $\sim 15 \mathrm{~cm}$ and includes a thin stainless steel tube with a stainless steel mesh as a wick. The discharge is maintained by a well stabilized hv power supply and the optimum operation conditions are $600-700 \mathrm{~V}$, for total voltage, and $12-18 \mathrm{~mA}$ for the ~ 3.5 Torr of gas pressure which is the Ca vapour pressure at the operating temperature of $\sim 900^{\circ} \mathrm{C}$ (Nesmeyanov 1963). The discharge noise level is no more than 5 mV , when seen in an oscilloscope with $1 \mathrm{M} \Omega$ input impedance.

When the dye laser light is tuned in resonance with an atomic transition, it strongly perturbs the discharge. The perturbation causes an impedance change and can be measured as a voltage change, called the og signal, across a ballast resistor. It is taken care, by choosing the laser intensity, that the first excitation step from the 3d4s metastables to the $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{0,1,2}$ intermediates produces an og signal of $10-50 \mathrm{mV}$, in which case the two-step og signal attains peak amplitudes up to a few volts for the stronger transitions.

3. Theoretical analysis

The analysis of the experimental data is performed using the eigenchannel R-matrix method in combination with MQDT, i.e. using an approach presented in several papers (Aymar et al 1987, Kim and Greene 1987, Greene and Aymar 1991). The same method was previously used to predict the $J=0^{c}$ and $J=2^{\mathrm{e}}$ spectra of Ca (Aymar and Telmini 1991) and to interpret the $J=0^{\circ}$ (Kompitsas et al 1991) and $J=1-2^{c}$ (Goutis et al 1992) spectra of Sr in the autoionizing energy range below the $4 \mathrm{~d}_{5 / 2}$ threshold, homologous to that studied in Ca in the present work. Readers should refer to the above papers for details on the computation. Here only some points are outlined.

The calculations are performed in $j j$-coupling with the spin-orbit interaction included explicitly with the R-matrix reaction volume. The j-coupled R-matrix approach is chosen rather than the $L S$-coupled R-matrix method followed by a (j j$L S$) frame transformation as used previously (Aymar and Telmini 1991). Indeed this accounts for intermediate coupling effects in the initial 3 d 4 p levels and results in a better description of the photoionization spectra (Telmini et al 1993). Some other differences with the previous work (Aymar and Telmini 1991) should be noted. A larger R-matrix box of radius $r_{0}=25$ au instead of 15 au improves the description of the initial $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}$ levels and that of the $4 \mathrm{~d} n g$ levels which are now included in the calculations. In fact the larger r_{0} value incorporates some long range non-Coulomb effects, neglected previously, whose role is important for g-levels. A last difference concerns the model potential used to describe the Ca^{2+} ee interaction, whose quality determines the accuracy of the final results. This l-dependent model potential is presently adjusted to reproduce the $\mathrm{Ca}^{+}(n l j)$ energy levels, contrary to the potential used in the $L S$-coupled R-matrix calculations which was optimized on the $\mathrm{Ca}^{+}(n l)$ spin-average levels. The $l=2$ orbitals are difficult to describe because the $3 \mathrm{~d}_{j}$ fine structure splitting in Ca^{+}is very sensitive to two effects with opposite contribution; on the one hand the collapse of the d orbital (Griffin et al 1969) results in a contraction to smaller radii and therefore in an increase of the splitting, while on the other the anomalous fine structure effects (Sternheimer 1979), observed in several excited levels ($l \geqslant 2$) in alkali like spectra, and especially in, the isoelectronic with Ca^{+}, pottasium, corresponds to fine structure splittings very much smaller, even inverted, than predicted by a single electron non-relativistic model (Foley and Sternheimer 1975, Luc-Koenig 1976).

Two types of calculations are performed. The first one concerns the determination of the energy positions and wavefunction compositions of doubly excited $J=0^{c}-2^{\text {c }}$ levels using effective reaction matrices restricted to closed channels only, as described elsewhere (Aymar and Telmini 1991). New energy values obtained for $J=0^{c}$ and $J=$ $2^{\text {e }}$ levels agree well with those previously published (Aymar and Telmini 1991). The second type of calculation deals with the partial photoionization cross sections $\sigma(E)$ (in Mb) for the various $3 \mathrm{~d} 4 \mathrm{p}^{3} \mathrm{P}_{s}^{0} \rightarrow J$ excitation processes with unpolarized light; the energy dependence of $\sigma(E)$, calculated on a given energy mesh, presents resonance structure whose FWHM gives the autoionization width of the doubly excited states. The resonant peak positions agree, within the autionization widths, with the energy positions deduced from the effective reaction matrices.

Calculations for $J=0^{c}, 1^{c}$ and 2^{e} involve five, twelve and fourteen interacting channels, homologous to those used in Sr (a complete list can be found for $J=0^{c}$ in table 2 of Aymar and Telmini (1991) and for $J=1^{\mathrm{e}}, 2^{\mathrm{e}}$ in table 1 of Goutis et al (1992)).

4. Experimental results

Figure 1 shows the og signals produced by exciting a typical autoionizing region through the different $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{J}$ intermediate levels. Applying the $\Delta J=0, \pm 1$ $(J=0 \leftarrow / \rightarrow J=0)$ selection rules, the J values of the $3 \mathrm{~d} n l$ states can be easily derived in principle. Those reached from ${ }^{3} \mathrm{P}_{0}$ have $J=1$, while through ${ }^{3} \mathrm{P}_{1}$ and ${ }^{3} \mathrm{P}_{2}$ we can reach states with $J=0,1,2$ and $J=1,2,3$ respectively. Thus we can deduce the J value of the different autoionizing states by looking through which intermediates they are observed. Nevertheless, since their transition strength depends also on the particular intermediate used, some transitions may be so weak that we cannot see them. In addition some lines

Figure 1. Two-step of spectrum of Ca through the $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{0,1,2}$ intermediates. 'False' transitions (see text) are shown with asterisks (*). A part of laser λ_{2} light interference fringes pattern is also included.
are hidden under much stronger ones, which are usually due to transitions between bound Ca states. For example, in the figure 1 we can see that the transition to the $J=$ 1 level at $62407.7 \mathrm{~cm}^{-1}$ is barely seen through the ${ }^{3} \mathrm{P}_{2}$ intermediate and the transition to the $J=2$ level at $62432.2 \mathrm{~cm}^{-1}$ is seen clearly only through the ${ }^{3} \mathrm{P}_{1}$ intermediate while in the spectrum through the ${ }^{3} \mathrm{P}_{2}$ intermediate it is covered by a broader transition to a $J=3$ state. Thus the non-detecting of some lines may guide us to erroneous assignments, if we use the J selection rules solely. Theoretical predictions on energy positions, line intensities and linewidths, as well as experimental trends concerning the widths and intensities of the different observed series, proved to be decisive for a correct assignment in many cases.

We detect also transitions from the other intermediate levels of the same multiplicity as the intermediate state we are exciting in the first step. For example, when we excite
the $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{1}$ intermediate, we see transitions in the second step that start from the $3 \mathrm{~d} 4 \mathrm{p}^{3} \mathrm{P}_{0}$ and $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{2}$ levels too. These ${ }^{3} \mathrm{P}_{0}$ and ${ }^{3} \mathrm{P}_{2}$ levels are populated through collisions in the discharge environment, since their energy differences from the laser-excited level ${ }^{3} \mathrm{P}_{1}$ are small enough for such a population mechanism to be sufficiently effective. These 'false' transitions, which are indicated with asterisks in figure 1, can easily be singled out. They occur at the same λ_{2}, irrespectively of the excited $3 \mathrm{~d} 4 \mathrm{p}^{3} \mathrm{P}_{J}$ in the first step, and they have at least an order of magnitude lower intensity than the real ones which appear when the corresponding intermediate is excited directly by the first laser and not through collisions.

The spectral lines that are due to known transitions between bound Ca levels are used as internal calibration standards for the experimental determination of the energies of the $3 \mathrm{~d} 4 \mathrm{p} \rightarrow 3 \mathrm{~d} n l$ transitions. The accuracy of our results is estimated to be $\leqslant \pm 0.2 \mathrm{~cm}^{-1}$ for sharp lines, 2 or 3 times worse for the broader and/or weaker lines and $\sim 1 \mathrm{~cm}^{-1}$ for a couple of very broad ones. Using different discharge conditions we found no change (which might be due to Stark shifts) in the spectral positions within these accuracy limits. This agrees with the low electric field strength in the possitive column (a few $\mathrm{V} \mathrm{cm}^{-1}$), and is in agreement with similar work on Ba (Camus et al 1982) and Sr (Jimoyiannis et al 1992).

Since the two 3d ionization thresholds are very close ($\Delta E_{3 \mathrm{~d}} \sim 60 \mathrm{~cm}^{-1}$), in contrast to the cases of $\operatorname{Sr}\left(\Delta E_{4 \mathrm{~d}} \sim 280 \mathrm{~cm}^{-1}\right)$ and $\mathrm{Ba}\left(\Delta E_{\mathrm{sd}} \sim 800 \mathrm{~cm}^{-1}\right)$, the detectivity of our method ($n \leqslant 40$) limits us to the region below the $3 \mathrm{~d}_{3 / 2}$ threshold. The ~ 300 levels we detected cover the energy range from $\sim 57600 \mathrm{~cm}^{-1}$ to $\sim 62900 \mathrm{~cm}^{-1}$. The $4 \mathrm{p} n \mathrm{p}$ levels that perturb the $3 \mathrm{~d} n l=0-2$ spectra are the ${ }^{4} 4 \mathrm{p}^{2 \text {, }}{ }^{\prime} \mathrm{S}_{0}$ and $4 \mathrm{p} 5 \mathrm{p}^{3} \mathrm{P}_{0}$, the $4 \mathrm{p} 5 \mathrm{p}{ }^{\prime} \mathrm{P}_{1},{ }^{3} \mathrm{D}_{1}$ and the $4 \mathrm{p} 5 \mathrm{p}{ }^{3} \mathrm{D}_{2}$ and ${ }^{3} \mathrm{P}_{2}$.

In table 1 we give the experimental and theoretical energies of the observed 3dnd $J=0$ autoionizing levels and of a perturber belonging to the $4 \mathrm{p}^{2}$ configuration (the energies are with reference to the $4 \mathrm{~s}^{2}{ }^{1} \mathrm{~S}_{0}$ ground level), their effective quantum numbers relative to the $3 \mathrm{~d}_{3 / 2}$ and $3 \mathrm{~d}_{5 / 2}$ ionization thresholds, the $j j$-coupled levels that are calculated to contribute significantly to each particular wavefunction (if two or more $j j$-levels have a contribution of more than 10%, we give the two with the highest percentage), the relative peak intensity of the observed transition through the $3 \mathrm{~d} 4 \mathrm{p}^{3} \mathrm{P}_{1}$ intermediate and the experimental linewidths. The reported linewidths have a lowest limit of $\sim 0.3 \mathrm{~cm}^{-1}$ at low n values that is due to the laser bandwidth, while at high n states, which are more sensitive to Stark and collision broadening, the experimental limit is $\geqslant 1 \mathrm{~cm}^{-1}$. Tables 2 and 3 give the corresponding results for the $J=1$ and $J=2$ levels; the intermediate levels through which they are excited are the $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{0},{ }^{3} \mathrm{P}_{1},{ }^{3} \mathrm{P}_{2}$ and $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{1},{ }^{3} \mathrm{P}_{2}$ respectively.

A rapid examination of these tables shows a perfect agreement between theoretical and experimental energies for excited levels (less than $1 \mathrm{~cm}^{-1}$ in the vast majority of cases). The less satisfactory concordance observed for the low lying levels arises from the difficulties encountered by the R-matrix method in studying the lowest members of the Rydberg series (Greene and Aymar 1991) and by the description of the d orbitals.

From the results given in tables 1-3, we can notice some general trends that characterize the different $3 \mathrm{~d} n l$ series. We can discern a group of narrow and weak lines, seen up to $n \sim 15$, which correspond to levels with a quantum defect of $\leqslant 0.02$. They are due to the electric dipole forbidden $3 \mathrm{~d} 4 \mathrm{p} \rightarrow 3 \mathrm{~d} n g$ transitions. The high $l=4$ value of the external $n g$ electron implies that its core penetration is very small and this can explain both their near-zero quantum defect and the small autoionization width.

The second group of transitions with linewidths of $1-15 \mathrm{~cm}^{-1}$ and weak peak intensities populates levels with quantum defects of ~ 2.3. It is ascribed to the $3 \mathrm{~d} 4 p \rightarrow 3 \mathrm{~d} n \mathrm{~s}$

Table 1. Energies, linewidths, relative transition intensities via the indicated intermediate levels and effective quantum numbers relative to the $\mathbf{3 d}_{3 / 2}$ and $3 d_{5 / 2}$ ionization limits for observed $J=0^{c} \mathrm{Ca}$ autoionizing levels. The last two columns give the theoretical energies, obtained from the resonant peaks of the calculated $\sigma(E)$ spectrum, and the assignment to $j j$-coupled levels of the $3 \mathrm{~d} n \mathrm{~d}, 3 \mathrm{~d} n \mathrm{~s}$ or $3 \mathrm{~d} n g$ configurations. The perturber level of the $4 \mathrm{p}^{2}$ configuration is identified in the $L S$ coupling scheme. The largest weights in the wavefunction expansion are indicated in brackets. The $E_{\text {theor }}$ values correspond to the maxima of the cross sections $\sigma(E), \mathrm{R}$, overlap with a stronger transition due to a close-lying $J \neq 0$ Rydberg state. *, the energy value is that of the overlapping stronger Rydberg state. sh, transition appears as a shoulder to a near-lying one. Peak amplitude estimates: vvs (very very strong), vs (very strong), s (strong), m (medium), w (weak), vw (very weak), $n d$-and $n \mathrm{~d}++$ stand for $3 \mathrm{~d}_{3 / 2} n \mathrm{~d}_{3 / 2}$ and $3 \mathrm{~d}_{5 / 2} n \mathrm{~d}_{5 / 2}$ respectively. The numbers in brackets give the percentage contribution to the wavefunction of the corresponding mainly involved configurations (for the $4 p^{2}$ the respective number gives the total contribution of this configuration).

$\begin{aligned} & E_{\mathrm{exp}} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$	Width $\left(\mathrm{cm}^{-1}\right)$	${ }^{3} \mathrm{P}_{1}$	${ }^{\prime} \mathrm{P}_{1}$	$v_{3 / 2}^{*}$	$v_{3 / 2}^{*}$	$\begin{aligned} & E_{\text {theor }} \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	Assignment
57611.1	0.9	vs		4.531	4.506	57691.4	5d-- , 5d + + [57, 42]
58535	~ 90		w	4.982	4.948	58762	$4 \mathrm{p}^{\mathbf{2}} \mathrm{S}_{0} 5 \mathrm{~d}++$, $5 \mathrm{~d}-\cdots$ [35,39, 26]
59351.6	0.4	s		5.518	5.472	59385.8	$6 \mathrm{~d}--, 6 \mathrm{~d}++$ [66, 33]
59594.0	3.5		s	5.713	5.662	59702.7	$6 \mathrm{~d}++, 6 \mathrm{~d}--4 \mathrm{p}^{2}[62,27,11]$
60361.4	0.5	vvs		6.503	6.428	60377.3	$7 \mathrm{~d}--, 7 \mathrm{~d}++[79,20]$
60481.6	0.5	s		6.659	6.579	60518.8	$7 \mathrm{~d}++, 7 \mathrm{~d}--[79,19]$
60998.6	0.7	vs		7.487	7.374	61006.4	8d---, 8d+ + [86, 12]
61090.3	0.9	w		7.669	7.547	61107.9	$8 \mathrm{~d}++$, 8d-- [87, 12]
61426.7	0.7	vs		8.470	8.307	61430.6	9d--, 9d $++[89,9]$
61508.0	0.6	\$		8.705	8.528	61517.9	9d $++, 9 \mathrm{~d}-\mathrm{-} 90,10]$
61728.2	0.6	s		9.453	9.228	61730.2	10d--, 10d $+\div[90,8]$
61804.3	1.0	m		9.761	8.513	61810.1	10d++, 10d - - 91,9$]$
61948.5	0.9	vs		10.436	10.135	61949.8	11d--, 11d+ $+[91,7]$
62020.8	0.8	s		10.832	10.496	62024.7	11d++, 11d-- [91,9]
62114.5	0.6	vs		11.419	I1.028	62115.6	[2d--, 12d++ [90,8]
62183.7	0.8	s		11.919	11.477	62186.2	[2d++, 12d-- [88, 11]
62242.9	0.8	s		12.404	11.908	62244.3	13d--, 12d++ [88, 10]
62308.7	0.8	s		13.019	12.449	62310.4	$13 \mathrm{~d}++$, 14d-- 82,17$]$
62345.0	0.8	s		13.400	12.780	62346.6	14d--, $13 \mathrm{~d}++[83,16]$
62 405.4*	-	R		14.116	13.397	62407.0	$14 \mathrm{~d}++, 15 \mathrm{~d}--[67,31]$
62428.5	0.8	m		14.421	13.657	62430.1	15dm-, $14 \mathrm{~d}++[69,31]$
62480.8	0.6	s		15.194	14.308	62481.9	16d--, 15d $++[55,42]$
62498.8	0.7	vw		15.490	14.554	62500.6	$15 \mathrm{~d}++, 16 \mathrm{~d}--[54,46]$
62539.7	0.7	vs		16.233	15.165	62540.8	17d---, 16d++ [73, 24]
62559.2	0.8	w		16.627	15.485	62560.8	$16 \mathrm{~d}+++17 \mathrm{~d}--[70,30]$
62587.3	0.8	s		17.249	15.984	62588.8	18d--, 17d++ [79, 19]
62609.8	0.8	m		17.800	16.420	62611.4	17d,$++ 18 \mathrm{~d}-\mathrm{-}$ [70, 29]
62627.8	0.6	m		18.282	16.795	62629.5	19d--, 17d + + [76, 23]
62651.1	0.6	m		18.967	17.322	62652.6	$18 \mathrm{~d}++, 20 \mathrm{~d}--[54,44]$
62663.9	0.6	w		19.378	17.633	62664.9	20d---, 18d++[60,40]
62 686.3*	-	R		20.166	18.221	62685.6	21d--, 19d++[67, 31]
-	-	-				62697.3	19d++, 21d-- [60, 40]
62711.8	-	sh		21.192	18.967	62712.4	$22 \mathrm{~d}--, 19 \mathrm{~d}++[76,23]$
62725.4	1.2	m		21.808	19.405	62726.0	$20 \mathrm{~d}++, 22 \mathrm{~d}--[61,38]$
62734.9	1.1	s		22.271	19.729	62735.8	23d--, $20 \mathrm{~d}++[76,23]$
62748.5	1.1	m		22.989	20.223	62749.4	24d---, 21d++[63, 36]
62756.0	1.0	vw		23.416	20.511	62757.6	$21 \mathrm{~d}++, 24 \mathrm{~d}-\mathrm{-} 56,44]$
62767.5	1.1	s		24.119	20.979	62768.2	25d--, 22d+ $+[76,23]$
62777.3	1.0	m		24.771	21.404	62777.8	$22 \mathrm{~d}++, 25 \mathrm{~d}-\mathrm{-}[54,46]$

Table 1. (continued)

$\begin{aligned} & E_{\mathrm{Exp}^{-1}}^{\left(\mathrm{cm}^{-1}\right)} \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	${ }^{3} \mathrm{P}_{1}$	${ }^{\prime} \mathrm{P}_{1}$	$v_{3 / 2}^{*}$	$v_{3 / 2}^{*}$	$\begin{aligned} & E_{\text {theor }} \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	Assignment
62784.1	1.1	s		25.256	21.714	62784.8	26d--, 22d $++[67,33]$
62 793.0*	-	R		25.935	22.142	62794.3	27d--, 23d++ [70, 30]
62799.6	1.0	vw		26.477	22.476	62800.8	$23 \mathrm{~d}++, 27 \mathrm{~d}-\mathrm{-}$ [54, 46]
62807.5	1.5	s		27.171	22.896	62807.7	28d--, 23d++ [75, 25]
62814.9	-	sh		27.874	23.312	62815.2	29d--, 24d++[61, 39]
62819.6	1.3	vw		28.349	23.588	62820.3	$24 \mathrm{~d}++, 29 \mathrm{~d}-\mathrm{-}$ [45, 55]
62826.9	1.5	m		29.139	24.037	62826.6	30d--, 25d++ [77, 22]
62832.6	1.0	m		29.804	24.406	62832.6	25d++, 30d-- [44, 55]
62836.9	1.5	m		30.336	24.696	62836.9	31d--, 25d++ [62, 38]
$62842.7 *$	-	R		31.102	25.104	62842.4	32d--, 26d++ [77, 22]
62847.0	1.0	w		31.709	25.419	62847.3	$26 \mathrm{~d}++, 32 \mathrm{~d}--$ [45, 55]
62850.9	1.5	m		32.291	25.716	62850.9	33d--, 26d++ [65, 34]
62855.3	1.3	m		32.988	26.064	62855.6	34d---, 27d ++ [78,21]
62859.9	1.0	w		33.767	26.444	62859.8	$27 \mathrm{~d}++, 34 \mathrm{~d}-\mathrm{-}$ [42, 58]
62863.0	1.5	w		34.325	26.709	62862.9	35d--, 27d++ [65, 35]
62867.1 *	-	R		35.106	27.072	62866.9	$36 \mathrm{~d}--, 28 \mathrm{~d}++[80,20]$
62870.4	1.0	w		35.775	27.375	62870.5	$37 \mathrm{~d}--, 28 \mathrm{~d}++[65,35]$
62873.4	1.5	w		36.418	27.660	62873.2	$28 \mathrm{~d}++, 37 \mathrm{~d}--[40,60]$
62876.5	1.5	w		37.120	27.964	62876.4	38d---, 28d $++[80,19]$
62879.8	1.5	vw		37.914	28.299	62879.7	39d--, 29d ++ [74,25]

transitions. The low $l=0$ value of the external electron explains both their large autoionization width and the large quantum defect, because the penetrating $l=0$ orbit interacts strongly with the Ca^{+}ion core.

The last and most numerous group consists of transitions to the $3 \mathrm{~d} n \mathrm{~d}$ levels. The observed lines are stronger in general than those of the previous two groups and have various, but narrow in general, linewidths, larger than the $3 \mathrm{~d} n \mathrm{~g}$ levels and smaller than the $3 \mathrm{~d} n s$ ones. The quantum defects show variations, with values within the range of $0.4-0.9$, indicating that the corresponding levels are much more affected by the perturbations.

5. Analysis of the experimental results

A way to compare experimental and theoretical energy levels is to draw Lu -Fano plots. Such graphs are presented in figures $2-4$ where $v_{3 d_{3 / 2}}(\bmod 1)$ and $v_{3 \mathrm{~d}_{5 / 2}}$ are the effective quantum numbers relative to the $3 \mathrm{~d}_{3 / 2}$ and $3 \mathrm{~d}_{5 / 2}$ ionization thresholds. In these plots the curves correspond to calculations, the full circles to the theoretical energy levels and the open squares to the observed ones. The observed levels with maximum $4 \mathrm{p} n \mathrm{p}$ character are shown by open triangles.

From the calculated admixture coefficients Z_{i} (Lee and Lu 1973) of each j-coupled channel i we get quantitative information on the wavefunction composition of each level. Because of the interchannel couplings and the mixing of $3 \mathrm{~d} n l$ levels with the $4 \mathrm{p}^{2}$ and 4 p 5 p perturbers, for a lot of levels several $\left|Z_{i}\right|^{2}$ have a non-negligible value. Obviously in such cases the levels are not well described within the $j j$ coupling scheme. The weight allowing us to label the levels is given in the last column of tables 1-3.

In the following we present the results concerning the 4 p 5 p perturbers and the various 3dnl Rydberg series.

Table 2. Same as table 1 for $J=1^{c}$ Ca levels. R, sh, ${ }^{*}$, etc as in table 1. B, overlap with a stronger transition between bound Ca or He states. $n \mathrm{~d}-+, n \mathrm{~d}+-, n \mathrm{~g}--, n s-$, etc stand for $3 \mathrm{~d}_{3 / 2} n \mathrm{~d}_{5 / 2}, 3 \mathrm{~d}_{5 / 2} n \mathrm{~d}_{3 / 2}, 3 \mathrm{~d}_{3 / 2} n \mathrm{~g}_{3 / 2}, 3 \mathrm{~d}_{3 / 2} n \mathrm{~s}_{1 / 2}$ etc respectively. In the level assignment we give the contributions above $\sim 10 \%$. At higher n members two close-lying theoretical states are given for one observed level. The preference of one of the two is based on calculated transition intensity trends.

$\begin{aligned} & E_{\text {exp }} \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	Width $\left(\mathrm{cm}^{-1}\right)$	${ }^{2} \mathrm{P}_{0}$	${ }^{3} \mathrm{P}_{1}$	${ }^{3} \mathrm{P}_{2}$	$v_{3 / 2}^{*}$	$v_{s / 2}^{*}$	$\begin{aligned} & E_{\text {theor }} \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	Assignment
58620.3	0.25	S	R	R	5.031	4.996	58620.3	$5 \mathrm{~g}+\mathrm{-}$ [100]
58761.4	2.0	vVS	vs	-	5.115	5.078	58757.6	6d-- [97]
58807.9	1.2	vvs	m	s	5.143	5.106	58801.5	6d-+, 6d+- [41, 38]
58843.8	1.5	s	vvs	vs	5.166	5.128	58835.6	$6 \mathrm{~d}++[81]$
59363.5	0.25	vs	R	R	5.527	5.481	59396.7	6d + - , 6d-+ [51, 48]
59960.4	0.25	m	R	R	6.052	5.992	59958.9	$6 \mathrm{~g}+-$ [100]
60022.6	1.6	m	S	B	6.116	6.054	60020.0	7d-- [99]
60062.6	1.2	vs	m	vs	6.158	6.095	60059.2	$7 \mathrm{~d}-+, 7 \mathrm{~d}+-[48,40]$
60094.3	0.9	m	vvs	vvs	6.192	6.128	60089.7	$7 \mathrm{~d}++$ [88]
60379.1	0.4	vvs	wvs	vvs	6.525	6.450	60393.8	$7 \mathrm{~d}+-, 7 \mathrm{~d}-+[54,45]$
60770.3	0.5	w	R	R	7.085	6.989	60768.8	$7 \mathrm{~g}+-[100]$
60779.6	1.3	-	w	-	7.101	7.004	60777.9	8d-- [91]
60820.4	1.1	m	w	m	7.168	7.068	60819.0	8d-+, 8d+-[49, 35]
60850.3	0.9	w	s	vs	7.219	7.117	60847.6	$8 \mathrm{~d}+\div$ [80]
61021.0	0.5	S	vs	vs	7.530	7.415	61027.2	8d+-, 8d-+ [57, 41]
61132.1	1.7	w	m	-	7.756	7.630	61146.6	$\mathbf{4 p 5 p}^{1} \mathrm{P}_{1}$ [72]
61296.6	0.5	vw	R	R	8.132	7.987	61295.1	8g+-[97]
61300.0	1.0	vw	-	-	8.140	7.995	61301.0	9d--, 9d-+ [67, 12]
61328.2	1.0	w	vs	m	8.210	8.061	61328.0	9d-+, 9d+- 50,27$]$
61375.0	1.0	w	vw	m	8.331	8.175	61377.8	9d++, 4p5p [78, 13]
61452.6	0.4	S	vs	vvs	8.543	8.376	61455.2	$9 \mathrm{~d}+-, 9 \mathrm{~d}-+[63,35]$
61501.3	3.5	w	w	-	8.685	8.509	61506.8	11s- [97]
61622.5	10	w	$v w$	-	9.071	8.871	61627.0	10d--, 4p5p [64, 16]
61656.6	0.8	m	m	R	9.189	8.982	61655.8	9g+-[86]
61661.5	1.3	-	m	R	9.207	8.998	61661.4	10d-+, 10d + - [50, 20]
61693.8	4.6	s	w	R	9.324	9.107	61697.7	10d,$++ 4 \mathrm{p} 5 \mathrm{p}[72,13]$
61728.9	6.5	vs	m	-	9.456	9.231	61740.4	$4 \mathrm{p} 5 \mathrm{p}^{3} \mathrm{D}_{1}, 10 \mathrm{~d}++$ [46, 23]
61758.3	0.45	s	s	vvs	9.571	9.338	61758.8	10d+-, 10d + [72, 24]
61802.0	15.0	s	R	-	9.751	9.504	61805.4	12s-, 4p5p [83, 19]
61892.9	0.8	vs	vs	-	10.159	9.881	61893.2	11d-- [96]
61910.7	0.7	vvs	-	-	10.245	9.960	61910.7	11d-+, 10d+- [73, 18]
61916.7	0.7	m	R	R	10.275	9.987	61916.2	10g+- [94]
61953.0	0.7	vs	vs	-	10.459	10.156	61953.0	11d++ [98]
61982.2	0.8	vs	vs	vvs	10.615	10.299	61982.1	11d+-, 11d-+ [79, 19]
62001.7	8.4	m	m	-	10.723	10.397	62003.4	13s- [198]
62073.5	0.5	vs	vs	-	11.150	10.786	62073.5	12d-- [99]
62088.6	0.6	vvs	s	m	11.247	10.873	62088.6	12d-+, 11d+-[85, 13]
62134.4	0.6	m	s	-	11.556	11.152	62134.2	12d++ [99]
62151.8	0.7	vs	vs	wvs	11.680	11.263	62151.8	12d+-, 12d $-+[84,14]$
62156.0	7.5	m	m	-	11.711	11.291	62158.4	14s- [99]
62212.4	0.6	vs	vs	-	12.147	11.680	62212.4	13d-- [100]
62224.3	0.6	vvs	s	s	12.245	11.767	62224.4	$13 \mathrm{~d}-+[89]$
62273.3	0.6	m	m	vw	12.677	12.149	62273.1	13d ++ [98]
62277.8	6.0	w	w	-	12.719	12.185	62278.4	15s- [98]
62283.8	0.6	S	s	vs	12.776	12.235	62283.6	13d $+-13 \mathrm{~d}-+[88,10]$
62321.1	0.7	vs	s	-	13.145	12.559	62321.1	14d-- [100]
62329.9	0.6	vvs	s	vs	13.237	12.639	62330.2	14d-+ [91]
62372.3	2.5	w	w	-	13.710	13.048	62373.4	16s- [100]
62382.2	0.6	m	m	-	13.827	13.150	62381.8	$14 \mathrm{~d}++$ [99]

Table 2. (continued)

Table 2. (continued)

$\begin{aligned} & E_{\mathrm{Exp}} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	${ }^{2} \mathrm{P}_{0}$	${ }^{3} \mathrm{P}_{1}$	${ }^{3} \mathrm{P}_{2}$	$v_{3 / 2}^{*}$	$v^{* / 2}$	$\begin{aligned} & E_{\text {lboor }} \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	Assignment
62790.1	1.3	w	R	-	25.708	22.000	62790.3	28s- [100]
62792.4	0.8	m	m	s	25.888	22.112	62792.8	23d+- [95]
62792.9	0.8	w	R	R	25.928	22.137	62793.0	23d++ [96]
62795.0	0.8	m	R	w	26.096	22.241	62795.4	27d-+ [99]
							62795.6	27d--[100]
62802.2	1.3	w	w	-	26.699	22.611	62802.4	29s-[100]
62806.5	0.7	m	R	w	27.080	22.841	62806.9	28d-+ [99]
62807.6	0.6	w	R	-	27.180	22.901	62807.2	28d-- [100]
62811.2	0.7	w	w	w	27.516	23.101	62811.6	24d+- [98]
							62811.9	$24 \mathrm{~d}++$ [99]
62813.3	1.0	vw	-	-	27.717	23.220	62813.3	30s-[100]
62817.0	0.7	m	-	ww	28.083	23.434	62817.3	29d-+ [99]
							62817.6	29d-- [100]
62823.0	0.8	vw	R	-	28.709	23.794	62823.1	31s-[100]
62826.2	0.7	w	m	w	29.060	23.993	62826.6	30d-+ [97]
62826.9	-	sh	R	-	29.139	24.037	62826.9	30d-- [99]
62828.2	1.2	w	sh	R	29.287	24.120	62828.3	25d+- [98]
							62828.6	25d++ [99]
62831.9	0.7	vw	R	-	29.720	24.360	62831.9	32s-[100]
62834.8	0.8	w	R	vw	30.073	24.553	62835.1	31d-+ [99]
62835.5	-	sh	R	R	30.160	24.600	62835.4	31d--[100]
62840.0	1.6	vw	-	-	30.739	24.911	62839.9	33s-[100]
62842.2	0.7	m	sh	m	31.034	25.068	62842.6	32d-+, 26d $+-[65,31]$
62843.2	1.2	w	R	R	31.171	25.140	62842.9	32d--[95]
							62843.0	$26 \mathrm{~d}+-, 32 \mathrm{~d}-+[67,28]$
							62843.3	26d++ [89]
62847.1	1.2	vw	R	-	31.724	25.427	62847.1	34s- [100]
62849.5	1.2	w	R	R	32.078	25.609	62849.7	33d-+ [99]
62850.1	-	sh	R	-	32.169	25.655	62849.9	33d--[100]
62853.7	-	sh	-	-	32.730	25.936	62853.6	35s- [100]
62855.3	0.8	w	R	m	32.988	26.064	62855.7	27d,$+- 33 \mathrm{~d}-+[56,41]$
							62856.1	$27 \mathrm{~d}+-, 34 \mathrm{~d}-+[36,33]$
62856.0	0.9	w	R	R	33.103	26.121	62856.2	34d--, 34d-+ [71, 16]
62859.7	1.3	vw	-	-	33.732	26.427	62859.7	36s- [100]
62861.7	1.3	vw	-	-	34.088	26.597	62861.7	$35 \mathrm{~d}-+$ [99]
							62862.0	35d-- [100]
62866.7	0.9	vw	-	-	35.027	27.036	62867.0	36d-+, 28d+-[85, 14]
							62867.3	36d-- [99]
							62867.6	28d+-, 36d-+ [86, 14]
62868.0	0.8	vw	-	-	35.285	27.154	62867.9	28d++ [98]
							62871.9	37d-+ [99]
62871.7	1.0	vw	-	-	36.050	27.498	62872.1	37d-- [99]
							62876.4	38d-+ [97]
62876.2	1.2	vw	-	-	37.050	27.934	62876.6	38d-- [96]
							62880.5	39d-+ [99]
62880.3	1.3	vw	-	-	38.039	28.350	62880.7	39d-- [100]

5.1. $4 p 5 p$ levels

These levels which are low-lying members of the 4 pnp series, are well described in the $L S$ coupling scheme. They perturb mainly the $3 \mathrm{~d} n d$ and $3 \mathrm{~d} n s$ levels. In tables 1-3 we give the $4 \mathrm{p} n \mathrm{p}$ character of the different levels, when its contribution is more than 10%.

Table 3. Same as tables I and 2 for $J=2^{c}$ Ca levels. R, B, sh, *, etc as in tables I and 2. The $E_{\text {theor }}$ values indicated by O are calculated from effective reaction matrices restricted to closed channcls.

$\begin{aligned} & E_{\mathrm{cxp}} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$	Width $\left(\mathrm{cm}^{-1}\right)$	${ }^{3} \mathrm{P}_{1}$	${ }^{3} \mathrm{P}_{2}$	$v_{3 / 2}^{*}$	$v_{5 / 2}^{*}$	$\begin{aligned} & E_{\mathrm{fteor}} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$	Assignment
						$56460.1{ }^{\circ}$	$5 \mathrm{~d}-+, 5 \mathrm{~d}+-$ [44, 42]
57578.9	0.9	m	vS	4.517	4.492	57678.2	$5 \mathrm{~d}+-, 5 \mathrm{~d}-+[35,34]$
57638.4	0.5	vs	vs	4.543	4.517	57723.4	$5 \mathrm{~d}++$ [85]
58554.3	0.25	m	s	4.993	4.959	58555.5	5g-- [99]
58612.4	0.25	m	s	5.026	4.991	58614.0	$5 \mathrm{~g}+-, 5 \mathrm{~g}++[89,11]$
58620.3	0.25	S	m	5.031	4.996	58620.4	$5 \mathrm{~g}++, 5 \mathrm{~g}+-[90,10]$
58787.4	2.8	vvs	m	5.131	5.094	58785.2	$6 \mathrm{~d}-+, 6 \mathrm{~d}+-[52,48]$
59352.6	0.7	m	m	5.518	5.472	59353.6	6d-- [94]
59363.5	0.25	vs	s	5.527	5.481	59396.7	$6 \mathrm{~d} \div-, 6 \mathrm{~d}-+[49,46]$
59389.4	0.4	s	s	5.547	5.500	59431.6	$6 \mathrm{~d}++$ [99]
59897.4	0.25	m	R	5.990	5.931	59896.4	$6 \mathrm{~g}-$ - [100]
59956.7	0.25	w	R	6.049	5.988	59956.0	$6 \mathrm{~g}+-, 6 \mathrm{~g}++[90,10]$
59960.6	0.25	s	m	6.053	5.992	59959.0	$6 \mathrm{~g}++, 6 \mathrm{~g}+-[90,10]$
60051.6	1.8	vs	m	6.147	6.083	60050.7	7d-+, 7d + - [54, 46]
60340.0	0.7	m	s	6.477	6.403	60373.2	7d-- [99]
60378.0	1.2	vs	vs	6.524	6.449	60399.8	7d,$+- 7 \mathrm{~d}-+[51,45]$
60410.0	1.3	vs	vvs	6.565	6.488	60434.7	$7 \mathrm{~d}++$ [97]
60708.7	0.5	w	R	6.988	6.895	60707.2	$7 \mathrm{~g}-$ - [100]
60768.3	0.5	w	R	7.082	6.986	60767.6	$7 \mathrm{~g}+-$ [92]
60770.3	0.5	m	w	7.085	6.989	60768.9	$7 \mathrm{~g}++[92]$
60816.7	2.2	m	-	7.162	7.062	60816.6	$8 \mathrm{~d}-+, 8 \mathrm{~d}+-[57,43]$
60992.1	1.5	w	w	7.475	7.362	61012.8	8d-- [97]
61023.7	1.0	s	vs	7.536	7.420	61035.8	8d,$+- 8 \mathrm{~d}-+[51,40]$
61054.3	1.5	m	s	7.596	7.478	61070.1	8d ++ [94]
61235.1	0.5	m	R	7.985	7.848	61234.4	$8 \mathrm{~g}-\mathrm{-}$ [100]
61295.3	0.4	m	R	8.128	7.984	61294.8	$8 \mathrm{~g}+-$ [98]
61296.6	0.5	m	w	8.132	7.987	61295.5	$8 \mathrm{~g}++$ [98]
61313.9	3.0	w	vw	8.174	8.027	61314.1	$9 \mathrm{~d}-+, 9 \mathrm{~d}+-[60,39]$
61427.5	1.0	m	m	8.473	8.309	61440.3	9d-- [96]
61457.0	0.7	s	vvs	8.556	8.388	61464.0	9d+-, 9d- $+[53,34]$
61486.5	1.0	s	s	8.641	8.468	61497.3	9d++ [92]
61596.6	0.4	w	R	8.984	8.790	61595.7	$9 \mathrm{~g}-\mathrm{-}$ [100]
61644.3	8.0	vw	w	9.146	8.942	61646.7	9d-+, 10d $+-[51,29]$
61657.8	0.6	vw	-	9.193	8.986	61657.3	$9 \mathrm{~g}++, 9 \mathrm{~g}+-[70,22]$
61732.0	2.3	R	m	9.468	9.242	61741.6	10d-- [95]
61752.7	80	s	w	9.549	9.317	61762.6	10d-+, 10d+--, 4p5p [42, 26, 16
61767.3	5.5	m	m	9.608	9.371	61774.0	12s-, 10d+--, 4p5p [39, 30, 24]
61791.5	3.5	m	w	9.707	9.463	61795.0	10d++ [89]
61804.2	23	s	m	9.760	9.513	$\begin{aligned} & 61811.1 \\ & 61854.9 \end{aligned}$	$\begin{aligned} & 12 \mathrm{~s}-, 4 \mathrm{p} 5 \mathrm{p}^{3} \mathrm{D}_{2}[48,31] \\ & 10 \mathrm{~g}--, 12 \mathrm{~s}+[72,28] \end{aligned}$
61862.0	30	w	-	10.015	9.748	61858.4	12s+, $10 \mathrm{~g}-$ - $[64,28]$
61915.2	0.7	vs	R	10.267	9.981	61914.9	$10 \mathrm{~g}+-, 10 \mathrm{~g}++[72,16]$
						61915.4	$10 \mathrm{~g}++, 10 \mathrm{~g}+-[77,22]$
61919.7	1.5	vs	R	10.290	10.001	61922.0	$11 \mathrm{~d}-+, 11 \mathrm{~d}+-[59,17]$
-	-	-	-			61961.7	11d-- [97]
61986.9	1.0	-	vvs	10.640	10.322	61989.0	11d+-, 11d-+[65, 22]
62011.4	2.0	s	5	10.778	10.448	62016.2	11d++ [89]
62092.9	0.7	vvs	-	11.275	10.898	62094.2	12d-+, 11d+-[77, 19]
62121.2	1.2	w	w	11.464	11.069	62126.7	12d--- [97]
						62156.1	14s-, 12d + - [48, 36]
62156.4	0.9	m	vvs	11.714	11.293	62157.1	14s-, 12d+- [51, 35]

Table 3. (continued)

$\begin{aligned} & E_{\mathrm{exp}} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$	Width $\left(\mathrm{cm}^{-1}\right)$	${ }^{3} \mathrm{P}_{1}$	${ }^{3} \mathrm{P}_{2}$	$v_{3 / 2}^{*}$	$v_{5 / 2}^{*}$	$E_{\text {theor }}$ $\left(\mathrm{cm}^{-1}\right)$	Assignment
62177.7	1.8	s	5	11.873	11.436	62181.0	12d++ [89]
62228.8	0.7	vs	m	12.283	11.801	62230.2	13d-t, 12d + - 788,16$]$
62249.9	1.0	vw	m	12.465	11.962	62254.0	13d~- [97]
62286.6	0.6	-	vvs	12.802	12,259	62287.2	13d+-, 13d-+ [74, 16]
62305.6	1.6	s	vs	12.988	12,421	62307.8	13d++ [88]
62335.9	1.2	vs	m	13.301	12.695	62337.6	$15 \mathrm{~s}+, 14 \mathrm{~d}-+[60,30]$
						$62335.4{ }^{\circ}$	14d-+, 15s $+[46,40]$
62350.4	1.0	vw	w	13.460	12.832	62354.2	14d-- [96]
62389.8	0.7	w	vvs	13.920	13.229	62390.0	$14 \mathrm{~d}+-, 14 \mathrm{~d}-+[76,18]$
62405.4	0.9	vs	vs	14.116	13.397	62406.4	$14 \mathrm{~d}++, 15 \mathrm{~d}-+[79,19]$
62421.4	1.1	s	m	14.325	13.576	62423.0	$15 \mathrm{~d}-+.14 \mathrm{~d}+-[61,17]$
62432.3	0.9	w	-	14.473	13.702	62434.8	15d-- [87]
62450.5	2.8	vw	-	14.732	13.920	62449.6	17s- [99]
62472.1	0.6	m	vvs	15.057	14.193	62471.8	$15 \mathrm{~d}+-, 16 \mathrm{~d}-+[68,29]$
62483.1	0.6	B	vs	15.231	14.339	62483.4	$15 \mathrm{~d}++, 16 \mathrm{~d}-+[52,37]$
62494.1	1.8	vw	-	15.411	14.489	62495.2	$15 \mathrm{~d}+\div, 16 \mathrm{~d}-+[43,28]$
62512.8	2.0	VW	-	15.733	14.755	62511.8	18s- [94]
62536.3	0.6	s	-	16.167	15.112	62536.2	$17 \mathrm{~d}-\cdots+16 \mathrm{~d}+-[63,37]$
62544.5	0.6	vs	vs	16.327	15.242	62545.4	16d+-, 16d $++[38,27]$
62552.0	1.0	-	vw	16.478	15.365	62553.7	17d-- [84]
						62558.6	$16 \mathrm{~d}++, 16 \mathrm{~d}+-[57,19]$
62585.8	0.6	vs	w	17.214	15.956	62586.2	18d-+, 16d +- [81, 13]
62 597.2*	-	R	R	17.485	16.171	62596.5	18d~-, 17d $+-[72,22]$
62600.5	0.5	m	vs	17.566	16.235	62601.3	17d $\div-$, 18d-- [47, 27]
62609.6	1.3	w	w	17.795	16.416	62610.3	$17 \mathrm{~d}++, 17 \mathrm{~d} \div-[69,13]$
62626.4	0.6	s	w	18.243	16.765	62627.0	19d-+ [78]
62645.5	0.7	w	s	18.795	17.191	62646.2	$18 \mathrm{~d}+-, 18 \mathrm{~d}++[73,16]$
62652.7	0.8	m	m	19.017	17.360	62653.5	$18 \mathrm{~d}++$, 20d $-+[63,30]$
62661.5	1.3	w	vw	19.299	17.573	62662.0	20d,$-+ 18 \mathrm{~d}++[61,11]$
62684.3	0.8	-	s	20.092	18.166	62684.2	19d,$+- 21 \mathrm{~d}-+[67,28]$
62686.3	0.6	m	s	20.166	18.221	62687.1	$2 \mathrm{dd}-+, 19 \mathrm{~d}++[49,36]$
62712.4	0.8	B	w	21.218	18.986	62712.0	22d-+ [70]
62 716.8*	-	R	B	21.412	19.125	62717.4	22d--, 20d+- [52, 38]
62719.4	0.7	w	m	21.530	19.208	62720.1	22d--, 20d $+-[46,32]$
62725.5	0.6	R	vw	21.813	19.408	62725.7	$20 \mathrm{~d}++$, 22d $-+[62,19]$
						62733.8°	$22 \mathrm{~s}+, 23 \mathrm{~d}-+[62,32]$
62734.5	1.0	R	m	22.251	19.715	62734.8	$23 \mathrm{~d} \cdots+, 22 \mathrm{~s}+[50,37]$
62739.2	1.0	-	vw	22.491	19.881	62739.3	23d-- [93]
62746.5	0.9	w	S	22.879	20.148	62747.2	$21 \mathrm{~d}+-, 21 \mathrm{~d}++[74,17]$
62750.2	0.7	s	R	23.084	20.287	62750.6	$24 \mathrm{~d} \sim+, 21 \mathrm{~d}++[58,37]$
						62760.7°	$23 \mathrm{~s}+, 26 \mathrm{~s}-[60,38]$
62761.1	1.5	w	-	23.720	20.715	62761.2	26s $-23 \mathrm{~s}+[62,38]$
62768.2	1.2	s	R	24.164	21,009	62768.5	25d-+ [86]
62 771.0*	-	R	R	24.346	21.128	62771.4	22d + -, 25d-- [56,25]
62773.4	0.6	vw	m	24.505	21.232	62773.9	25d---, 22d +- [73, 13]
62777.6	0.8	vw	vw	24.792	21,417	62777.6	$22 \mathrm{~d}++, 25 \mathrm{~d}-+[55,19]$
						62783.5°	24s,$+ 26 \mathrm{~d}-+$ [51, 40]
62784.6	0.9	R	w	25.292	21.738	62784.2	24s + , 26d-+ [47, 42]
62787.1	0.6	-	vw	25.479	21.856	62787.3	26d-- [92]
62790.2	1.1	vw	-	25.716	22.005	62790.3	28s- [99]
62793.0	1.2	m	m	25.935	22.142	62793.3	$23 \mathrm{~d}+-, 23 \mathrm{~d}+\div[73,19]$
62795.1	1.2	m	R	26.104	22.247	62795.3	27d-+, 23d $++[70,25]$
62807.6	1.0	R	vw	27.180	22.901	62807.8	28d-+ [87]
62 811.2*	-	R	R	27.516	23,101	62810.6	28d--, 24d+- [76, 19]

Table 3. (continued)

$\begin{aligned} & E_{\text {exp }} \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	${ }^{3} \mathrm{P}_{1}$	${ }^{3} \mathrm{P}_{2}$	$v^{3} / 2$	$v^{* / 2}$	$\begin{aligned} & E_{\text {theor }} \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	Assignment
62812.1	0.8	vw	m	27.601	23.152	62812.5	$24 \mathrm{~d}+-, 24 \mathrm{~d}++$ [54, 22]
62815.4	1.0	w	vw	27.923	23.341	62815.8	$24 \mathrm{~d}++$, 28d-+ [47, 37]
$62819.6 *$	-	R	-	28,349	23.588	62819.2	29d-+, 24d $++[60,21]$
62823.2	0.8	w	-	28.731	23.806	62823.0	315- [99]
$62826.9 *$	-	R	R	29.139	24.037	62827.2	30d-+[87]
62828.0	1.5	R	m	29.264	24.107	62828.4	$25 \mathrm{~d}+-, 25 \mathrm{~d}++[63,20]$
-	-	-	-	.		62830.2	30d-- [82]
$62832.6 *$	-	R	-	29.804	24.406	62832.6	25d++, 30d-+ [50, 24]
$62836.9 *$	-	R	-	30.336	24.696	62836.4	$31 \mathrm{~d}-+, 25 \mathrm{~d}++[71,9]$
						62837.1°	27s+ [87]
62838.4	-	sh	-	30.529	24.799	62838.2	31d-- [91]
62842.7	1.0	m	m	31.102	25.104	62843.0	32d-+ [83]
						62843.1	$26 \mathrm{~d}+-, 26 \mathrm{~d}++[59,28]$
						$62846.8{ }^{\circ}$	34s-, 26d $++[47,27]$
$62847.0{ }^{*}$	-	R	-	31.709	25.420	62847.2	34s-, 26d $++[53,25]$
62850.8	1.2	R	vw	32.276	25.709	62850.7	28s+, 33d-+ [68, 24]
						62856.1	$27 \mathrm{~d}+-, 27 \mathrm{~d}++$ [65, 26]
62856.0	1.4	w	m	33.103	26.121	62856.2	34d-+ [85]
						62859.4°	$36 \mathrm{~s}-, 27 \mathrm{~d}++[50,24]$
$62859.9 *$	-	R	-	33.767	26.444	62859.7	36s-, 27d + + [50, 24]
62862.5	1.0	w	-	34,233	26.665	62862.6	35d-+, 29s+ [68, 15]
						62863.0°	$29 \mathrm{~s}+, 37 \mathrm{~d}-+[82,13]$
62867.1	2.0	m	m	35.106	27.072	62867.3	$36 \mathrm{~d}-+, 28 \mathrm{~d}++[85,10]$
						62867.7	$28 \mathrm{~d}+-, 28 \mathrm{~d}++[69,19]$
-	-	-	-			62869.2	36d-- [88]
$62870.4 *$	-	R	-	35.775	27.375	62870.6	$28 \mathrm{~d}++$, 36d-+ [45, 30]
62872.7	-	sh	-	36.265	27.593	62872.8	37d--+, 28d $++[71,13]$
						62876.7	38d-+ [86]
62877.8	1.8	R	m	37,379	28.074	62877.8	38d--, 29d $+-[50,38]$
						62878.5	38d--, 29d+- [47, 34]

It was not possible to observe the ' $4 \mathrm{p}^{2}{ }^{, 1} \mathrm{~S}_{0}$ perturber at $\sim 58535 \mathrm{~cm}^{-1}$ through the $3 \mathrm{~d} 4 \mathrm{p}^{3} \mathrm{P}_{1}$ intermediate, since both $3 \mathrm{~d} 4 \mathrm{p}^{3} \mathrm{P}_{1}$ and $4 \mathrm{p}^{2} \mathrm{~S}_{0}$ are described by almost pure $L S$ coupling and the $\Delta S=0$ selection rule holds. Instead it was observed through the $4 s 5 p^{1} \mathrm{P}_{1}$ (Bolovinos et al 1992).

Two resonances are ascribed to the excitation of 4 p 5 p levels identified respectively as ${ }^{1} \mathrm{P}_{1}\left(61132.1 \mathrm{~cm}^{-1}\right)$ and ${ }^{3} \mathrm{D}_{1}\left(61728.9 \mathrm{~cm}^{-1}\right)$. The calculated energies and especially the profiles are in good agreement with the observed ones, as can be seen from table 2 and in the spectra presented later in figures 6 and 8 .

Among the three $4 \mathrm{p} 5 \mathrm{p} J=2$ levels the lowest one, the ${ }^{3} \mathrm{D}_{2}$, is calculated to be spread among several levels, but mostly among three of them, with the level at $61804.2 \mathrm{~cm}^{-1}$ containing the larger part of $4 \mathrm{p} 5 \mathrm{p}^{3} \mathrm{D}_{2}$ and thus being identified with it. We have observed all three corresponding resonances and the agreement of their theoretical calculated energies and linewidths is rather good, as can be seen in table 3 and figure 7, presented later. The previous tentative assignment of this ${ }^{3} \mathrm{D}_{2}$ state (Bolovinos et al 1992) is thus proved not to be correct.

These lowest lying perturbers induce localized perturbations of the 3 d nl series which are visible in figures 2 to 4 . Additional MQDT calculations, in which the $3 \mathrm{~d} n l$ channels are treated as open channels, permit the determination of the energies of the more

Figure 2. Lu-Fano plot of the $J=0^{c}$ levels of Ca in the $v_{3 d_{1 / 2}}$ (mod. 1) versus $v_{3 \mathrm{~d}_{5,2}}$ plane. The curves and theoretical energy levels () are calculated with $j j$-coupled effective reaction matrix $K_{\mathrm{ef}}^{J=0}$. \square, experimental energy levels; $\Delta,{ }^{\prime} 4 \mathrm{p}^{2,}{ }^{1} \mathrm{~S}_{0}$ level.

Figure 3. Lu-Fano plot of the $J=1^{e}$ levels of Ca as in figure 2. The levels with the higher 4 p 5 p contribution are denoted by Δ.

Figure 4. Lu-Fano plot of the $J=2^{\mathrm{c}}$ levels of Ca as in figures 2 and 3.
excited levels of the 4 p 5 p configuration. Thus the ${ }^{3} \mathrm{P}_{0}$ and ${ }^{3} \mathrm{P}_{1}$, which are predicted to lie just below the $3 \mathrm{~d}_{3 / 2}$ threshold, at $62880 \mathrm{~cm}^{-1}$ and $62910 \mathrm{~cm}^{-1}$ respectively, are diluted into the high-lying members of the $3 \mathrm{~d} n \mathrm{~d} J=0$ and $J=1$ series. The $4 \mathrm{p} 5 \mathrm{p}^{3} \mathrm{P}_{2}$ is predicted to lie at $62990 \mathrm{~cm}^{-1}$ between the two 3 d thesholds, while the ${ }^{3} \mathrm{~S}_{1}$ and ${ }^{1} \mathrm{D}_{2}$ are predicted at $63360 \mathrm{~cm}^{-1}$ and $63740 \mathrm{~cm}^{-1}$ respectively, that is above the $3 \mathrm{~d}_{5 / 2}$ limit.

5.2. 3 dns series

There are three such series, two $\left(3 \mathrm{~d}_{3 / 2} n \mathrm{~s} J=1,2\right)$ converging to the $3 \mathrm{~d}_{3 / 2}$ limit and one $\left(3 \mathrm{~d}_{\mathrm{s} / 2} n \mathrm{~s} J=2\right)$ converging to the $3 \mathrm{~d}_{5 / 2}$ one. The theoretical $3 \mathrm{~d}_{3 / 2} h \mathrm{~s}$ levels appear as horizontal branches in the Lu-Fano plots of figure 3 and 4 corresponding to nearly constant value for $v_{3 \mathrm{~d}_{5 / 2}}(\bmod 1) \sim 0.7$ (quantum defects $\delta_{s} \sim 2.3$). The quantum defects for the $3 \mathrm{~d}_{5 / 2} n \mathrm{~s}$ levels are also around 2.3. All $3 \mathrm{~d} n \mathrm{~s} J=1$ levels, except the 3 d 12 s , which is mixed with the nearby $4 \mathrm{p} 5 \mathrm{p}^{3} \mathrm{D}_{1}$ levels, correspond to almost pure $3 \mathrm{~d}_{3 / 2} n \mathrm{~s} J=1$ or equivalently $3 \mathrm{~d} n s{ }^{3} \mathrm{D}_{1}$ levels. In contrast, the $3 \mathrm{~d}_{3 / 2} n \mathrm{~s}$ and $3 \mathrm{~d}_{5 / 2} n \mathrm{~s} J=2$ series are much more mixed with $3 \mathrm{~d} n$ d levels (see table 3 and the gaps between the branches of the $J=2$ Lu-Fano plot).

The observed $3 \mathrm{~d} n$ s resonances are weak and broad and they are not observed below $n \sim 11$. The $3 \mathrm{~d}_{3 / 2} n \mathrm{~s} J=1$ series could be excited for $n=11$ up to $n=36$ (with $n=22$ missing) and through the $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{0}$ and ${ }^{3} \mathrm{P}_{1}$ intermediates only. As for the two $J=2$ series, less than ten members from each one are seen, half of them through the $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{1}$ intermediate only. The large autoionization widths of these resonances indicate that
the $3 \mathrm{~d} n \mathrm{~s}$ channels are more strongly coupled to the $3 \mathrm{~s} \varepsilon \mathrm{~s}$ and $4 \mathrm{~s} \varepsilon \mathrm{~d}$ coninua than the 3dnd and 3dng ones. Similar behaviour was also found in Sr (Jimoyiannis et al 1992, Goutis et al 1992).

Because, for a given n, the energy spacing between the $3 \mathrm{~d}_{3 / 2} n \mathrm{~s} J=1$ and $J=2$ levels is usually smaller than the widths of the observed resonances, in most cases we cannot resolve these levels. Obviously the $J=1$ are secured if they are seen through the 3 d 4 p ${ }^{3} \mathrm{P}_{0}$ intermediate, while the $J=2$ states are assigned on the basis of their intensity. For example, for higher n members the $J=1$ levels are calculated to have weak transition probability through the $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{1}$ intermediate, while the $J=2$ have a stronger one. So, whenever such a $3 d_{3 / 2}$ ns state is seen more strongly through the ${ }^{3} P_{1}$ and/or is not seen through the ${ }^{3} \mathrm{P}_{0}$, it is assigned to a $J=2$ value.

As far as the energy difference of the observed $3 \mathrm{~d}_{3 / 2} n \mathrm{~s}$ and $3 \mathrm{~d}_{5 / 2} n \mathrm{~s}$ levels is concerned it is $\sim 60 \mathrm{~cm}^{-1}$, i.e. equal to the 3 d fine structure splitting, for all observed levels with the same n.
5.3.1. 3 dnd $J=0$ series. There are two $3 \mathrm{~d} n \mathrm{~d} J=0$ series, the $3 \mathrm{~d}_{3 / 2} n \mathrm{~d}_{3 / 2}$ and $3 \mathrm{~d}_{5 / 2} n \mathrm{~d}_{5 / 2}$ ones, which converge to the $3 \mathrm{~d}_{3 / 2}$ and $3 \mathrm{~d}_{5 / 2}$ limits respectively. As can be seen from the $J=0 \mathrm{Lu}$-Fano plot (figure 2) and the last column of table 1 , these two series are strongly mixed in the most part of the observed spectrum. As explained previously (Aymar and Telmini 1991), in the low energy range $L S$ labels are more suitable than the $j j$-labels and the $3 \mathrm{~d} n \mathrm{~d}{ }^{1} \mathrm{~S}$ series is strongly perturbed by the $4 \mathrm{p}^{2}{ }^{1} \mathrm{~S}$ level. For the higher members of the $3 \mathrm{~d} n d$ series, the $j j$-coupling prevails due to the fine structure of the $\mathrm{Ca}^{+} 3 \mathrm{~d}$ core. The mixing between the $3 \mathrm{~d}_{3 / 2} n \mathrm{~d}_{3 / 2}$ and $3 \mathrm{~d}_{5 / 2} n \mathrm{~d}_{5 / 2}$ series is indirectly due to the strong mixing between the $L S$ coupled $3 \mathrm{~d} n d$ and $4 \mathrm{p} n \mathrm{p}$ channels through the electrostatic interaction, which results from the presence of the $4 \mathrm{p} 5 \mathrm{p}^{3} \mathrm{P}_{0}$ level diluted in the high lying 3dnd levels. This indirect coupling of the two $3 \mathrm{~d} n \mathrm{~d}$ series is manifested by very irregular variations of both the quantum defect and wavefunction composition for the two series. In spite of these strong mixings, it can be seen in figure 2 that the theoretical values agree well with the experimental data.

With the exception of a couple of cases, excitation of all $3 \mathrm{~d}_{3 / 2} n \mathrm{~d}_{3 / 2}$ levels for $5 \leqslant n \leqslant 39$ and $3 \mathrm{~d}_{5 / 2} n \mathrm{~d}_{5 / 2}$ for $5 \leqslant n \leqslant 28$ has been observed with a sufficient rate. The theoretical linewidths of the corresponding transitions are in agreement with the experimental observations up to $n \sim 8$. These lowest levels correspond alternatively to narrow and broad resonances; indeed in this energy range the $L S$ coupling scheme is well adapted to the description of the resonances. The $3 \mathrm{~d} n \mathrm{~d}{ }^{1} \mathrm{~S}_{0}$ levels autoionize thus rapidly towards the $4 \mathrm{~s} \varepsilon \mathrm{~s}^{1} \mathrm{~S}_{0}$ continuum for low n, while for the $3 \mathrm{~d} n{ }^{3}{ }^{3} \mathrm{P}_{0}$ ones there is no ${ }^{3} \mathrm{P}_{0}$ open channel built on the $\mathrm{Ca}^{+} 4$ s core and the $3 \mathrm{~d} n d{ }^{3} \mathrm{P}_{0}$ levels are metastable with respect to the autoionization process. For higher n values the resolution of our method gives larger values than those predicted from the theoretical calculations, where both ${ }^{3} \mathrm{P}_{0}$ and ${ }^{1} \mathrm{~S}_{0} 3 \mathrm{~d} n d(n>8)$ states are calculated to have quite narrow (up to $\sim 0.02 \mathrm{~cm}^{-1}$) widths due to their small coupling with the only available $J=0$ continuum of the singlet $4 \mathrm{~s} \varepsilon \mathrm{~s}^{1} \mathrm{~S}_{0}$ states.
5.3.2. 3 dnd $J=1$ series. There are four $3 \mathrm{~d} n \mathrm{~d} J=1$ series, the two $3 \mathrm{~d}_{3 / 2} n \mathrm{~d}_{3 / 2,5 / 2}$ converging to the $3 \mathrm{~d}_{3 / 2}$ limit and the other two $3 \mathrm{~d}_{5 / 2} n \mathrm{~d}_{3 / 2,5 / 2}$ to $3 \mathrm{~d}_{5 / 2}$. As can be seen in the $\mathrm{Lu}-$ Fano plot of figure 3, their perturbation by the $4 p 5 p{ }^{1} P_{1}$ and ${ }^{3} D_{1}$ levels is rather localized, in contrast to the $J=0$ and $J=2$ series. The regular and relatively simple behaviour of the Lu-Fano plots demonstrates that the $4 \mathrm{pp}-3 \mathrm{dd}$ channel mixing is not very large in the $J=1$ spectrum.

The $3 d_{3 / 2} n d_{3 / 2}$ series is definitely observed for $6 \leqslant n \leqslant 19$. It has a mostly pure $3 \mathrm{~d}_{3 / 2} n \mathrm{~d}_{3 / 2}$ character except for the $3 \mathrm{~d}_{3 / 2} 10 \mathrm{~d}_{3 / 2}$ member, which is mixed with some $4 \mathrm{p} 5 \mathrm{p}{ }^{1} \mathrm{P}_{1}$ and ${ }^{3} \mathrm{D}_{1}$ character. This is consistent with its practically constant quantum defect ($\delta \sim 0.88$ below $4 \mathrm{p} 5 \mathrm{p}^{1} \mathrm{P}_{1}$ and $\delta \sim 0.85$ above $4 \mathrm{p} 5 \mathrm{p}^{3} \mathrm{D}_{1}$) and the negligible avoided crossings of the corresponding Lu-Fano branch in figure 3 . The respective transitions are detectable strongly through the $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{0}$ and ${ }^{3} \mathrm{P}_{1}$ intermediates and show narrow linewidths. Only the perturbed $n=10$ state has a $10 \mathrm{~cm}^{-1}$ width in perfect agreement with the theoretical one.

The $3 \mathrm{~d}_{5 / 2} n \mathrm{~d}_{5 / 2}$ series shows very similar behaviour. We were able to detect the members with $6 \leqslant n \leqslant 17$ and $n=22,23$ and 28 . For $n \geqslant 11$ they are mostly pure $3 d_{5 / 2} n d_{s / 2}$ states while the lowest members have $\sim 80 \%$ of such a character due to perturbations by the two $4 \mathrm{p} 5 \mathrm{p}^{\text {' }} \mathrm{P}_{1}$ and ${ }^{3} \mathrm{D}_{1}$ levels (for the $n=9$ and 10 members at least) and other 3dnd series. They correspond to profiles narrower than these associated with $3 d_{3 / 2} n d_{3 / 2}$ levels, except when the levels are mixed with the $4 p 5 p$ ones. Their excitation rates for low n through all ${ }^{3} \mathrm{P}_{J}$ intermediates are strong, while for $n \geqslant 11$ only excitations through the ${ }^{3} \mathrm{P}_{0}$ and ${ }^{3} \mathrm{P}_{1}$ are efficient and above $n=16$ through the ${ }^{3} \mathrm{P}_{0}$ only.

The $3 \mathrm{~d}_{3 / 2} n \mathrm{~d}_{5 / 2}$ and $3 \mathrm{~d}_{5 / 2} n^{\prime} \mathrm{d}_{3 / 2}$ channels on the other hand are strongly mixed among themselves for $n=n^{\prime}=6-10$, i.e. in the energy range of the $4 \mathrm{p} 5 \mathrm{p}{ }^{1} \mathrm{P}_{1}$ and ${ }^{3} \mathrm{D}_{1}$ perturbers, and for $n=32-34, n^{\prime}=26-27$, where there are accidental degeneracies between levels belonging to both series. Elsewhere levels are well described in $j j$-coupling. This mixing is evident, too from the large anticrossings of the respective curves in the $J=1 \mathrm{Lu}$ Fano plot, occurring for $v_{3 d_{/ 2}}>12$, and from the oblique branches in the low energy range ($v_{3 d_{j / 2}}<12$). This behaviour is typical of the mixing of $n l_{j+} l_{j-}$ and $n l_{j_{-}} l_{j+} j j$ coupled channels corresponding to the $n l l{ }^{1} L_{J=L},{ }^{2} L_{J=L} L S$ coupled channels, as has been discussed in the case of the $4 \mathrm{f} n \mathrm{f} J=5,6$ levels of barium (Luc Koenig and Aymar 1992). In this high energy range, the $4 \mathrm{p} 5 \mathrm{p}{ }^{3} \mathrm{P}_{\mathrm{I}}$ perturber is diluted into the $3 \mathrm{~d}_{3 / 2} n \mathrm{~d}_{5 / 2}$ series. This explains the gradual increase of the corresponding quantum defect from 0.75 at $v_{3 d_{5 / 2}} \sim 12$ to 0.95 at the $3 d_{3 / 2}$ threshold (see table 2 and figure 3). The effective quantum number of the $3 \mathrm{~d}_{5 / 2} n \mathrm{~d}_{3 / 2}$ series increases from 0.5 to 0.9 .

Finally, the $J=1$ states are, for the most cases, strongly excited through all 3 d 4 p intermediates. Moreover the theoretical energies agree generally well with the experimental ones.
5.3.3. $3 d n d J=2$ series. There are four $3 \mathrm{~d} n \mathrm{~d} J=2$ series in this case also, two of them converging to the $3 \mathrm{~d}_{3 / 2}$ and the other two to the $3 \mathrm{~d}_{5 / 2}$ limit. The $3 \mathrm{~d}_{3 / 2} n \mathrm{~d}_{j}$ series are detected up to $n=38$ and the $3 \mathrm{~d}_{5_{j}} n \mathrm{~d}_{J}$ up to $n=28$. The comparison of figures 3 and 4 shows that the $3 \mathrm{~d} n \mathrm{~d} J=2$ series are much more mixed than the $3 \mathrm{~d} n d J=1$.

One series has $\geqslant 95 \%$ of $3 \mathrm{~d}_{3 / 2} n \mathrm{~d}_{3 / 2}$ character and a quantum defect $\delta \sim 0.53$ for $n \leqslant 14$ while higher members of the series are mixed with other series and the quantum defects fluctuate between 0.5 and 0.6 . The corresponding transitions are weak when the levels are mostly $3 \mathrm{~d}_{3 / 2} n \mathrm{~d}_{3 / 2}$ and rather weak when they are mixed with $3 \mathrm{~d}_{5 / 2} n \mathrm{~d}_{3 / 2}$.

Another series has $\geqslant 85 \%$ of $3 \mathrm{~d}_{5 / 2} n \mathrm{~d}_{5 / 2}$ character for $n \leqslant 13$ while higher members are mixed with the $3 \mathrm{~d}_{3 / 2} n \mathrm{~d}_{5 / 2}$ and $3 \mathrm{~d}_{5 / 2} n \mathrm{~d}_{3 / 2}$ series. The quantum defect increases from 0.48 to 0.65 up to $n=14$ and then fluctuates between 0.5 and 0.65 . These levels produce also strong transitions through both $3 \mathrm{~d} 4 \mathrm{p}^{3} \mathrm{P}_{1,2}$ intermediates.

The levels of $3 \mathrm{~d}_{3 / 2} n \mathrm{~d}_{3 / 2}$ and $3 \mathrm{~d}_{5 / 2} n \mathrm{~d}_{5 / 2}$ series are not perturbed by the $4 \mathrm{p} 5 \mathrm{p}^{3} \mathrm{D}_{2}$ level in agreement with the zero coefficients occurring in the $j j / L S$ transformation for $3 \mathrm{~d} n d$ levels. On the other hand, since the $3 \mathrm{~d} n \mathrm{~d}{ }^{3} \mathrm{P}_{2}$ symmetry corresponds mainly to the $3 \mathrm{~d}_{5 / 2} n \mathrm{~d}_{5 / 2} \ddot{j}$-coupled levels, the $4 \mathrm{p} 5 \mathrm{p}{ }^{3} \mathrm{P}_{2}$ level, predicted just above the $3 \mathrm{~d}_{3 / 2}$ limit, is
responsible for the scattering of the quantum defects of the higher levels of this series.
Finally the $3 \mathrm{~d}_{3 / 2} n \mathrm{~d}_{5 / 2}$ and $3 \mathrm{~d}_{5 / 2} n \mathrm{~d}_{3 / 2}$ series are strongly mixed among themselves as well as with $3 d_{3 / 2} n s$ for lower n values and with $3 d_{3 / 2} n d_{3 / 2}$ or $3 d_{5 / 2} n d_{s / 2}$ for higher n as we have mentioned already. The $3 \mathrm{~d}_{3 / 2} n \mathrm{~d}_{5 / 2}, 3 \mathrm{~d}_{5 / 2} n \mathrm{~d}_{3 / 2} J=2$ channel mixing is similar to the corresponding one observed for the $J=1$ channel as discussed above. These levels are seen through both $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{1,2}$ intermediates producing strong transitions with similar linewidths as observed in the other $3 \mathrm{~d} n \mathrm{~d} J=2$ series. These series interact with the $4 \mathrm{p} 5{ }^{3}{ }^{3} \mathrm{D}_{2}$ perturber, the largest perturbation occurring for the $3 \mathrm{~d}_{3 / 2} 10 \mathrm{~d}_{\mathrm{s} / 2}$ level. The members with more $3 \mathrm{~d}_{5 / 2} n \mathrm{~d}_{3 / 2}$ character have a smoothly and fast increasing quantum defect δ from ~ 0.5 to ~ 0.85 and up to $n \sim 15$ and then oscillating δ values between 0.8 and 0.9 . The quantum defect of the $3 \mathrm{~d}_{3 / 2} n \mathrm{~d}_{5 / 2}$ decreases from 0.87 to 0.6 up to $n=$ 16 and then oscillates between 0.6 and 0.9 .

As seen in figure 4 and table 3, several levels show $\sim 1 \%$ differences between theoretical and experimental energies with respect to the 3d threshold. However, taking into account the complexity of the spectra, the overall agreement between theory and experiment is satisfying.

5.4. 3 dng series

There is only one $3 \mathrm{dng} J=1$ series, the $3 \mathrm{~d}_{5 / 2} n \mathrm{~g}_{7 / 2}$, seen for $n=5-10,14-15$, which is of practically pure dg character with $\delta \sim 0.01-0.02$, except for the $3 \mathrm{~d}_{5 / 2} 9 \mathrm{~g}_{7 / 2}$ level close to the $4 \mathrm{p} 5 \mathrm{p}^{3} \mathrm{D}_{1}$ perturber. These levels produce very narrow and weak transitions seen through ${ }^{3} \mathrm{P}_{0}$ (through the other intermediates they coincide with the stronger transitions populating the $3 \mathrm{~d} n g \mathrm{~J}=2$ and 3 state).

As far as the $J=2$ series are concerned, there exist three $3 \mathrm{~d} n g$ series: the $3 \mathrm{~d}_{3 / 2} n \mathrm{~g}_{7 / 2}$ and $3 \mathrm{~d}_{5 / 2} n \mathrm{~g}_{7 / 2,9 / 2}$. The $3 \mathrm{~d}_{3 / 2} n \mathrm{~g}_{7 / 2}$ levels are calculated to be practically pure $j j$ coupled; they produce weak and very narrow lines and are seen for $n=5-9$ only (see also the $J=2 \mathrm{Lu}$-Fano plot). The $3 \mathrm{~d}_{5 / 2} n \mathrm{~g}_{7 / 2,9 / 2}$ series produce weak and very narrow lines and they are seen separately for $n=5-8$, while for $n=9-10$ they cannot be resolved with our method. The $J=2$ series are excited through the $3 \mathrm{~d} 4 \mathrm{p}^{3} \mathrm{P}_{1}$ intermediate level, while through ${ }^{3} \mathrm{P}_{2}$ they are masked by the much stronger transitions populating the $3 \mathrm{~d} n \mathrm{~g}$ $J=3$ states.

Finally the energy difference between $3 \mathrm{~d}_{5 / 2} n \mathrm{~g}_{7 / 2}$ and $3 \mathrm{~d}_{3 / 2} n \mathrm{~g}_{7 / 2}$ is found to be around $60 \mathrm{~cm}^{-1}$ for higher n, i.e. equal to the fine structure splitting of the 3 d states of Ca^{+}, which implies that these levels are described well by the $j j$ or $j k$ coupling schemes.

The $3 \mathrm{~d} 4 \mathrm{p}-3 \mathrm{~d} n \mathrm{~g}$ transitions are electric dipole forbidden without configuration mixing in either the initial or final levels. Except when accidental degeneracy occurs, the $3 \mathrm{~d} n \mathrm{ng}$ levels correspond to almost pure ($>99 \%$) configurations; therefore excitation of the $3 \mathrm{~d} n \mathrm{~g}$ levels cannot be ascribed to $3 \mathrm{~d} n \mathrm{~d}-3 \mathrm{~d} n g$ configuration mixing in the final levels. The $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{j}$ levels have a small (a few per cent) but non-vanishing 3 d 4 f character. On the other hand the $4 \mathrm{f}-\mathrm{ng}$ one-electron dipole matrix elements are an order of magnitude larger than the $4 \mathrm{p}-n \mathrm{~d}$ ones, which makes this excitation path the most probable one. We have checked that the MQDT dipole matrix elements connecting the $3 \mathrm{~d} 3 \mathrm{p}{ }^{3} \mathrm{P}_{J}$ levels to the $3 \mathrm{~d} n \mathrm{~d}$ and $3 \mathrm{~d} n g$ channels are of the same order of magnitude.

5.5. Absorption profiles

Theoretical spectra from the different intermediates were computed in the whole energy range investigated experimentally. The theoretical excitation spectrum through a given
$3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{r}$ is generally obtained by summing different partial cross sections $\sigma_{r_{\rightarrow J}}(E)$; since the calculations do not perfectly describe the relative energy positions between final levels with different J values, it is not always possible to reproduce very satisfactorily total cross sections.

The relative values of the transition intensities are in agreement in most cases with the theoretical predictions. In the cases where a particular state is not detected through a given intermediate, the respective calculated cross section is found to be quite small too. The trends also in the calculated intensities of the different transitions are used to assign observed resonances in cases where our resolution is not sufficient to discern close lying levels, something that happens mostly at high n values.

Figures 5 through 9 show experimental and theoretical spectra for different spectral regions excited through the different intermediate levels. In the experimental spectra lines due to transitions between bound Ca levels are identified by B , while the lines due to 'false' transitions have been omitted, in order to avoid complicating the comparison with the calculated ones. The experimental intensity units are arbitrary, while the theoretical ones are given absolute values in units of Mb .

It is useful though to keep in mind that the experimental intensities depend on the changing laser light intensity profile, as the wavelength λ_{2} is scanned (we have tried to make rough corrections to this effect), and on a change in the discharge conditions. On the other hand, because all transitions in a given spectrum start from the same initial state and the final state is always fully autoionized, we do not expect to have any discernible dependence of the (transient) discharge conductivity on the nature of the autoinizing states (autoionization for any final state will produce the same effect on the discharge). The increase of the kinetic energy of the produced electrons, as we excite higher autoionizing states, is not expected either to produce obvious changes to the plasma conductivity, at least within the limited spectral ranges covered in each of the figures shown here. The former of the above mentioned factors, that can affect the oG signal intensity, should make us not fully trust all the relative experimental intensities of the figures shown here, and much more the intensities given in tables 1-3, although their estimation is even more approximate there.

With the above remarks in mind we can see for the majority of our measurements that the agreement between the theoretical and experimental (relative) transition intensities is quite good in general. The agreement is good also for the energy positions and linewidths. However, as already noted, some marked energy differences appear in the energy ranges, where the 4 p 5 p perturbers or some low n levels are involved. Let us look now more closely at each particular spectrum in the figures we have found convenient to present.

Figure 5 shows a spectrum excited through the $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{0}$ and ${ }^{3} \mathrm{P}_{1}$ intermediate levels and covering a low energy spectral region, where no 4 p 5 p perturbers are present. The agreement in the relative intensities of the lines and their linewidths is very good. As far as the energy positions are concerned, all the $J=1$ lines seem though to be displaced to lower values in the calculated spectrum by $\sim 0.1-0.2 \%$ of their term value, while the particular $J=2$ level in this case shows a definitely better (by about a factor of three) agreement.

Figure 6 shows a spectral region, near the $4 \mathrm{p} 5 \mathrm{p}{ }^{1} \mathrm{P}_{1}$ perturber, which is excited through the $3 d 4 p^{3} P_{1}$ intermediate level. Here most levels show increased energy differences (up to $\sim 1 \%$ of their term values) and specifically all experimental positions are lower now from the calculated ones. The relative intensities are not that good either. The relative calculated intensities of the transitions to the $3 \mathrm{~d}_{3 / 2} 8 \mathrm{~d}_{3 / 2} J=2,3 \mathrm{~d}_{5 / 2} 8 \mathrm{~d}_{3 / 2}$

Figure 5. Experimental (top) and theoretical (below) spectra in the energy region of 60 000$60100 \mathrm{~cm}^{-1}$ through (a) the ${ }^{3} \mathrm{P}_{1}$ and (b) the ${ }^{3} \mathrm{P}_{0}$ intermediates.
$J=2$ and $3 \mathrm{~d}_{5 / 2} 8 \mathrm{~d}_{5 / 2} J=0$ levels are in good agreement with the experimental ones. On the other hand the transitions to the $3 \mathrm{~d}_{3 / 2} 8 \mathrm{~d}_{3 / 2} J=0,3 \mathrm{~d}_{5 / 2} 8 \mathrm{~d}_{3 / 2} J=1$ and $3 \mathrm{~d}_{5 / 2} 8 \mathrm{~d}_{5 / 2}$ $J=2$ levels show relatively lower calculated intensities to the previous ones, while the $4 \mathrm{p} 5 \mathrm{p}{ }^{3} \mathrm{P}_{1}$ perturber is calculated to have relatively stronger intensity. In addition the $3 \mathrm{~d}_{3 / 2} 8 \mathrm{~d}_{3 / 2} J=0$ and $3 \mathrm{~d}_{5 / 2} 8 \mathrm{~d}_{3 / 2} J=1$ are calculated to have about half their experimental transition linewidths, so their calculated relative cross sections deviate even further, while the transition to the $3 \mathrm{~d}_{5 / 2} 8 \mathrm{~d}_{5 / 2} J=2$ is calculated to be twice as broad as the experimental one and thus its relative cross section shows a better agreement with the other lines. All other widths are in good agreement. Most probably differences in the fractional contributions of the different configurations that describe any given level,

Figure 6. Experimental (top) and theoretical (below) spectra in the energy region of 61000 $61150 \mathrm{~cm}^{-1}$ through the ${ }^{3} \mathrm{P}_{1}$ intermediate.
may be the reason for the above mentioned deviations. Experimental artifacts do not seem probable to contribute significantly since the trend of the above mentioned deviations is rather irregular.

Figure 7 shows another spectral region, which includes the $4 \mathrm{p} 5 \mathrm{p}^{3} \mathrm{D}_{2}$ perturber that interferes strongly with the nearby $J=2$ levels (see table 3). The linewidths and intensities are quite well reproduced by the calculations for all transitons shown except the broad asymmetrical resonance ascribed to the $3 \mathrm{~d}_{5 / 2} 10 \mathrm{~d}_{5 / 2}$, where the agreement can be considered quite satisfactory in the spectrum seen through the $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{2}$ intermediate. In the spectrum seen through the $3 \mathrm{~d} 4 \mathrm{p}^{3} \mathrm{P}_{1}$ intermediate the peak attributed to the $3 \mathrm{~d}_{5 / 2} 10 \mathrm{~d}_{5 / 2} J=2$ level is barely seen as a shoulder in the theoretical spectrum. In the same theoretical spectrum the intensity of the very narrow transition to the $3 \mathrm{~d}_{5 / 2} 10 \mathrm{~d}_{5 / 2}$ $J=0$ level depends strongly on the energy mesh used in the calculation of $\sigma(E)$. On the other hand the energy positions of all $J=2$ lines are calculated to be noticably higher (by $\sim 0.5-0.8 \%$ of their term values), while the calculation of the $J=1$ state practically coincides with experiment. A very strong transition beyond $61825 \mathrm{~cm}^{-1}$ is due to a $J=3$ level.

Figure 8 is a spectrum seen through the $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{0}$ intermediate and thus shows only $J=1$ levels, among which the $4 \mathrm{p} 5 \mathrm{p}^{3} \mathrm{D}_{1}$ perturber is included. The intensity and linewidth agreement between experimental and calculated spectral lines is again quite good. However the $3 \mathrm{~d}_{3 / 2} 12 \mathrm{~s}$ line only appears to be a factor of two more intense in the experiment. As far as transition energies are concerned, the $4 p 5 p^{3} D_{1}$ perturber and the $3 d_{5 / 2} 10 d_{5 / 2}$ and $3 d_{3 / 2} 12 s$ levels, which have some $4 p 5 p^{3} D_{1}$ character (see table 2), are displaced to higher energies in the calculated spectrum, while the calculated position of the other line, the $3 \mathrm{~d}_{5 / 2} 10 \mathrm{~d}_{5 / 2}$, coincides with the experimental one.

Finally figure 9 is another spectrum, seen again through the $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{0}$ intermediate, that covers an energy region for $n \geqslant 11$ away from any $4 \mathrm{p} 5 \mathrm{p} J=1$ perturber. The

Figure 7. Experimental (top) and theoretical (below) spectra in the energy region of 61750 $61850 \mathrm{~cm}^{-1}$ through (a) the ${ }^{3} \mathrm{P}_{2}$ and (b) the ${ }^{3} \mathrm{P}_{1}$ intermediates.
agreement here is very good in all aspects, line intensities and widths as well as transition energies.

6. Conclusions

Starting from the 3 d 4 s metastable levels of calcium, which are populated by electronic collisions in a DC glow discharge, we used a two-step laser excitation via the $3 \mathrm{~d} 4 \mathrm{p}{ }^{3} \mathrm{P}_{0,1,2}$ intermediate bound levels to excite about $3003 \mathrm{~d} n l(l=0,2,4), J=0^{c}-2^{c}$, autoionizing resonances as well as the $4 p^{2}$ or 4 p 5 p perturbers. For the assignment for their total angular momenta, besides using the J selection rules for the electric dipole transitions starting from the different intermediate levels, the theoretical predictions were also

Figure 8. Experimental (top) and theoretical (below) spectra in the energy region of $61650-$ $61850 \mathrm{~cm}^{-1}$ through the ${ }^{3} \mathrm{P}_{0}$ intermediate.

Figure 9. Experiment (top) and theoretical (below) spectra in the energy region of 61900 $62500 \mathrm{~cm}^{-1}$ through the ${ }^{3} \mathrm{P}_{0}$ intermediate.
indispensable, especially for the identification of the perturbed members of the different series as well as for the assignment of levels that cannot be detected from a particular intermediate, because of low excitation cross sections or overlap with other stronger transitions.

We were able to detect and identify levels belonging to all seventeen $3 \mathrm{~d} n l J=0^{\mathrm{e}}-2^{\text {e }}$ series, but for the two $3 \mathrm{~d}_{5 / 2} n \mathrm{~s}$ and the four $3 \mathrm{~d}_{j} n \mathrm{~g}_{j}$ ones the number of observed members was restricted to no more than ten in each case.

The particular optogalvanic technique used is proved once more to be well suited for the detection of autoionizing Rydberg series up to $n \sim 40$. In addition, the availability of several intermediate states for the first step laser excitation makes possible the detection of all existing Rydberg series by choosing the intermediate level which has a high cross section excitation to the particular $3 \mathrm{~d} n l$ levels and their perturbers. The detection of the $4 p^{2}{ }^{\text {I }} S_{0}$ perturber through the $4 s 5 p{ }^{1} P_{0}$ and not the $3 d 4 p{ }^{3} P_{1}$ is a characteristic example of this.

From this work we see further that the eigenchannel R-matrix method, coupled to the MQDT formalism, gives a good theoretical description of the observed spectra in spite of their complexity due to several autoionizing Rydberg series interacting among themselves and with low members of $4 \mathrm{p} n \mathrm{p}$ series. In particular the calculated channel mixing between the different $3 \mathrm{~d} n l$ series and with the $4 \mathrm{p}^{2}$ and 4 p 5 p levels as well as with the $4 s \varepsilon l$ continua permits the assignment of all observed levels and produces line intensities and profiles which are in most cases in good agreement with the experimental data. Experimental and theoretical energy positions with respect to the 3d ionization threshold agree generally within 0.1% or less except for lowest lying or perturbed levels. Even for the $J=2$ spectrum the overall agreement is very satisfactory considering the strong channel mixings that give to it a complicated structure.

Finally, although in this work we report the detection of levels with $J=0-2$ only, higher total angular momentum series, up to $J=5$, are expected to be reached easily through other 3 d 4 p intermediates. We are planning to look for them very soon.

References

Aymar M, Luc-Koenig E and Watanabe S 1987 J. Phys. B: At. Mol. Phys. 204325
Aymar M and Telmini M 1991 J. Phys. B: At. Mol. Opt. Phys. 244935
Bente E A J M and Hogervost W 1989a J. Phys. B: At. Mol. Opt. Phys. 222679
_- 1989b Z. Phys. D 14119
Bolovinos A, Jimoyiannis A, Assimopoulos S and Tsekeris P 1992 J. Phys. B: At. Mol. Opt. Phys. 25 L533
Brown C M, Tilford S G and Ginter M L 1973 J. Opt. Soc. Am. 631454
Camus P 1974 J. Phys. B: At. Mol. Phys. 71154
Camus P, Dieulin M and El Himdy A 1982 Phys. Rev. A 26379
Camus P, Dieulin M and Morillon C 1979 J. Physique Lett. 40 L513
Camus P, Dieulin M, El Himdy A and Aymar M 1983 Phys. Scr. 27125
Foley M M and Sternheimer R M 1975 Phys, Lett. 55A 276
Garton W R S and Codling K 1965 Proc. Phys. Soc. 861067
Goutis S, Aymar M, Kompitsas M and Camus P 1992 J. Phys. B: At. Mol. Opt. Phys. 253433
Greene C H and Aymar M 1991 Phys. Rev. A 441773
Griffin D C, Andrew K L and Cowan R D 1969 Phys. Rev. 17762
Jimoyiannis A, Bolovinos A and Tsekeris P 1992 Z. Phys. D 22577
Jimoyiannis A, Bolovinos A, Tsekeris P and Camus P 1993 Z. Phys. D 25135
Jones R R, Panming F and Gallagher T F 1991 Phys. Rev. A 444265
Kim L and Greene C H 1987 Phys. Rev. A 364272
Kompitsas M, Goutis S, Aymar M and Camus P 1991 J. Phys. B. At. Mol. Opt. Phys. 241557

Lee C M and Lu K T 1973 Phys. Rev. A 81241
Luc-Koenig E 1976 Phys. Rev. A 132114
Luc-Koenig E and Aymar M 1992 J. Physique II 2865
Morita N and Suzuki T 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L439
Morita N, Suzuki T and Sato K 1988 Phys. Rev. A 38551
Nesmeyanov A N 1963 Vapor Pressure of the Chemical Elements (New York: Elsevier)
Salih S and Lawler J E 1983 Phys. Rev. A 283653
Sternheimer R M 1979 Phys. Rev. A 19474
Telmini M, Aymar M and Lecomte J-M 1993 J. Phys. B: At. Mol. Opt. Phys. 26233

